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Abstract:

The National Center for Environmental Predictions (NCEP) has produced an ensemble meteorological reforecast product by using a
fixed version of Global Forecast System (GFS) ensemble prediction system since 1 January 1979. The 15-member ensemble product,
with a global coverage at a 2.5� � 2.5� spatial resolution and a 14-day lead time, has been used successfully by the River Forecast
Centers of the National Weather Service (NWS) to produce basin scale precipitation and temperature ensemble forecasts in the US for
several years now. This study evaluates the predictive skill of post-processed ensemble forecasts based onGFS precipitation reforecast
in China’s Huai river basin. The evaluation is carried out in 15 sub-areas of the Huai river basin and covers the 1/1/1981–31/12/2003
period. The Ensemble Pre-Processing system version 3 (EPP3), developed at NWS, is used to develop joint probability distributions
between forecasted ensemble mean precipitation and corresponding observations and to generate individual ensemble members that
preserve space–time correlation of the observed precipitation data. Several statistical verification measures are used to quantify the
goodness of fit between post-processed (i.e. EPP3 processed) ensemble mean and observation and to assess the ensemble spread.
Results indicate that the post-processed forecasts havemeaningful predictive skill for the first few days for ensemble daily precipitation
forecasts. Predictive skill of ensemble forecasts of cumulative precipitation for lead times up to 14 days are significant. The forecast
skill is highly dependent on seasonality, with relatively lower skills seen for wet summer season, when convective storm patterns
dominate, as comparedwith other seasons. The predictive skill of the post-processed ensemble precipitation ismuch better than the raw
forecasts and the climatological ensemble forecasts. The results from this study suggest that the NCEP’s GFS reforecasts can be a
valuable resource for places other than the US. Copyright © 2012 John Wiley & Sons, Ltd.

KEY WORDS ensemble precipitation forecasting; hydrologic ensemble prediction; Huai river basin; ensemble verification
GFS reforecast product

Received 28 November 2011; Accepted 11 July 2012
INTRODUCTION

Even though weather forecasts have become essential
in people’s life today, hydrologists have made limited use
of weather forecasts in their hydrologic forecasts until
recently. There are numerous reasons for this (Rayner et al.,
2005). Inadequate accuracy and reliability, especially in
early weather forecast products, was one reason preventing
their wide use. Another reason is that weather forecast
productswere not well designed for hydrologic applications.
Weather and hydrologic forecasts differ in both space
and time scales. Typical hydrologic forecasts are developed
over a hydrologic basin, whose drainage area ranges from
10 s to 1000 s of km2, whereas typical weather forecasts are
made on spatial grids that are usually much larger in spatial
scales, especially for the global forecasts. Therefore,
weather forecasts need to be downscaled to basin scales to
be used for hydrologic applications (Schaake et al., 2010).
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The third reason that hydrologists hesitate to use
weather forecasts is that conventional weather forecasts
are usually given as single-valued deterministic forecasts
and thus lack the uncertainty information needed for
risk-based decisions. Finally, weather forecasts often have
phase shifts in space and time between what is predicted
and what actually happens.
Over recent years, remarkable progress has been made as

numerical weather prediction (NWP) models with better
physics representations and better forecasting methodolo-
gies have been developed. Ensemble weather forecasting
methodology has emerged as an effectiveway to account for
uncertainty in weather forecast products (Lewis, 2005). The
rationale behind ensemble forecasting was laid by Edward
Lorenz many years ago when he discovered the inherent
chaotic nature of the weather system (Lorenz, 1963), but it
was not until 1990s when the European Center for Medium
Range Weather Forecasts and National Center for Environ-
mental Predictions (NCEP) of the US National Weather
Service (NWS) started to produce operational ensemble
weather forecasts (Molteni et al., 1996; Toth and Kalnay,
1997). Today, ensemble weather forecast products have
become standard in many NWP centres around the world
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(Bougeault et al., 2010). In recent years, hydrologists
have been taking advantages of the newly available
ensemble weather forecasts in producing hydrologic
ensemble forecasts (Cloke and Pappenberger, 2009,
Thiemig et al., 2010, Webster et al., 2010, Pappenberger
et al., 2011). Despite the advantage and usefulness of
ensembleweather forecasts (Park et al., 2008; Froude, 2010;
He et al., 2010), raw ensemble forecasts still suffer from
various limitations for hydrologic applications, including
the needs for spatial downscaling and for correction of
forecast biases in terms of not only means but also ensemble
spread (Hamill et al., 2004).
Statistical post-processing has been a common approach

used to enhance the usability of raw weather forecasts. A
widely used approach is the Model Output Statistics (MOS)
method, which uses multivariate regression techniques to
relate NWP model generated forecasts (e.g. forecasts of
precipitation, temperature and geopotential height) to relevant
observations to obtain improved weather forecasts for given
lead times and locations (Glahn and Lowry, 1972). However,
MOS outputs are still not well suited for hydrologic
applications because they cannot preserve the space–time
statistical relationships of the forecasted variables (Clark
et al., 2004). To make weather forecasts more useful,
techniques specifically designed for hydrologic applications
are needed. Krzysztofowicz and Sigrest (1999) presented a
Bayesian ensemble method that can generate short-range
(with lead times of a few days) probabilistic quantitative
precipitation forecasts from raw NWP, MOS and/or human
forecasts. Clark et al. (2004) improved MOS multivariate
regression approach by introducing a procedure known as
‘Schaake shuffle’ to create ensembles of precipitation
forecasts that preserve space–time statistical relationships of
observed precipitation.
Schaake et al. (2007) developed a method (hereafter

referred to as Schaake’s method) to construct ensemble
precipitation and temperature forecasts from single-valued
meteorological forecasts. Schaake’s method has been
implemented in the Ensemble Pre-Processor (EPP) of the
National Weather Service River Forecast System and been
run experimentally at several river forecast centres in the
NWS for several years (Wu et al., 2011). One requirement
for using this method is the availability of a relatively long
historical archive of weather forecasts and corresponding
observations, so the parameters of the probabilistic model
can be calibrated properly (Fundel and Zappa, 2011). NCEP
has produced a medium range (1–14 day), 15-member
ensemble reforecast product over a period starting from
1 January 1979, to present using a fixed version of the
Global Forecast System (GFS) (Hamill et al., 2004). The
GFS temperature and precipitation reforecast products have
been widely used by river forecast centres to generate basin
scale ensemble quantitative temperature forecasts and
quantitative precipitation forecasts (QPFs), which in turn
have been successfully used to make ensemble hydrological
forecasts (Schaake et al., 2007; Wu et al., 2011).
The China Meteorological Administration (CMA) has

been working to improve forecasts of high impact weather
events for China. Numerous studies were conducted
Copyright © 2012 John Wiley & Sons, Ltd.
specifically to improve precipitation forecasting (Zhou
et al., 2001; Song et al., 2006; Xu et al. 2007; Zhu et al.,
2007). Zhu et al. (2007) described a study to use the
GRAPES model, an experimental operational NWP model
in CMA, to make 72-h precipitation forecast for the 2005
summer monsoon period in the Huai river basin. Xu et al.
(2007) presented the results from an ensemble precipitation
forecasting experiment that aims to improve the prediction
of heavy rainfall events and found that ensemble prediction
performs better than single deterministic control run in
forecasting precipitation amount of severe storms. One
problem for CMA, however, is lack of a long historical
archive of China’s own NWP reforecasts that are needed to
generate basin scale ensemble QPF for hydrologic applica-
tions. Because the NCEP GFS reforecast product has global
coverage, it would be interesting to see if the GFS products
from the US can be used effectively in other countries
including China.
The primary purpose of this paper is, therefore, to

demonstrate the potential usefulness of the GFS reforecasts
in Chinese settings, particularly by analysis of precipitation
forecasts for the Huai river basin. The scientific questions
we try to address are as follows: (1) Is there verifiable skill in
GFS precipitation reforecasts in the Huai River basin? and
(2) How does the forecast skill vary with lead time and
seasonality? This paper is organized as follows. The second
section provides a brief description of the methodology
used in the study. The third section describes the basin and
experimental design. The fourth section presents and
discusses the experimental results. Summary and conclusion
are given in the fifth section.
A BRIEF DESCRIPTION OF THE METHODOLOGY

A brief description of Schaake’s method, as implemented in
the Ensemble Pre-Processing system version 3 (EPP3) is
presented here. EPP3 is part of the operational National
Weather Service River Forecasting System, and its source
code can be obtained from the NWSHydrology Laboratory.
More detailed descriptions of EPP3 with rigorous mathem-
atical derivations can be found in Schaake et al. (2007) and
Wu et al. (2011). Figure 1 is the flowchart summarizing the
main steps in Schaake’s method. Here, a non-mathematical
description is given. LetX andY denote sets of single-valued
QPFs and corresponding observations on a specific forecast
day and with a specific lead time over the study domain. To
ensure enough sample points in X and Y, a time window of
adequate length is selected to include forecast/observation
pairs before and after the forecast day. The length ofwindow
should meet two conditions: (1) there should be more than
a minimum number of non-zero rain events within the
window (e.g. say 30) and (2) the stochastic nature of the
considered variables within the time window remains
approximately the same. In EPP3, an upper limit of 60days
is set for the precipitation window, and a fixed 45-day
window is used for temperature. These numbers can be
changed depending on the climatic conditions of the
study area and the forecast day. In determining whether a
Hydrol. Process. 27, 57–74 (2013)



1. Precipitation distribution: 

A. Choosing a time window: 

The width of window should assure a certain 

number of non-zero forecasts or 

observations.  

B. Generating marginal distribution of 

forecast and observation respectively: 

FX (x) = 1 − pX + pX FXC(x|x > 0) 

where pX is the probability of occurrence of 

precipitation; FY(y) have similar form. 

C. Applying normal quantile transform 

(NQT): 

x = F −1
X (Q(u)), if u > u0; x = 0, otherwise. 

y = F −1
Y (Q(v)), if v > v0; y = 0, otherwise. 

where Q is standard normal cdf; u0 satisfies 

Q(u0) = 1 – pX; v0 satisfies Q(v0) = 1 – pY. 

D. Assuming U and V are bivariate standard 

normal (BSN): 

where  is the correlation coefficient of 

U and V. Thus, given u = u1, 

V|U1 ~ N( , )

E. Generating conditional distribution of y 

corresponding to x: 

Given x = x1> 0: 

FY |X (y|x = x1) = BV |U(v|u = u1) 

where BV|U(v|u=u1) is the conditional 

distribution of BSN. 

Given x = 0: 

where U0|V ~ N( , ). 

2. Ensemble construction: 

A. Stratified Sampling: 

Produce n values of Y from FY |X (y|x = 0) 

using stratified sampling if there are n

Figure 1. The flowchart describing major steps of the Schaake method
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precipitation forecast is a rain or a no-rain event, we used a
threshold value that is corresponding to 97% exceedance
probability value of all non-zero forecasts. The marginal
distributions of X and Y are fitted to a parametric probability
distribution function (PDF). EPP3 allows Gamma, Weibull
or Exponential distribution function to be used. For
mathematical convenience, the fitted X and Y are then
transformed from original space to Gaussian space (denoted
Copyright © 2012 John Wiley & Sons, Ltd.
asU andV) by using a procedure known asNormal Quantile
Transform (Krzysztofowicz, 1997). Thus, the joint
probability distribution between U and V, F(U,V), can be
assumed as Bivariate Standard Normal under certain
conditions (i.e. both U and V and Gaussian, and there
exists meaningful correlation between U and V). Given a
forecast date, conditional PDF FY|X(Y|X), which is equal
to FV|U(V|U), is first estimated for a future event (with a
given lead time and duration) on the basis of F(U,V). Once
FY|X(Y|X) is determined, a pre-specified number (i.e.
ensemble size, which is equal to the number of years of
available observed data) of stratified samples are taken
from this conditional distribution. After FY|X(Y|X) for all
defined events is determined, the sampled values for
different lead times are then connected using the ‘Schaake
shuffle’ procedure to form time series of individual
ensemble members (Clark et al., 2004). The space–time
Spearman rank correlation structure of the generated
ensemble members is similar to that of the observed
historical events. Each of the ensemble members can be
used directly to drive the hydrologic model to produce
ensemble streamflow forecast.
STUDY AREA, DATA AND EXPERIMENTAL
DESIGN

Overview of study area

TheHuai river basin, one of the sevenmajor river systems
in China, is chosen as the study area. Situated between
Yangtze and Yellow rivers in Eastern China with an
approximate drainage area of 270,000 km2, the Huai river
basin encompasses the whole or part of five provinceswith a
dense population of 185 million people. With 14.27 million
hectares of cultivated lands, agriculture is an important
sector that accounts for 17.4% of China’s agricultural
outputs (Wang et al., 2009). Water resources in the Huai
river basin are regulated by four large natural lakes and a
network of over 300 man-made reservoirs to control floods,
generate electricity, supply water and protect the environ-
ment (Huai River Commission, 2009). The Huai river basin
is known to be most affected by various water-related
hazards because of its transitional climate that shifts from
the north sub-tropical zone to the warm temperate zone in
the south. The space–time distribution of precipitation
varies greatly within the basin, with southern mountainous
and coastal regions receiving annual precipitation over
1600mm and northern inland regions under 700mm.
About 50%–80% of precipitation occurs during the
June–September flooding season. Floods and droughts have
frequently ravaged the area. Over the last 20 years, three
major floods (in 1991, 2003 and 2007) wreaked havoc on
the Huai river basin, causing tremendous losses of human
lives, properties and economic production. Compounding
flooding hazards are the occurrences of abrupt switches
from drought to flooding during the spring/summer
transition period. This poses special difficulties to agricul-
tural, navigational and fishery sectors. Wang et al. (2009)
reported that abrupt drought-to-flooding switch occurs
Hydrol. Process. 27, 57–74 (2013)
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about once every 4 years and is becoming more frequent in
recent years. Accurate and reliable weather and hydrologic
forecasts are critical to the sustainable economic develop-
ment and the protection of human lives and the environment.

Data used for the study

Two kinds of data are used in the study: the historical
GFS precipitation reforecasts and gauge-based mean areal
precipitation (MAP) data. The raw GFS data used in this
study are a 2.5� � 2.5� gridded ensemble forecast product
with a daily time step, a 14-day lead time and 15 ensemble
members. Reforecasts cover the data period from
1 January 1979 to 30 April 2004. The particular grid points
used for the Huai river basin are shown in Figure 2. The
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Table I. The information of H

ID Catchment name

A1 Dapoling upstream of Huaihe to Xixian catchment
A2 Xixian upstream of Huaihe to Wangjiaba catchment
A3 Ruhe and upstream of Honghe catchment
B1 Upstream of Yinghe to Zhoukou catchment
B2 Midstream of Yinghe and Zhoukou to Fuyang catchment
B3 Shihe catchment
B4 Pihe, downstream of Huaihe and Huaigan catchment
B5 Wohe, midstream of Huaihe and Huaigan catchment
C0 Bangbu to Hungtse, midstream and downstream

of Huaigan and Huihe catchment
D1 Nansihu catchment
D2 Zaozhuang and Xuzhou catchment
D3 Upstream of Yihe catchment
D4 Upstream of Shuhe catchment
D5 Downstream of Yihe and Shuhe catchment
E0 Hungtse to downstream of Huaihe catchment

Copyright © 2012 John Wiley & Sons, Ltd.
ensemble mean of the raw ensemble forecasts is computed
and is used as the single-valued forecast in this study. The
reason that ensemblemean instead of the individual ensemble
members is used is because the ensemble mean has more
significant correlation (0.4 or above) with the observation
compared with the individual ensemble members. Hamill
et al. (2008) also pointed out that ‘raw probabilistic forecasts
from the ensemble prediction systems’ relative frequency
possessed little or negative skill’ when they were evaluating
GFS raw ensemble precipitation forecasts. Daily MAP data
for 15 sub-areas of the Huai river basin are computed
from historical observed precipitation station data from 167
stations for the data period from 1 January 1981 to
31 December 2009.
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uai river basin’s sub-areas

Centre
(longitude, latitude)

Area
(103 km2)

Annual mean
precipitation (mm)

114.01�E, 32.31�N 16.5 1063.96
115.02�E, 32.21�N 8.8 1009.00
114.12�E, 33.04�N 9.5 904.64
113.33�E, 34.07�N 27.4 687.60
114.99�E, 33.47�N 14.3 824.94
115.73�E, 32.19�N 10.6 1130.30
116.29�E, 32.03�N 11.4 1103.45
116.04�E, 33.48�N 28.7 781.07
117.4�E, 33.65�N 42.3 859.87

116.32�E, 35.31�N 30.8 634.28
117.78�E, 34.63�N 9.2 781.11
118.12�E, 35.62�N 10.1 719.30
118.84�E, 35.61�N 4.4 717.89
118.95�E, 34.41�N 26.9 864.71
119.82�E, 33.18�N 30.6 947.35
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The ensemble forecast experiment

The Huai river basin is subdivided into 15 sub-areas. The
division is chosen to be consistent with the operational
meteorological forecast units for theHuai river basin. Figure 2
shows the boundaries of the 15 sub-areas. Circles represent
the centres of the GFS data grids used, whereas solid dots
represent the centres of the sub-areas. Table I lists the sub-
area geographic information and annual precipitation
statistics. Figure 3 displays monthly climatic precipitation
statistics that show the intra-annual patterns of precipitation.
The MAP data for the 15 sub-areas are computed using

Thiessen Polygon method. These MAP and corresponding
GFS ensemble mean forecast data at the nearest grid points
are used to estimate the parameters of the statistical model
defining the joint forecast and observation PDFs for each of
the 15 sub-areas for lead times 1–14 days for every 5 days in
the year. The parameters are then linearly interpolated on
each day of the year. The calibration data for this study are
from 1 January 1981 to 31 December 2003 (note that the
partial year GFS data from 2004 are not used in the
calibration). Using the calibrated joint PDFs and GFS
ensemble mean forecasts, the conditional PDFs on each day
of the calibration period and for each lead time (1–14 days)
are computed. These conditional PDFs are then used to
construct ensemble members by using the Schaake shuffle
procedure (Clark et al., 2004). The results and verification
statistics are presented later in Results and analysis section.
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Figure 3. Monthly mean areal precipitation for catchments of Huai river
basin (mm)

Table II. Basin averaged absolute relative biases of raw and post-pro
lead times (1–14 days) fo

1 2 3 4 5 6

Raw–Spring 1.29 1.43 1.31 1.00 0.72 0.65
Raw–Summer 2.39 2.27 2.36 2.27 2.14 2.11
Raw–Fall 1.34 2.41 2.83 2.86 2.90 3.20
Raw–Winter 0.54 1.04 0.95 0.63 0.63 0.70
Post-Processed–
All seasons

0.04 0.04 0.04 0.04 0.04 0.04

Copyright © 2012 John Wiley & Sons, Ltd.
Forecast verification statistics

To evaluate the forecast skill of raw forecasts and
statistically post-processed forecasts, we utilize two types
of statistical measures. One type of statistical measure is
goodness of fit between ensemble mean forecast and
observation. These include Pearson correlation coeffi-
cient, relative bias and root mean square error (RMSE)
between ensemble means and the observed values. The
second type is ensemble verification measures, including
Brier skill score (BSS) to measure the improvement of the
probabilistic forecast of a binary event (i.e. rain or no
rain) relative to a reference forecast, continuous ranked
probability skill score (CRPSS) to measure the improve-
ment of the probabilistic forecast of a continuous quantity
(i.e. precipitation amount) relative to a reference forecast
and reliability diagram (RD) to indicate the closeness of
forecast probability and observed frequency. See the
Appendix for mathematical definitions of these statistical
verification measures. The reference forecast used in the
verification of ensemble forecasts is the climatological
forecasts. Raw individual ensemble members are not
analysed because the raw ensemble spread has little skill.
RESULTS AND ANALYSIS

We obtained the EPP3 post-processed ensemble precipita-
tion forecasts for all days, all lead times (1–14 days) and all
sub-areas for the calibration period (1/1/1981–31/12/2003).
These forecasts are comparedwith rawGFS ensemble mean
forecasts and climatological forecasts by using the statistical
verification measures described in Forecast Verification
Statistics section.

Verification of mean ensemble forecasts

The post-processed ensemble forecast means are first
compared with raw mean ensemble forecasts of daily
precipitation and cumulative precipitation over different
lead times. Forecasts of exact daily precipitation traces are
important in flood forecasting because timing is critical.
However, forecasts of cumulative precipitation are
sometimes more useful to water resources managers
who care about how much inflow comes into the
reservoirs they manage. Table II shows the biases of the
raw and post-processed mean ensemble forecasts relative
cessed mean ensemble forecasts of daily precipitation for different
r the Huai river basin

Lead time (day)

7 8 9 10 11 12 13 14

0.66 0.68 0.66 0.66 0.66 0.63 0.64 0.61
2.08 2.11 2.10 2.07 2.13 2.19 2.26 2.30
3.44 3.43 3.37 3.40 3.47 3.41 3.31 3.30
0.85 0.98 0.97 1.00 1.00 1.00 0.99 0.98
0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.04

Hydrol. Process. 27, 57–74 (2013)
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to the MAP daily observations averaged over 15 sub-
areas of the Huai river basins. Figure 4 displays biases of
the raw and post-processed mean ensemble daily forecasts
relative to the MAP daily observations for different lead
times and seasons for two typical sub-areas: the relatively
wet sub-area B3 and the relatively dry sub-area D1. Table III
reveals the biases of raw and post-processed cumulative
precipitation mean ensemble forecasts averaged over 15
sub-areas of the Huai river basins. Figure 5 displays the
biases of raw and post-processed cumulative precipitation
mean ensemble forecasts for different lead times and
seasons for sub-areas B3 and D1. For both raw mean
ensemble forecasts of daily and cumulative precipitation
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Table III. Basin averaged absolute relative biases of raw and post-p
different lead times (1–14 day

1 2 3 4 5

Raw–Spring 1.28 1.35 1.34 1.25 1.11
Raw–Summer 2.38 2.33 2.33 2.28 2.19
Raw–Fall 1.33 1.88 2.19 2.36 2.47
Raw–Winter 0.54 0.79 0.84 0.78 0.76
Post-Processed–All seasons 0.04 0.03 0.03 0.03 0.03

Copyright © 2012 John Wiley & Sons, Ltd.
amounts, relative biases tend to be positive, and the
biases can be larger than 100% of the observed values
(i.e. with bias value over 1.0). Biases in summer and fall are
larger than those in spring and winter with values as high as
3 or above. This is due to the fact that summer and fall
precipitation events aremore severe and are convective type,
which is harder to forecast than the frontal events
encountered mostly in winter and spring seasons. The raw
daily averaged mean biases do not seem to have a definitive
relationship with the length of lead times. On the other hand,
post-processed ensemble forecast means can effectively
remove all the mean biases in forecasts of daily values as
well as in cumulative precipitation forecasts, with the
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rocessed mean ensemble forecasts of cumulative precipitation for
s) for the Huai river basin

Lead time (day)

6 7 8 9 10 11 12 13 14

0.98 0.90 0.85 0.81 0.77 0.75 0.72 0.71 0.70
2.15 2.12 2.11 2.10 2.09 2.09 2.10 2.11 2.12
2.59 2.71 2.80 2.86 2.92 2.97 3.01 3.03 3.05
0.75 0.76 0.79 0.80 0.83 0.84 0.86 0.87 0.88
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Hydrol. Process. 27, 57–74 (2013)



63ENSEMBLE PRECIPITATION FORECASTS IN CHINA’S HUAI RIVER BASIN
absolute relative bias values of less 0.04 (i.e. 4%) (see
Tables II and III).
Tables IV and V present the root mean square error skill

scores (RMSESs) of the post-processed ensemble forecast
means. RMSES measures the improvement in RMSE of a
forecast relative to that of a reference forecast, which is the
Table V. Basin averaged RMSES values of post-processed ensemble
(1–14 days) for the

Lea

1 2 3 4 5 6 7

Spring 0.081 0.125 0.145 0.151 0.148 0.146 0.1
Summer 0.186 0.270 0.317 0.338 0.343 0.347 0.3
Fall 0.320 0.467 0.544 0.586 0.607 0.628 0.6
Winter 0.297 0.463 0.523 0.527 0.522 0.520 0.5

Table IV. Basin averaged RMSES of post-processed ensemble foreca
for the Huai

Lea

1 2 3 4 5 6 7

Spring 0.081 0.130 0.125 0.108 0.078 0.070 0.0
Summer 0.186 0.270 0.288 0.264 0.217 0.203 0.1
Fall 0.320 0.474 0.491 0.468 0.422 0.419 0.4
Winter 0.297 0.497 0.456 0.347 0.318 0.324 0.3
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raw mean ensemble forecast in this case. A RMSES value
greater than 0 indicates the forecast is better than the
reference forecast. Figures 6 and 7 exhibit the RMSES
values of post-processed mean ensemble forecasts for
sub-areas B3 and D1. Figure 6 shows the RMSES values
for dailymean ensemble forecasts at different lead times and
forecast means of cumulative precipitation for different lead times
Huai river basin

d time (day)

8 9 10 11 12 13 14

43 0.140 0.138 0.136 0.135 0.135 0.136 0.136
51 0.355 0.358 0.361 0.365 0.370 0.376 0.381
51 0.668 0.680 0.691 0.704 0.715 0.723 0.730
24 0.532 0.542 0.550 0.559 0.567 0.574 0.579

st means of daily precipitation for different lead times (1–14 days)
river basin

d time (day)

8 9 10 11 12 13 14

64 0.061 0.053 0.048 0.048 0.044 0.045 0.041
78 0.168 0.153 0.138 0.131 0.126 0.124 0.119
23 0.393 0.359 0.349 0.342 0.318 0.295 0.281
32 0.341 0.318 0.300 0.288 0.258 0.248 0.224
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Figure 8. Correlation coefficients between post-processed mean ensemble forecasts of daily values and corresponding observations for different lead
times (1–14 days) and the 15 sub-areas

64 Y. LIU ET AL.

Copyright © 2012 John Wiley & Sons, Ltd. Hydrol. Process. 27, 57–74 (2013)



Figure 9. Correlation coefficients between post-processed mean ensemble forecasts of cumulative precipitation and corresponding observation for
different lead times (1-14 days) and the 15 sub-areas
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Table VII. Basin averaged BSS values of post-processed probability of precipitation (PoP) forecasts of cumulative precipitation over
different lengths of lead times (1–14 days) for the Huai river basin

Lead time (day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Spring 0.338 0.335 0.313 0.291 0.276 0.261 0.247 0.231 0.217 0.202 0.190 0.181 0.168 0.158
Summer 0.275 0.250 0.202 0.160 0.129 0.106 0.090 0.079 0.071 0.065 0.058 0.052 0.048 0.044
Fall 0.433 0.408 0.364 0.325 0.290 0.258 0.234 0.205 0.186 0.167 0.151 0.136 0.119 0.103
Winter 0.513 0.497 0.470 0.458 0.440 0.412 0.384 0.353 0.328 0.310 0.289 0.271 0.247 0.223
All seasons 0.393 0.376 0.341 0.313 0.288 0.264 0.243 0.221 0.204 0.190 0.175 0.163 0.148 0.134

Table VI. Basin averaged BSS values of post-processed probability of precipitation (PoP) forecasts of daily precipitation for different
lead times (1–14 days) for the Huai river basin

Lead time (day)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Spring 0.338 0.212 0.133 0.094 0.076 0.052 0.045 0.031 0.021 0.017 0.012 0.010 0.008 0.007
Summer 0.275 0.125 0.060 0.029 0.019 0.009 0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001
Fall 0.433 0.283 0.200 0.146 0.117 0.101 0.076 0.047 0.032 0.015 0.010 0.010 0.008 0.004
Winter 0.513 0.376 0.272 0.226 0.174 0.125 0.113 0.082 0.058 0.040 0.027 0.022 0.016 0.018
All seasons 0.393 0.252 0.169 0.127 0.098 0.073 0.061 0.042 0.029 0.019 0.013 0.011 0.008 0.008
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Figure 11. Brier skill scores (BSS) of post-processed ensemble forecasts of cumulative precipitation over corresponding climatological ensemble
forecasts for different lead times (1–14 days) and sub-areas B3 and D1
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Figure 10. Brier skill scores (BSS) of post-processed ensemble forecasts of daily precipitation over corresponding climatological ensemble forecasts for
different lead times (1–14 days) and sub-areas B3 and D1
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Figure 12. Continuous ranked probability skill score (CRPSS) of post-processed ensemble forecasts of daily values over corresponding climatological
ensemble forecasts for different lead times (1–14 days) and the 15 sub-areas
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Figure 13. Continuous ranked probability skill score (CRPSS) of post-processed ensemble forecasts of cumulative values over corresponding
climatological ensemble forecasts for different lead times (1–14 days) and the 15 sub-areas
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seasons, whereas Figure 7 is for cumulative mean ensemble
forecasts at different lead times and seasons. In daily mean
ensemble forecasts, the RMSES values tend to peak
between days 2 and 7 (i.e. the biggest improvement over
the reference forecast occurs during this period). On the
other hand, the RMSES values increase with lead times for
cumulative ensemble forecasts. The RMSES values of the
post-processed daily mean ensemble forecasts for spring
appear to be the relatively small (between 0.04 and 0.13, or
4% and 13%), whereas the RMSES values for fall and
winter are relatively large (up to 0.49 or 49%). For the
RMSES values of the mean cumulative ensemble forecasts,
the RMSES values are higher than the daily mean ensemble
forecasts (up to 0.723 or 72.3%). These observations
suggest that post-processed GFS precipitation forecasts do
a better job of forecasting the total amount of precipitation
than forecasting the exact timing of the precipitation events.
Figures 8 and 9 display the values of correlation

coefficients between post-processed ensemble forecast
means and observations for daily precipitation and
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Figure 14. Reliability diagram (RD) of post-processed ensemble forecasts o
sub-area B3
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cumulative precipitation for each day of the year (vertical
axis), for each lead time (horizontal axis) and for all 15 sub-
areas. Orange to red colour in the plots indicates high
correlation, whereas blue colour means low correlation.
Comparing individual sub-areas, we note that the correlation
coefficients illustrate that the skill of ensemblemean forecast
are decreasing with lead time. Comparing the two sets of
correlation coefficients, the correlation coefficients between
post-processed ensemble forecast means of cumulative
precipitation and corresponding observations are better
than for daily precipitation forecasts. Both sets have higher
correlation in the cool seasons than in warm seasons for all
sub-areas. It is noteworthy that forecasts of cumulative
precipitation have significant skills (i.e. the correlation
coefficient values >0.4 or above) for even day 14 for
almost all of the sub-areas and almost all seasons, except
summer. For forecasts of daily precipitation, however,
significant skills are shown mostly for the first few days. In
winter, skills of daily forecasts can last up to a week or so.
The correlation of post-processed mean ensemble forecasts
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with observation does not differ too much from that of the
raw mean ensemble forecasts because Schaake’s method is
designed to make use of the correlation between raw mean
ensemble forecast and observation. If the correlation between
rawmean ensemble forecast and observation is non-existent,
the post-processed mean ensemble forecast will not lead to
higher correlation.
Verification of ensemble forecasts

Brier skill score is used to evaluate improvement of the
forecasts of probability of precipitation (PoP) relative to a
reference forecast for all 15 sub-areas. The reference
forecast for the verification of ensemble forecast is the
climatological ensemble forecast, which is formed by
historical precipitation time series during a given period of
the year over a number of years. Tables VI and VII exhibit
the BSS values of post-processed PoP forecasts of daily
values and cumulative values averaged over the 15 sub-
areas of the Huai river basin. The BSS values of post-
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Figure 15. Reliability diagram (RD) of post-processed ensemble forecasts of cum
in win
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processed ensemble forecasts are obviously improved over
that of the climatological PoP forecasts, i.e. the BSS values
are larger than zero for all seasons and lead times. The
reason for this improvement is due to the fact that GFS raw
mean ensemble PoP forecast has higher correlation with
observed PoP than the PoP estimate based on climatology.
For the forecast of daily values, the improvement of the
post-processed PoP forecasts over the climatological
forecasts is obvious only in the first few days, but the
improvement diminishes as lead time increases. For
forecasts of cumulative precipitation, the improvement in
PoP forecasts is significant even at lead time day 14, no
matter what season it is. Figures 10 and 11 show the BSS
results for the daily ensemble forecasts and ensemble
forecasts of cumulative precipitation for sub-area B3 and
D1. From the tables as well as the figures, we note that
improvement in winter is more apparent than in other
seasons. This is probably due to the fact that winter
precipitation events tend to be large-scale frontal events
that are easier to forecast.
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Figures 12 and 13 display the CRPSS values for the
post-processed ensemble daily precipitation forecasts and
ensemble forecasts of cumulative precipitation for different
lead times and all sub-areas. All CRPSS values in the figures
are shown to be above zero, indicating that the post-
processed ensemble precipitation forecasts are better than
the climatological forecasts. The CRPSS values for daily
precipitation forecasts are smaller than that for the
cumulative precipitation forecasts. For the drier sub-areas
(D1–D5), the improvement in the winter season is less than
that in other seasons, which contrasts to the previously
described results, where the improvement in verification
statistics in winter is more obvious than in other seasons.
For ensemble forecasts of cumulative precipitation, the
improvement in CRPSS values is consistent with other
verification statistics. For sub-area D4, the CRPSS values
for day 1 in winter do not seem to improve. This may
indicate that the sample size of precipitation events for the
period needs to be larger for the results to be reliable.
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Figure 16. Reliability diagram (RD) of post-processed ensemble forecasts of cum
in sum

Copyright © 2012 John Wiley & Sons, Ltd.
Figures 14–17 show the RDs of two typical sub-areas,
B3 and D1, for ensemble forecasts of cumulative
precipitation in both summer (i.e. June–July–August) and
winter (i.e. December–January–February) at three different
lead times (1, 7 and 14 days). The RD plots are made with
bins of uneven probability intervals on the x-axis
(i.e. forecast probabilities). This is carried out to ensure
that there are adequate samples in each bin. This contrasts
the traditional RD plot that uses fixed-length bins (say 0.1),
which may not contain enough sample points in some of
the bins for meaningful statistical calculation. The
reliability of large precipitation events (i.e. with high
threshold values) is mostly good (i.e. close to the 45�

diagonal line) in all figures, indicating that the post-
processed ensemble precipitation forecasts do a reasonable
job of forecasting larger precipitation events. For low
threshold values, especially in day 1 forecasts, the RD plots
tend to show points off the diagonal line, probably because
there are too many zero rain or very small rain events on
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Figure 17. Reliability diagram (RD) of post-processed ensemble forecasts of cumulative precipitation for different lead times (1, 7 and 14days) for sub-areaD1
in winter
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any given day and the forecasted probability for
small events is not accurate. There are no discernable
differences in RD plots between the warm and cool seasons
or between the wet and dry sub-areas. The reliability of
daily precipitation forecasts (which is not shown here) is
somewhat worse than that of the cumulative precipitation
forecasts.
SUMMARY AND CONCLUSIONS

This paper investigated the suitability of NCEP’s GFS
precipitation reforecast product for generating basin scale
ensemble precipitation forecasts in the Huai river basin in
China. Statistical models of the raw ensemble mean
precipitation forecasts and observations are established for
15 sub-areas in Huai river basin by using historical forecast/
observation data pairs from the 1981–2003 period.
Statistical verification measures are used to evaluate
the predictive skills of the post-processed ensemble daily
precipitation forecasts and ensemble cumulative precipitation
Copyright © 2012 John Wiley & Sons, Ltd.
forecasts. The following conclusions are drawn on the basis
of the experimental results from this study:

1. The raw mean ensemble precipitation forecasts show
significant biases in all sub-areas of the Huai river basin.
The biases tend to be larger in summer and fall than in
spring and winter. The biases do not seem to be totally
dependent on lead times. The biases are removed totally
from the post-processed ensemble precipitation fore-
casts.

2. The post-processed ensemble daily precipitation
forecasts possess meaningful skill in the first days,
with the value of correlation coefficient greater than
0.4. In winter and spring, the skill can last to a week or
so. In terms of post-processed ensemble cumulative
precipitation forecasts, the predictive skill is very
significant, even for lead time at day 14, except for
summer.

3. The ensemble spread of the post-processed ensemble
precipitation forecasts is shown to be significantly
Hydrol. Process. 27, 57–74 (2013)
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better than that of the climatological ensemble
precipitation forecasts in terms of both the PoP
forecasts and the forecasted precipitation amounts.
The RD plots indicate that the post-processed
ensemble forecasts can reliably predict large precipi-
tation events (i.e. events above a high threshold
values). The reliability of the small event forecasts
is not as good, probably because the raw precipita-
tion forecasts are made at 2.5� � 2.5� spatial
resolution, making the prediction of the smaller
events very hard.

The fact that the raw GFS precipitation reforecast
product generated in the US can be used successfully in
China to generate basin scale ensemble precipitation
forecast points to the potential of the GFS reforecast
products being applicable elsewhere in the world. The
findings that there are meaningful prediction skills in
ensemble daily precipitation forecasts and ensemble
cumulative precipitation forecasts also have significant
implications in flood forecasting and reservoir operation
applications. In follow-up research, we will try to find out
how the ensemble precipitation forecasts from this study
can be translated into ensemble hydrological forecasts of
floods and in reservoir operation optimization.
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APPENDIX: STATISTICALVERIFICATIONMEASURE
OF ENSEMBLE FORECASTS

For verification measures presented in the following text,
we denote xi, yi, pi, oi and N as single-valued forecast,
corresponding observation, forecast probability, observed
frequency and number of forecast/observation pairs,
respectively, at time i.

A.1 Pearson correlation coefficient

Pearson correlation coefficient, r, measures the degree
of association between xi and yi. It is computed as

r ¼

XN
i¼1

xi � �xð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

xi � �xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

yi � �yð Þ2
s

where �x is forecast average and �y is the observation
average. For a perfect forecast, r= 1.

A.2 Bias

Biasmeasures the relative difference between the average
forecast and observation over a long time period. It is
computed as

Bias ¼ �x� �y

where �x is the forecast average and �y is the observation
average.

A.3 Root mean square error skill score

Root mean square error (RMSE) measures the closeness
of forecast and observation over a long period. RMSE is
computed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

xi � yið Þ2
vuut

The perfect RMSE score is 0. Because the squared
difference is used in the calculation, RMSE gives more
consideration to high values than low ones.
Because RMSE is not meaningful when viewed in

absolute terms, RMSE skill score (RMSES) is used in the
analysis. It is defined as the percentage improvement of
RMSE over a reference (denoted as RMSE*), i.e.

RMSES ¼ 1� RMSE
RMSE�

� �

The reference used in this analysis is the RMSE value
of the raw mean ensemble forecast.

A.4 Brier skill score

The Brier skill score (BSS) measures the improvement of
the probabilistic forecast relative to a reference forecast:
Copyright © 2012 John Wiley & Sons, Ltd.
BSS ¼ 1� BS
BSref

and

BS ¼ 1
N

XN
i¼1

pi � oið Þ2

Usually, the reference forecast is the climatological
probability forecast, BSref = s(1� s), where s is the
climatological probability forecast. The perfect BSS is 1,
and 0 indicates no skill in the forecast.
A.5 Continuous ranked probability skill score

Continuous ranked probability score (CRPS) is a measure
of the integrated squared difference between the cumulative
distribution function of the forecasts and the corresponding
cumulative distribution function of the observations. The
mathematical expression of CRPS is

CRPS ¼
Z1
�1

pi xð Þ � oi xð Þð Þ2dx

Again, CRPS of a perfect forecast is equal to 0.
Continuous ranked probability skill score (CRPSS)
measures the relative improvement of a forecast over a
reference forecast:

CRPSS ¼ 1� CRPS
CRPS�

CRPS* referred here corresponds to the CRPS value of
the climatological ensemble forecast.
A.6 Reliability diagram

Reliability diagram is another measure of the closeness
between forecast probability and observed frequency. It
plots the average forecast probability within each bin on
the x-axis.

fi ¼ 1
Nk

X
i2Ik

Fyi tð Þ

Y-axis shows the corresponding fraction of observations
that fall in the corresponding bin.

pfiðx ¼ 1 fij Þ ¼ 1
Nk

X
i2Ik

p t ≥ xið Þ

where the t is a real-valued threshold, Fyi tð Þ is the
probability of forecast value exceeding threshold t for
sample i, Nk is the number of sample fall in the kth
forecast bin and the Ik denotes index for the sample fall in
the kth forecast bin.
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