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Abstract
Assessing the performance of climate models in surface air temperature (SAT) simulation and
projection have received increasing attention during the recent decades. This paper assesses the
performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating
intra-annual, annual and decadal temperature over Northern Eurasia from 1901 to 2005. We
evaluate the skill of different multi-model ensemble techniques and use the best technique to
project the future SAT changes under different emission scenarios. The results show that most of
the general circulation models (GCMs) overestimate the annual mean SAT in Northern Eurasia
and the difference between the observation and the simulations primarily comes from the winter
season. Most of the GCMs can approximately capture the decadal SAT trend; however, the
accuracy of annual SAT simulation is relatively low. The correlation coefficient R between each
GCM simulation and the annual observation is in the range of 0.20 to 0.56. The Taylor diagram
shows that the ensemble results generated by the simple model averaging (SMA), reliability
ensemble averaging (REA) and Bayesian model averaging (BMA) methods are superior to any
single GCM output; and the decadal SAT change generated by SMA, REA and BMA are almost
identical during 1901–2005. Heuristically, the uncertainty of BMA simulation is the smallest
among the three multi-model ensemble simulations. The future SAT projection generated by the
BMA shows that the SAT in Northern Eurasia will increase in the 21st century by around
1.03 °C/100 yr, 3.11 °C/100 yr and 7.14 °C/100 yr under the RCP 2.6, RCP 4.5 and RCP 8.5
scenarios, respectively; and the warming accelerates with the increasing latitude. In addition, the
spring season contributes most to the decadal warming occurring under the RCP 2.6 and RCP
4.5 scenarios, while the winter season contributes most to the decadal warming occurring under
the RCP 8.5 scenario. Generally, the uncertainty of the SAT projections increases with time in
the 21st century.
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Global atmospheric concentrations of greenhouse gases have
significantly increased since the pre-industrial era. The
increasing concentration of greenhouse gases is an important
reason for global warming from the last century with high
confidence (Yang et al 2011). During the 20th century, the
average surface air temperature (SAT) of the Northern
Hemisphere has risen approximately 1 °C (IPCC 2007,
Polyakov et al 2012). As outlined in the fourth assessment
report (AR4) of the Intergovernmental Panel on Climate
Change (IPCC), even if greenhouse gases are stabilized at the
level in 2000, the average global temperature will increase
approximately 0.1 °C every decade (IPCC 2007).

Increases in the temperature may have serious influence
on the natural and social aspects, such as water availability
(Piao et al 2007, Gosling and Arnell 2011, Miao et al 2009,
Sheffield et al 2012), food security (Tubiello et al 2007,
Lobell et al 2008, Piao et al 2010), ecological environment
(Allen et al 2010, Miao et al 2010, Tabari et al 2013, Yang
et al 2013, Yang et al 2014), species biodiversity (Wake and
Vredenbury 2008, Nowak 2010), and human health (Robine
et al 2008, Gosling et al 2009) etc These influences have
urged the scientific and social communities to improve
understanding of the causes and consequences of global
warming (Sun et al 2014). Moreover, policymakers need the
latest information on the likely future impacts of climate
change to reconcile human society with natural systems.

Northern Eurasia accounts for about 20% of the Earth’s
land surface and 60% of the terrestrial land cover north of

°40 N (Groisman et al 2009). It contains vast areas of wet-
lands, especially peatland, which contains a large amount of
organic carbon and is often underlain by continuous and
discontinuous permafrost (Zhu et al 2011). Compared with
low latitude regions, Northern Eurasia, especially its northern
areas, has been under more dramatic environmental changes
in the 20th century, including increasing temperatures, melt-
ing permafrost, changing precipitation and prolonged grow-
ing seasons (Romanovsky et al 2007, IPCC 2007). According
to observation, Northern Eurasia is the region with the largest
and the steadiest SAT increases, and warming became most
pronounced during the second half of the 20th century
(Groisman et al 2007). During the period of widespread
instrumental observations in Northern Eurasia (since 1881),
the annual surface air temperature has increased 1.5 °C (while
3 °C in the winter season) (Groisman and Soja 2009). There is
a statistically significant increase in the number of thaw days
over Northern Eurasia (McBean et al 2005), which is pri-
marily due to the reduction of days with frost, ice and remnant
snow on the ground rather than due to the snow cover retreat
(Groisman et al 2006). However, there is an interesting
phenomenon in Northern Eurasia found by Bulygina et al
(2011) that most areas of Northern Eurasia have experienced
an increase in both winter average and maximum snow depths
in recent decades, which is against the background of global
temperature rise and sea ice reduction in the northern
hemisphere.

Climate projections and their associated applications
have become an important topic during recent decades. Sev-
eral research teams around the world develop models to

simulate the current climate and its future evolution under
different greenhouse gas and aerosol scenarios (Buser
et al 2009). Global coupled Atmospheric-Ocean General
Circulation Models (coupled GCMs) are the modeling tools
traditionally used in theoretical investigations of climatic
change mechanisms (Covey et al 2003). By using GCMs, we
can not only simulate the present-day and project future cli-
matic changes under different scenarios but also separate
natural climate variability from anthropogenic effects.

The GCMs simulations for the fifth assessment report
(AR5) of the IPCC have recently become available (Taylor
et al 2012). Comparing to the IPCC AR4, the GCMs in AR5
include a more diverse set of model types (i.e., climate/Earth
system models with more interactive components such as
atmospheric chemistry, aerosols, dynamic vegetation, ice
sheets and carbon cycle) (Liu et al 2013). A number of
improvements in the physics, numerical algorithms and con-
figurations are implemented in the IPCC AR5 models with a
new set of scenarios called representative concentration
pathways (RCPs) used in the AR5 simulations (Moss
et al 2010). The RCPs span a large range of stabilization,
mitigation and non-mitigation pathways. Consequently, the
range of the temperature estimates is larger than that of the
scenarios in the AR4, which only covers non-mitigation
scenarios (Rogelj et al 2012). It is expected that some of the
scientific questions that occur during the preparation of the
IPCC AR4 will be addressed in the AR5 (Taylor et al 2012).

The climate change in Northern Eurasia is a topic of great
interest, and the amount of research associated with the
GCMs is developed. However, previous analyses are pri-
marily focused on the early experiments of the IPCC. An
evaluation and application of the updated generation of the
AR5 GCMs in Northern Eurasia is missing. In this study, we
focus on the state-of-the-art models that have been made
publically available through the Coupled Model Inter-
comparison Project phase 5 (CMIP5). This study is aimed at
answering the following questions: 1) how well do the AR5
GCMs reproduce the historical SAT patterns; 2) which type
of multi-model ensemble techniques can provide the best skill
to improve the simulation performance; and 3) what changes
in climate means may be expected in the future. Our results
potentially provide inputs for climate change impact assess-
ments that explore the probability of climate-related threats in
Northern Eurasia.

1. Data and methods

1.1. Data

Observations of monthly SAT over Northern Eurasia are
obtained from the Climate Research Unit data (CRU TS 3.1)
(Mitchell and Jones 2005, Harris et al 2013) (available at
http://badc.nerc.ac.uk/data/cru/). The horizontal resolution of
the dataset is 0.5° × 0.5°, and the time period in this research
is from 1901 to 2005.

24 GCMs outputs obtained from the CMIP5 data archive
(http://cmip-pcmdi.llnl.gov/cmip5/index.html) are listed in
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table 1. The monthly data includes the historical (1901–2005)
and the future (2006–2099) periods. Here we focus on the
SAT projection under three scenarios (i.e., RCP 2.6, RCP 4.5
and RCP 8.5). The three RCPs represent ‘low’ (RCP 2.6),
‘medium’ (RCP 4.5) and ‘high’ (RCP 8.5) scenarios featured
by the radiative forcings of 2.6, 4.5 and 8.5Wm−2 by 2100,
respectively. The CO2-equivalent concentrations in the year
2100 for RCP 2.6, RCP 4.5 and RCP 8.5 are 421 ppm,
538 ppm and 936 ppm, respectively (Meinshausen
et al 2011). For comparison purpose, all GCM outputs are
regridded to the same resolution as that of the observed data
(0.5° × 0.5° grid).

1.2. The methodology of multi-model ensemble averaging

Because single models are overconfident (Weigel et al 2008)
and multi-model ensembles contain information from all
participating models (Pincus et al 2008), it is generally
believed that multi-model ensembles are superior to single
models (IPCC 2001, Duan and Phillips 2010, Miao
et al 2013). In this study, three types of popular ensemble
methods are used. They are simple model averaging (SMA),
reliability ensemble averaging (REA) and Bayesian model
averaging (BMA) techniques.

SMA is the simplest multi-model ensemble technique.
Each model has the same weight (wk= 1/K, where K is the
number of models) in the multi-model forecast. When using
the SMA, any knowledge about the performance of the model
is neglected (Casanova and Ahrens 2009).

The REA is a weighted average of ensemble members
method based on the ‘reliability’ of each model (Giorgi and
Mearns 2002). The reliability factor of the kth model (Rk)
takes into account of the ability of each ensemble member to
simulate the observed climate (RB) and its degree of con-
vergence in the projected climate change with respect to the
other models in the ensemble (RD).
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where RB is a factor that is inverse proportional to the absolute
bias (B) in simulating the present-day variable and RD is a
factor that measures the model reliability in terms of the
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Table 1. List of the global climate models in IPCC-AR5.

GCM Model Resolution Source

1 BCC-
CSM 1.1

64 × 128 Beijing Climate Center,
China Meteorological
Administration, China2 BCC-

CSM1.1
(m)

160 × 320

3 BNU-ESM 64 × 128 Beijing Normal
University, China

4 CanESM2 64 × 128 Canadian Centre for
Climate Modelling
and Analysis, Canada

5 CCSM4 192 × 288 National Center for
Atmospheric Research
(NCAR), USA

6 CNRM-
CM5

128 × 256 Centre National de
Recherches Meteor-
ologiques, France

7 CSIRO-
Mk3.6.0

96 × 192 Australian Common-
wealth Scientific and
Industrial Research
Organisation

8 FGOALS-
g2

108 × 128 Institute of Atmospheric
Physics, Chinese
Academy of Sciences,
China

9 FIO-ESM 64 × 128 The First Institute of
Oceanography, SOA,
China

10 GFDL-
CM3

90 × 144 Geophysical Fluid
Dynamics Laboratory
, USA11 GFDL-

ESM2G
90 × 144

12 GISS-E2-H 90 × 144 Goddard Institute for
Space Studies
(NASA), USA

13 GISS-E2-R 90 × 144

14 HadGEM2-
ES

145 × 192 Met Office Hadley
Centre, UK

15 IPSL-
CM5A-
LR

96 × 96 Institut Pierre-Simon
Laplace, France

16 IPSL-
CM5A-
MR

143 × 144

17 MIROC5 128 × 256 Atmosphere and Ocean
Research Institute,
University of Tokyo,
Japan

18 MIROC-
ESM

64 × 128 Japan Agency for Mar-
ine-Earth Science and
Technology, Atmo-
sphere and Ocean
Research Institute
(The University of
Tokyo), Japan

19 MIROC-
ESM-
CHEM

64 × 128

20 MPI-
ESM-LR

96 × 192 Max Planck Institute for
Meteorology (MPI-
M), Germany21 MPI-

ESM-MR
96 × 192

22 MRI-
CGCM3

160 × 320 Meteorological Research
Institute, Japan

Table 1. (Continued. )

GCM Model Resolution Source

23 NorESM1-
M

96 × 144 Norwegian Climate
Centre, Norway

24 NorESM-
ME

96 × 144



distance (D) of the change calculated by a given model from
the REA average change. The parameters m and n are the
weights of the model performance criterion (RB) and the
model convergence criterion (RD), respectively, which are
typically equal to 1. The parameter ε in equation (1) is the
natural variability of the climatic variable. More details of the
REA process are provided in Giorgi and Mearns (2002) and
Mote and Salathé (2010).

The BMA generates a probability density function
(PDF), which is a weighted average of the PDFs centered on
the forecasts. The BMA weights reflect the relative con-
tributions of the component models to the predictive skill over
a training sample. The combined forecast PDF of a variable y
is:
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The BMA weights are estimated using the maximum
likelihood (Raftery et al 2005). To estimate given parameters,
the likelihood function is the probability of the training data
and is viewed as a function of the parameters (Yang
et al 2011). The weights are chosen to maximize this function
(i.e., the parameter values for which the observation data are
most likely to have been observed). The algorithm used to
calculate the BMA weights and variance is called the
expectation maximization (EM) algorithm (Dempster
et al 1977). More details of the BMA process are provided in
Raftery (2005) and Duan and Phillips (2010).

1.3. Evaluation process

For GCM performance assessment, the bias between obser-
vation and model simulations is compared. The SAT change
during the historical period (1901–2005) and the projected
future scenarios (2006–2099) are analyzed.

In order to evaluate the ensemble performance, the
Taylor diagram technique is used. The Taylor diagram is
quantified in terms of the correlation (R), the centered root-
mean-square-error (RMSE) and the amplitude of the standard
deviations (Std). The diagram provides a way of graphically
summarizing how closely a pattern matches observations
(Taylor 2001). Moreover, the uncertainty of the different
multi-model ensembles is also compared. Here, we calculate

the standard deviation of the changes, δ, defined by
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where (wk) is the weight of kth model generated by different
multi-model ensemble techniques, Tk is the kth model output
and En is the ensemble. The upper and lower uncertainty
limits are thus defined as:

δ= +Upper En (6)

δ= −Upper En (7)

If the changes are distributed as a Gaussian PDF, the ±δ
range implies a 68.3% confidence interval.

1.4. Temperature projection

It is generally accepted that the agreement between models
and observations currently is the only way to assign con-
fidence into the quality of a model (Errasti 2011), and the
better a model performance in reproducing present-day cli-
mate, the higher the reliability of the climate change simu-
lation (Giorgi and Mearns 2002, Coquard et al 2004). Each
GCM’s weight can be obtained from the ensemble process
during the period of 1901–2005. Applying with these
weights, multi-model ensemble projections in temperature
over the 21st century scenarios can be generated.

2. Results

2.1. Model bias and warming trend

Figure 1 shows the bias in 24 CMIP5 climate models by
comparing the observed and simulated data of the 105 year
annual and seasonal mean temperatures. Most of the GCMs
give reasonably accurate predictions of the mean temperature.
Among the 24 GCMs, nine models underestimate the annual
mean temperature, while the others overestimate. The max-
imum bias for SAT simulation comes from the FGOALS-g2
model, with a value of −4.31 °C. The BCC-CSM 1.1 and
GISS-E2-R models perform the best, with a minimum bias of
0.10 °C. It should be noted that the 105 year mean of
observed temperature is about −4.50 °C. It is also found that
models with higher resolution do not always perform better
than those with lower resolutions (such as the FGOALS-g2
model). For the seasonal SAT simulation, model biases in
March–April–May (MAM) and June–July–August (JJA) are
relatively small, while the bias in December–Januar-
y–February (DJF) is high. Compared with the BCC-CSM 1.1
model, the GISS-E2-R model has the smaller bias in the
seasonal SAT simulation.

The SAT observation has increased at a rate of about
1.1 °C/100 yrs during 1901–2005 (figure 2). Among the 24
GCMs, 12 models overestimate the warming trend, and the
others overestimate. However, the warming trend differences
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between the observation and the overestimating models are
generally larger than that from the underestimating model.
The simulated warming trends by the IPSL-CM5A-LR and
MRI-CGCM3 models are closest to the observations, and the
maximum warming trend (approximately 2.76 °C/100 yrs) is
simulated by the BNU-ESM model. It is widely recognized
that if the worst impacts of climate change are to be avoided
then the average rise in the surface temperature of the Earth
needs to be less than 2 °C. Hence, we project the time when
the global land mean SAT (without Antarctica) reaches a 2 °C
increase relative to 2000 under different RCPs, and compare
with the corresponding SAT increase over Northern Eurasia
at that time (table 2). Under the RCP 2.6 scenario, six GCMs
(CanESM2, GFDL-CM3, HadGEM2-ES, MIROC5, MIROC-
ESM and MIROC-ESM-CHEM) show the global SAT will
rise by 2 °C in this century. And only one GCM model
(GISS-E2-R) estimates the global SAT will not increase by
2 °C within this century under RCP 4.5. The projected time
by the remaining GCMs is dispersed from 2034 to 2081. All
GCMs affirm that the global SAT will rise by 2 °C in this
century under the RCP 8.5, and most of the models forecast
that the projected time will occur from the 2030s–2050s.
Under different scenarios, most of GCMs (except BCC-
CSM1.1 (m), CSIRO-Mk3.6.0, GISS-E2-R and MPI-ESM-
LR) believe the warming rate over the Northern Eurasia is

higher than the global warming average in this century. And
some models (such as GFDL-CM3 in RCP 4.5 and MRI-
CGCM3 in RCP 8.5) even show the warming in Northern
Eurasia is more than twice faster than the global average.

2.2. Evaluation of temporal SAT simulation

Figure 3 shows the performance of the annual SAT simulation
over the Northern Eurasia. The annual mean SAT observation
increases during 1901–2005, and the warming has accelerated
since the mid-20th century. Compared with the CMIP3
model, the CMIP5 model improves slightly in the annual SAT
simulation, showing as closer to the observation point in the
Taylor diagram (figure 3(a)). It is also indicated that most of
the GCMs can approximate the trend of SAT, but the accu-
racy of annual SAT simulation is relatively low. The corre-
lation coefficient R between each GCM simulation and the
annual observation ranges from 0.20 to 0.56 (figure 3(a)). The
ensemble results show that the ensemble technique can
improve the temporal SAT simulation when compared to a
single GCM (figure 3(b)). For multi-model ensemble simu-
lation, the performances of the SMA, REA and BMA are
similar since their outputs nearly overlap in the Taylor dia-
gram. Comparing the weights generated by BMA and REA
techniques, it is found that the model weights are similar but
not identical. This is an interesting phenomenon that SMA,

Environ. Res. Lett. 9 (2014) 055007 C Miao et al

5

Figure 1. (a) Annual and (b) seasonal bias of different AR5 GCMs with regard to observed mean temperature in Northern Eurasia during
1901–2005.



REA and BMA generate very similar results, even though the
ensemble members receive different weights through the three
ensemble techniques.

Because a GCM cannot accurately reflect the actual
annual SAT change (figure 3(b)), here we focus on the dec-
adal SAT simulation (figure 4). It shows that GCM can catch
the trend of 10-year moving average SAT over Northern

Eurasia. Compared with the annual scale, the correlation
coefficients between the decadal SAT simulations and
observation are increased, being primarily between 0.6 and
0.9; and the ensemble technique can improve the decal SAT
simulation further (figure 4(a)). Similar to figure 3(b), the
decadal SAT changes simulated by three kinds of ensemble
mean methods are almost the same (figure 4(b)). Besides
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Figure 2. Warming trend for the observations (black bar, left) and each CMIP5 model during 1901–2005.

Table 2. The projected time when global land mean SAT increases 2 °C relative to 2000 under different RCPs and the corresponding SAT
increases over Northern Eurasia.

The year global mean SAT increases 2 °C relative
to 2000

Increase in mean SAT over Northern Eurasia when global mean
SAT increases 2 °C

Model RCP26 RCP45 RCP85 RCP26 RCP45 RCP85

BCC-CSM 1.1 × 2081 2052 × 2.90 2.41
BCC-
CSM1.1(m)

× 2067 2049 × 1.66 1.87

BNU-ESM × 2049 2039 × 3.99 2.72
CanESM2 2036 2036 2030 2.69 2.8 2.77
CCSM4 × 2063 2043 × 3.29 3.12
CNRM-CM5 × 2071 2053 × 3.29 2.68
CSIRO-Mk3.6.0 × 2054 2045 × 1.92 1.74
FGOALS-g2 2056 2039 × 3.01 2.93
FIO-ESM × 2058 2059 × 2.27 1.81
GFDL-CM3 2027 2026 2025 3.61 4.5 3.09
GFDL-ESM2G × 2052 2049 × 3.38 3.06
GISS-E2-H × 2059 2043 × 3.08 3.32
GISS-E2-R × × 2054 × × 1.89
HadGEM2-ES 2024 2034 2032 3.62 3.35 2.93
IPSL-CM5A-LR × 2047 2042 × 3.55 3.11
IPSL-
CM5A-MR

× 2060 2046 × 2.51 2.79

MIROC5 2041 2043 2034 2.11 2.32 2.17
MIROC-ESM 2045 2040 2033 3.14 2.60 2.56
MIROC-
ESM-CHEM

2027 2027 2028 3.52 3.64 3.70

MPI-ESM-LR × 2063 2042 × 1.23 1.06
MPI-ESM-MR × 2061 2043 × 3.30 2.11
MRI-CGCM3 × 2077 2045 × 3.62 4.09
NorESM1-M × 2045 2043 × 2.27 2.27
NorESM-ME × 2052 2047 × 3.21 2.22

Symbol ‘×’ means the rise in global SAT will not reach 2 °C in this century.



ensemble average, uncertainty is another important skill
score. Hence, the uncertainty of the multi-model ensembles
during the period of 1901–2005 is also compared. Figure 5
shows the ensemble uncertainty of the simulated results with
a 10 year moving average. It is indicated that the uncertainty
generated by the BMA is the smallest among the three multi-
model ensemble results for simulating the annual and seaso-
nal SAT. In addition, the results show that the uncertainty in
DJF is the largest over Northern Eurasia.

2.3. Projected SAT change in the 21st century

Considering the smallest uncertainty, the BMA method is
applied to project the SAT change in the 21st century under
the three future emission scenarios (RCP 2.6, RCP 4.5, RCP
8.5) (figure 6). Only the decadal SAT is projected, due to the
poor performance on the annual scale. The BMA simulations
show that the SAT of Northern Eurasia will increase
remarkably over the 21st century. On average, the SAT over
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Figure 3. The performance of the annual SAT simulation over Northern Eurasia. (a) Taylor diagram for each model SAT simulation from
CMIP5 (red) and CMIP3 (blue, model information see the online supplementary material (stacks.iop.org/ERL/0/000000/mmedia) datasets;
(b) comparison between annual SAT simulation from CMIP5 and their ensembles; (c) annual mean SAT anomalies from CMIP5 (relative to
the 1970–1999); (d) weights of different ensemble processes.

Figure 4. The performance of decadal SAT simulation. (a) Taylor diagram for each model and ensemble SAT simulation on decadal scale. (b)
Ensemble for decal SAT simulation.

http://stacks.iop.org/ERL/0/000000/mmedia


Northern Eurasia will rise by 1.03 °C/100 yr, 3.11 °C/100 yr
and 7.14 °C/100 yr for the RCP 2.6, RCP 4.5 and RCP 8.5
scenarios, respectively. Under the RCP 2.6 and RCP 4.5
scenarios, the greatest contribution to the decadal warming is
from MAM, while DJF is the largest contributor under the
RCP 8.5 scenario. The warming trend slows down or even
declines after 2050 under RCP 2.6. For the uncertainty of the
SAT projections, it is found that the uncertainty of SAT
projections increases with time in the 21st century, and the
uncertainty under RCP 8.5 is larger than that under RCP 2.6
and RCP 4.5.

Figure 7 shows the projected annual mean SAT change
for 2080–2099. The annual mean SAT in the last two
decades of 21st century relative to 1986–2005 over Northern
Eurasia will increase 1.92 °C, 3.25 °C and 6.40 °C under
the RCP 2.6, RCP 4.5 and RCP 8.5 scenarios, respectively.
It is found that the warming climate accelerates with
increasing latitude. Grids with maximum SAT changes are
concentrated in the Svalbard region of Norway under three
scenarios, the corresponding changes are 3.61 °C, 5.57 °C and
10.24 °C under the RCP 2.6, RCP 4.5 and RCP 8.5,
respectively.
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Figure 5. The ensemble uncertainty of annual and seasonal SAT simulated results with a 10-year moving average.

Figure 6. SAT projections over the 21st century using the BMA method. Shown are the evolutions under three emission scenarios derived by
applying a 10 yr moving average. Solid lines are the Bayesian multi-model averages of SAT in Northern Eurasia under the scenarios RCP85
(red line), RCP45 (yellow line) and RCP26 (blue line). The color text indicates the average rate of warming under the scenarios RCP85 (red),
RCP45 (yellow) and RCP26 (blue). Shading denotes the ±1 standard deviation range of the BMA results with a 10-year moving average.



3. Discussion and conclusions

This study evaluates and compares the SAT change over
Northern Eurasia using the outputs from the GCMs, SMA,
REA and BMA, and projects the future SAT trend for dif-
ferent emission scenarios. The major findings of this study are
summarized and discussed as follows:

(1) Most of the GCMs overestimate the annual mean
temperature over Northern Eurasia. Similar results are
also found in the Arctic (Chylek et al 2011), in the
Northern hemisphere (Zhao et al 2013) and globally
(Kim et al 2012). The forced and internal variation might
contribute the overestimated warming in SAT simulation.
It is reported that some CMIP5 models overestimate the
responses to the increasing greenhouse gas and other
anthropogenic forcing (IPCC 2013). The stratospheric
aerosol concentration has increased over the past decade
due to the volcanic eruptions, and has cooled global
lower-atmosphere temperatures to a statistically signifi-
cant degree (Santer et al 2014). However, none of the
CMIP5 simulations takes this into account (Solomon
et al 2011, Santer et al 2014). Moreover, some
researchers think the inaccurate way that CMIP5 model
handles clouds and water vapor is the main reason for the
overestimation. It is found that the CMIP5 model tends to
underestimate the cloud cover (Nam et al 2012) and
stratospheric water vapor (Fyfe et al 2013a), both of
which allow more sun to get in and then to heat up the
planet during the simulation. Satellite observations
suggest that climate models have ignored the negative
feedbacks produced by clouds and water vapor (Christy
et al 2010). The missing of these negative feedbacks
diminishes the warming effects of carbon dioxide (Fyfe
et al 2013a,b). Similarly to the CMIP3 (Miao et al 2013),
the models with higher resolution do not always perform
better than those with lower resolutions. Generally, the
error of annual SAT simulation primarily comes from
DJF, while the model biases in MAM and JJA are
relatively smaller (figure 1(b), figure 3(b), figure 5). Most
of the GCMs can approximate the decadal SAT trend, but
the accuracy of annual SAT simulation is relatively low.
The correlation coefficients R between each GCM
simulation and the annual observations range from 0.20
to 0.56. Hence, direct use of the short-term output from

single GCM is not recommended. To model the short-
term dynamic series, the effective techniques to improve
the regional simulation accuracy should be considered in
advance.

(2) The performances of the multi-model ensembles are
superior to that of any single GCM. The Taylor diagram
shows that all the multi-models ensemble techniques can
improve the skill scores of simulations. The SAT changes
in Northern Eurasia generated by SMA, REA and BMA
are almost identical during 1901–2005. In general, the
approach where model weights are determined by the
model skill performs better than the method of equally
weighing all models (e.g., Yun et al 2003, Tebaldi and
Knutti 2007, Ra ̈isa ̈nen and Ylha ̈isi 2012). But some
researches also obtained similar ensemble results calcu-
lated by different methods. Duan and Phillips (2010)
analyze the global annual mean continental temperature
and precipitation during 1980–1999, and find the results
of the SMA and BMA are almost the same. This finding
partially reflects the so-called ‘equifinality’ in which
different combinations of model weights produce the
same fit to the observation. In fact, the advantages of the
uneven weighting ensemble method are mainly exhibited
in narrowing the uncertainty (Giorgi and Mearns 2002,
Duan and Phillips 2010, Hawkins and Sutton 2011).
Comparing the annual and seasonal SAT uncertainties in
the outputs of REA and SMA, the uncertainty generated
by BMA is the smallest. Unequal weighting ensemble
techniques contain the information from all participating
models and embrace distinctly different physical para-
meterizations (Pincus et al 2008). Different model weight
is also assigned according to its performance. Conse-
quently, the unequal weight ensemble techniques mod-
erate the uncertainties arising from different
parameterizations and dynamical cores in the different
GCMs (Zanis et al 2009).

(3) The SAT projections over Northern Eurasia show that
SAT will increase in the 21st century by 1.03 °C/100 yr,
3.11 °C/100 yr and 7.14 °C/100 yr under the RCP 2.6,
RCP 4.5 and RCP 8.5 scenarios, respectively. The
warming accelerates with increasing latitude. All the
maximum warming under the three scenarios is concen-
trated in the Svalbard region. Under the RCP 2.6 and
RCP 4.5 scenarios, the greatest contribution to the
decadal warming comes from MAM, and under the RCP
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Figure 7. Bayesian model averaging of annual mean SAT change (compared to 1986–2005 base period) for 2080–2099 under different
scenarios. Stippling indicates regions where the BMA signal is greater than two standard of internal variability and where 90% of the models
agree on the sign of change.



8.5 scenario, DJF becomes the greatest contributor.
Compared with RCP 4.5 and RCP 8.5, the warming trend
slows down or even starts declining after the 2050s under
RCP 2.6. It is primarily because the RCP 2.6 scenario is
designed to limit the increase of global mean temperature
to 2 °C (van Vuuren et al 2011), and it has a peak in the
radiative forcing at approximately 3Wm−2 (approxi-
mately 400 ppm CO2) before 2100 and then declines to
2.6Wm−2 by the end of the 21st century (approximately
330 ppm CO2) (Sillmann et al 2013). In addition, it is
found that the uncertainty of the SAT projection outputs
simulated by the BMA in the 21st century increases with
time. The uncertainty change can be explained by its
composition. The uncertainty in the SAT projection
arises from three distinct sources: the internal variability
of the climate system, the model uncertainty and the
scenario uncertainty (Hawkins and Sutton 2009). In
CMIP5, internal variability is roughly constant through
time, and the other uncertainties grow with time, but at
different rates (IPCC 2013). For scenario uncertainty, the
spread between RCP scenarios is the dominant source of
uncertainty by the end of the century (Hawkins and
Sutton 2011). Overall, the uncertainty concluded using
CMIP5 is not much changed from using CMIP3 (Knutti
and Sedlacek 2013). Considering the mitigation and
controllability of greenhouse gas, if we assume that the
atmospheric concentrations of greenhouse gases decline
quite rapidly under all RCPs in the next few decades, the
scenario uncertainty may be smaller than that in the
current projection. Not surprisingly, we are supposed to
pay more attention to the internal variability and inter-
model uncertainty in the near future.

GCM serves as a primary tool for studying and
understanding climate change. In response to the SAT pro-
jections under different scenarios; it is important to make
different adaptation and mitigation strategies in Northern
Eurasia.
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