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Abstract. This paper evaluates the performance of a sta-
tistical post-processor for imperfect hydrologic model fore-
casts. Assuming that the meteorological forecasts are well-
calibrated, we employ a “General Linear Model (GLM)” to
post-process simulations produced by a hydrologic model.
For a particular forecast date, the observations and simu-
lations from an “analysis window” and hydrologic model
forecasts for a “forecast window”, the GLM Post-Processor
(GLMPP) is used to produce an ensemble of predictions of
the streamflow observations that will occur during the “fore-
cast window”. The objectives of the GLMPP are to: (1)
preserve any skill in the original hydrologic ensemble fore-
cast; (2) correct systematic model biases; (3) retain the equal-
likelihood assumption for the ensemble; (4) preserve tem-
poral scale dependency relationships in streamflow hydro-
graphs and the uncertainty in the predictions; and, (5) pro-
duce reliable ensemble predictions.

Observed and simulated daily streamflow data from the
Second Workshop on Model Parameter Estimation Experi-
ment (MOPEX) are used to test how well these objectives
are met when the GLMPP is applied to ensemble hydrologic
forecasts driven by well calibrated meteorological forecasts.
A 39-year hydrologic dataset from the French Broad basin
is split into calibration and verification periods. The results
show that the GLMPP built using data from the calibration
period removes the mean bias when applied to hydrologic
model simulations from both the calibration and verifica-
tion periods. Probability distributions of the post-processed
model simulations are shown to be closer to the climatologi-
cal probability distributions of observed streamflow than the
distributions of the unadjusted simulated flows. A number of
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experiments with different GLMPP configurations were also
conducted to examine the effects of different configurations
for forecast and analysis window lengths on the robustness
of the results.

1 Introduction

In an ensemble streamflow prediction (ESP) system, hydro-
logic model forecasts driven by forecasts of likely future
meteorological events are commonly used to represent the
likely future hydrologic events. The reliability and accuracy
of hydrologic predictions are negatively affected by a num-
ber of sources, including unreliable and inaccurate meteo-
rological forcing, initial basin state conditions, model errors
(i.e., incorrect model structure and parameter specification),
and errors in streamflow observations (McEnery et al., 2005;
Schaake et al., 2006). In the ESP system like the US Na-
tional Weather Service River Forecast System (Seo et al.,
2006; DeMargne et al., 2009), these uncertainties are han-
dled by different statistical processors (Fig. 1). For example,
meteorological forcing uncertainty is handled by the ESP
pre-processor (EPP). The uncertainty related to initial and
boundary conditions is commonly addressed by land data as-
similators. Uncertainty in the hydrologic simulations (i.e.,
the raw ensemble) is expected to be handled by an ESP post-
processor (EPostP).

A lot of recent effort has been directed at the develop-
ment of different statistical processors. Krzysztofowicz and
Sigrest (1999) developed methods to calibrate probabilis-
tic quantitative precipitation forecast (PQPF) so PQPF is
more consistent with observations. Seo et al. (2000) em-
ployed a quasi-analytical downscaling procedure to produce
short-term probabilistic river stage forecasting using PQPF
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Fig. 1. A schematic of the ensemble streamflow prediction (ESP)
system. QPE and QTE stand for quantitative precipitation esti-
mation and quantitative temperature estimation, respectively, while
QPF and QTF stand for quantitative precipitation forecast and quan-
titative temperature forecast.

from raw quantitative precipitation forecasts (QPF). Schaake
et al. (2007) developed a methodology to map single-
valued QPF and QTF (i.e., quantitative temperature forecast)
into calibrated ensemble forecasts. Schaake’s methodology
works by computing the marginal distribution of observa-
tion conditioned on a given forecast with a meta-Gaussian
model and then using a procedure known as “Schaake Shuf-
fle” to create space-time consistent meteorological ensem-
bles (Clark et al., 2004).

Forecast updating through data assimilation (these can be
experience-driven manual updating procedures or automated
mathematical algorithms) serve to reduce model biases by
adjusting model state variables and enhance forecast perfor-
mance. With advances in observational technology, many
researchers have been using sophisticated data assimilation
techniques to obtain more realistic land state variables by as-
similating observed data such as soil moisture, snow cover,
or river discharge data. Seo et al. (2003) used the varia-
tional assimilation technique to assimilate observed precip-
itation and streamflow data to improve operational stream-
flow forecasts. Slater and Clark (2006) and Andreatis and
Lettenmaier (2006) used Ensemble Kalman Filter (EnsKF)
to assimilate observed snow data to improve the estimates of
snow accumulation and melting. There exist a plethora of
methodologies to deal with uncertainty related to model pa-
rameters (Duan et al., 1992, 2003, 2006). The most widely
used approach to reduce parameter uncertainty is to calibrate
model parameters to match hydrologic simulations with ob-
servations (Duan et al., 1992). Recent development in pa-
rameter estimation is to treat model parameters as probabilis-
tic values to account for uncertainties in forcing and stream-
flow observations (Beven and Binley, 1992; Kuczera and Par-
ent, 1998; Vrugt et al., 2003).

The traditional ESP generates an ensemble of streamflow
forecasts conditioned on an ensemble of precipitation and
temperature forecasts. The uncertainty in the initial con-
ditions is typically ignored in the hydrologic model. This
usually results in biased raw hydrologic simulations and the
spread of the raw hydrologic ensemble tends to be underesti-
mated, especially in the early forecast time steps where initial
conditions and effects of hydrologic model uncertainty are
most important. Post-processing is a way to remove biases
in ensemble means and spread of ensemble streamflow pre-
dictions. Krzysztofowicz and Maranzano (2004) proposed a
Bayesian based methodology to generate probabilistic river
stage forecasting as a way to remove model biases. Based on
this methodology, Seo et al. (2006) presented a hydrologic
post-processor for the National Weather Service River Fore-
cast System. Regianni et al. (2009) applied the same method-
ology to generate ensemble streamflow predictions for oper-
ational River Rhine forecasting system. Theoretically speak-
ing, the Bayesian framework can explicitly integrate uncer-
tainties from all sources (Krzysztofowicz, 2001; Seo et al.,
2006). To do that, however, requires knowing the underlying
multivariate probability distributions of these uncertainties,
including their covariance structure. In reality, it is very dif-
ficult to know what forms those probability distributions take
and what the covariance structure is.

Wood and Schaake (2008) correlated seasonal flow fore-
cast ensemble means with observations to generate a condi-
tional forecast mean and spread that lie between the climato-
logical mean and spread (when the forecast has no skill) and
the raw forecast mean with zero spread (when the forecast
is perfect). A promising approach to post-processing hydro-
logic model hydrograph simulations using a transformation
derived with simulated and observed flow hydrographs was
proposed by Bogner and Kalas (2008). They used a combi-
nation of state-space models and wavelet transformations in
order to update errors between the simulated (forecasted) and
the observed discharge.

The work of Bogner and Kalas (2008) together with an
understanding of the first and second moment properties of
any multivariate distribution that was presented by Valencia
and Schaake (1973) motivated the work presented here. In
this work, a the normal quantile transform (NQT) using cli-
matological distributions of observed and simulated stream-
flow variables is used to transform these variables to a space
where all variables are assumed to be distributed according to
a Bivariate Normal distribution that is completely character-
ized by its covariance matrix. Recent past streamflow obser-
vations and corresponding model simulations together with
traces of future model streamflow values are used to predict
an ensemble of future streamflow observations that are an es-
timate of the multi-scale predictive uncertainty of the future
Streamflow. We will show that this procedure, called a Gen-
eral Linear Model Post-Processor (GLMPP) may be a useful
tool for post-processing ensemble streamflow predictions.
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Fig. 2. The data window for the GLMPP.

The organization of the paper is as follows. The GLMPP
methodology is presented in Sect. 2. The data and ex-
perimental configurations are described in Sect. 3. Sec-
tion 4 discusses the experimental results. Section 5 provides
conclusions.

2 The general linear model methodology

In this section we present a hydrologic post-processor with
the following properties: (1) it preserves the “skill” of the
raw ensemble forecast; (2) it removes mean bias; (3) it pro-
duces an ensemble of members that represent in an “equally-
likely” sense the observed hydrograph that is being pre-
dicted; (4) it preserves temporal scale dependency relation-
ships in streamflow hydrographs and the uncertainty in the
predictions; and, (5) it produces ensemble predictions of fu-
ture streamflow events that have very nearly the same clima-
tology as the corresponding streamflow observations.

In probability terms, the function of a hydrologic post-
processor is to obtain the conditional probability density
function (PDF) of observations,yobs, given the ensemble
of meteorological forecasts,yfcst, f (yobs|yfcst). If we ne-
glect the uncertainty in the relationship between observations
(yobs) and simulations (ysim) that is caused by the analysis
error (i.e., the error in computing areal values from station
values) in the estimated forcing used to generateysim dur-
ing the analysis period,f (yobs|yfcst) can be estimated by the
relationship:

f (yobs|yfcst) =

∫
+∞

0
f (yobs|ysim)f (ysim|yfcst)dysim (1)

If random variablesyobs, ysim andyfcst are Gaussian, Eq. (1)
can then be solved using what we refer to as a General Lin-
ear Model Post-Processor (GLMPP). Before presenting the
GLMPP, we first define some terms. Figure 2 is a schematic

of the data window which specifies the day of forecast, the
analysis period and the forecast period.Na andNf are the
lengths of the analysis and forecast periods. Differences be-
tween observed and simulated flows for the analysis period
preceding the forecast are used to compensate for unwanted
effects of imperfect estimates of initial conditions on fore-
casts. Because there are typically only a few historical years
of data available to calibrate the GLMPP it is essential to
use observed and simulated flow data for forecast dates for
some number of days before and after the target forecast date.
Therefore a “buffer” period with the half length ofNbuffer is
introduced to include data for a total ofNbuffer days prior
to the analysis period and after the forecast period for each
historical year to calibrate GLMPP. LetZ1 be the observa-
tions for the forecast period,Z2 the predictor vector, which
contains simulated and observed streamflow for the analysis
period, and simulated streamflow for the forecast period, i.e.,

Z1 =
[
qobs,nf

]
=

qobs,1
...

qobs,Nf

, Z2 =

qsim,nf

qobs,na

qsim,na

 =



qsim,1
...

qsim,Nf

qobs,−Na

...

qobs,−1
qsim,−Na

...

qsim,−1


Further, letZ1,2 be the predictand given the predictor vector,
i.e.,Z1,2 = Z1|Z2. The GLMPP model can be expressed as:

Z1.2 = A ·Z2+B ·E (2)

whereE = N(0,1) is a normally distributed random variable
with a mean of zero and a standard deviation of 1. Denote
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Z =

[
Z1
Z2

]
. The covariance matrix forZ is:

6 =

[
611612
621622

]
Eq. (2) can be solved analytically (Valencia and Schaake,
1973) withA = 612·6−1

22 andBBT
= 611−612·6−1

22 ·621.
Although these equations forA andBBT apply to any mul-

tivariate distribution the GLMPP makes the additional as-
sumption that the random variablesZ1 andZ2 are normally
distributed. Clearly, observed and simulated streamflow vari-
ables do not meet this requirement so we use the normal
quantile transformation (NQT) proposed by Krzysztofow-
icz (1997) to transform elements of the streamflow dataQsim
andQobs in original space toqsim andqobs in the transformed
space where the marginal distributions of the transformed
variables have a standard normal distribution. We then ap-
proximate the joint distribution of the normally distributed
transformed variables with the Multivariate Normal distribu-
tion. To use estimates ofqobsmade in the transformed space,
an inverse NQT procedure must be performed to transform
qobs back into the original space.

3 Data and experimental design

The data used to test GLMPP are the simulated and observed
daily streamflow discharge data obtained from Second Work-
shop on Model Parameter Estimation Experiment (MOPEX)
database (Duan et al., 2006). There are 12 basins in the
MOPEX database, but we selected only one of the MOPEX
basins, the French Broad River basin at Asheville, North
Carolina (USGS Basin ID 03451500) as an example to il-
lustrate the proposed GLMPP approach. The drainage area
is 2448 km2. Seventy-three percent of the drainage area is
covered by forests. Annual precipitation is about 1676 mm.
There are a total of 39 years of streamflow data covering the
period from 1960 to 1998. The streamflow data period is fur-
ther divided into calibration and verification periods, with the
odd-year data used for calibrating the parameters of GLMPP,
and the even-year data for verifying them. The reason for
using odd and even years to represent calibration and veri-
fication periods is to ensure that the statistical properties of
both periods are similar.

Based on former study, simulations from three of the hy-
drologic models that participated in MOPEX are chosen for
this study: the Sacramento Soil Moisture Accounting (SAC-
SMA) model (a detailed description of the SAC-SMA struc-
ture and parameters can be found in Burnash et al., 1973); the
Simple Water Balance (SWB; Schaake et al., 1996) and the
NOAH model (Chen and Dudhia, 2001). The SAC model
with 16 adjustable parameters is the most widely used op-
erational hydrologic forecast model in the National Weather
Service. The SWB model, while also an operational model,
has only 5 adjustable parameters. The NOAH model is a

land surface parameterization scheme for the operational nu-
merical weather prediction (NWP) model in NWS. These
three models represent different levels of hydrologic fore-
cast skills. Since our objective is to test if GLMPP applied
to each model can meet the requirements for a hydrologic
post-processor specified at the beginning of the Sect. 2, we
designed a number of numerical experiments to perform the
following studies: (1) we calibrated GLMPP to the stream-
flow data from all three models using data for a “calibration
period” and then checked to see if the results from calibra-
tion period are still valid in and independent “verification
period”; (2) we experimented with different configurations
for the data window lengths to examine the robustness of the
results; and (3) we tested different forecast dates to see if
GLMPP performance is seasonally dependent.

4 Results and discussions

4.1 Testing GLMPP on the SAC, SWB and NOAH
streamflow forecasts

In the first experiment, we separately calibrated GLMPP for
the SAC, SWB and NOAH models using MOPEX stream-
flow forecast and observation data. The configuration of the
data window is defined as:Na = 15 days,Nf = 30 days and
Nbuffer = 60 days. The forecast date is set to 15 February. Fig-
ure 3 shows how the means of the raw unadjusted ensemble
and GLMPP adjusted ensemble compare with the observed
means. Figure 3 clearly shows that the adjusted ensemble
means obtained using GLMPP agree with the observations
much better than those of the raw ensemble means in both
the calibration and verification periods. Table 1 summarizes
the root-mean-square (RMS) errors of the raw and GLMPP
adjusted ensemble means. Figure 4 displays the mean stan-
dard deviations of observations, the raw ensemble, GLMPP
adjusted ensemble for the three hydrologic models. It is obvi-
ous again that GLMPP adjusted ensemble shows much better
agreement with the observations in both the calibration and
verification periods. Figure 5 exhibits the cumulative distri-
bution function (CDF) curves of the raw, GLMPP adjusted
and observed ensembles for three hydrological models. This
figure indicates that CDF curves based on the GLMPP ad-
justed ensemble are closer to the observed CDF than the raw
ensemble for both calibration and verification periods. The
results presented above suggest that GLMPP works well for
all three models regardless of the original forecast skill lev-
els. In other words, the poor forecast made a hydrologic
model can be reasonably corrected by a well designed hy-
drologic post-processor.
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Table 1. RMS errors of raw and GLMPP adjusted ensemble means.

SAC raw SACadj NOAH raw NOAH adj SWBraw SWBadj

Calibration 0.7488 0.0519 1.4285 0.0048 7.0576 0.0301
Verification 0.9084 0.0472 1.6567 0.0325 0.5644 0.0179
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Fig. 3. The means of observed ensemble, raw ensemble, and GLMPP adjusted ensemble for the SAC, SWB and NOAH models.

4.2 Testing GLMPP with different settings for the
data window

It is apparent that the results in Sect. 4.1 indicate that GLMPP
does possess some of the desired properties for a hydrologic
post-processor specified in Sect. 2. In this section, we con-
duct an experiment to examine the effects of different set-
tings for the data window. The data for the SAC model is
used for this experiment. The forecast date is set to Febru-
ary 15. Na takes on the value of 10, 15, or 20 days;Nf 15,
30 or 45 days; andNbuffer 10, 30 or 60 days. We vary one
parameter at a time, while the other parameters are kept at
their default values. The default settings for these param-
eters are:Na=15 days,Nf =30 days, andNbuffer=60 days.
Figure 6 shows the impact of different settings on the agree-
ment between the means from GLMPP adjusted ensembles
and observed means for both calibration and verification pe-
riods. Figure 6a and d indicate that the lengths of forecast
periods do not significantly impact on the GLMPP perfor-
mance during either the calibration period or the verification
period. Figure 6b and e suggest that longer analysis window
sizes (i.e.,Na=15 or 20 days) tend to show more consistent re-
sults. Figure 6c and f seem to show that longer buffer periods
(i.e. Nf = 30 or 60 days) provide better agreement between
GLMPP results and observations. Figure 7 shows the effects

of buffer period lengths on GLMPP reliability. While the
CDF curves during the calibration period clearly indicate the
superior results of GLMPP adjusted ensemble, longer buffer
period length tends to produce more consistent results during
the verification period. Longer analysis window and longer
buffer periods both play the role of reducing the impacts of
wrong initial conditions on the hydrologic simulations dur-
ing the forecasting periods.

4.3 Testing GLMPP with different forecast dates

In this section, we investigate if the GLMPP performance
is dependent on the selection of the forecast dates. Again,
we used the SAC streamflow data for this purpose. Fig-
ure 8 demonstrates how two different forecast dates affect
the GLMPP results during both the calibration and verifica-
tion periods. The two forecasting dates are set at 15 February
(Fig. 8a and c) and 15 July (Fig. 8b and d) respectively, with
the same settings for data windows:Nf =30 days,Na=15
days, andNbuffer=60 days. The results suggest that there is
a positive bias for raw streamflow predictions made on 15
February, especially during the early accumulation period,
while the over bias is obvious for raw streamflow predictions
made on 15 July. The CDF curves based on GLMPP ad-
justed ensembles seem to be able reduce the biases on both
forecast dates.
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Fig. 4. The mean standard deviations of observed ensemble, raw ensemble, GLMPP adjusted ensemble for the SAC, SWB and
NOAH models.
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Fig. 5. The CDFs of observed ensemble, raw ensemble and GLMPP adjusted ensemble members for the SAC, SWB and NOAH models.
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Fig. 6. The effects of different settings for data window on GLMPP results.
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Fig. 7. The effects of buffer period lengths on GLMPP reliability.

5 Conclusions

We presented a GLMPP based hydrologic post-processor
with the desired properties as presented in Sect. 2. We tested
the GLMPP on the SAC, SWB and NOAH models using

streamflow data from the Second Workshop on MOPEX.
We found that the GLMPP can reduce the mean bias in the
streamflow simulations in both the calibration and verifica-
tion periods. The mean standard deviations of the GLMPP
adjusted ensemble are also much closer to the observed ones

www.adv-geosci.net/29/51/2011/ Adv. Geosci., 29, 51–59, 2011



58 L. Zhao et al.: A Hydrologic post-processor for ensemble streamflow predictions

17 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9 12 15 

Cu
m
ul
at
iv
e 
Fr
ac
tio

n

Volume(mm/day)

Vrification period
Present day=15th Feb

OBS
Raw
Adjusted

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9 12 15 

Cu
m
ul
at
iv
e 
Fr
ac
tio

n
Volume(mm/day)

Calibration period
Present  day=15th Feb

OBS
Raw
Adjusted

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9 12 15 

Cu
m
ul
at
iv
e 
Fr
ac
tio

n

Volume(mm/day)

Calibration period
Present  day=15th Jul

OBS
Raw_sim
Adjusted

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 3 6 9 12 15 

Cu
m
ul
at
iv
e 
Fr
ac
tio

n

Volume(mm/day)

Verification period
Present  day=15th Jul

OBS
Raw_sim
Adjusted

Fig. 8. The CDF curves of the raw, GLMPP adjusted and observed ensembles on two different forecast dates during the calibration and
verification periods.

than the raw ensemble. The CDF curves of GLMPP adjusted
ensemble agree with the observed CDFs much better than the
raw ensemble in both the calibration period and the verifica-
tion period. Various experiments with the lengths of the anal-
ysis period and the length of the buffer period (that control
the sample size used for GLMPP calibration) suggest that
the GLMPP results can be sensitive to these settings. Par-
ticularly, longer analysis window and longer buffer periods
tend to provide more consistent results and agree better with
observations. The GLMPP seem to work equally well for
wetter season (e.g., predictions made on 15 February) and
for drier season (e.g., predictions made on 15 July).

This study was done using data from only one basin. The
generality of GLMPP can be better proved with inclusion of
more basins and with more diverse conditions. The data sam-
ple size is limited to 39 years. The results presented in this
paper assume that these results would apply to ensemble hy-
drologic predictions if the meteorological forcing has been
calibrated. But testing that assumption is beyond the scope
of this limited study.
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