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a b s t r a c t

Surrogate modeling uses cheap “surrogates” to represent the response surface of simulation models. It
involves several steps, including initial sampling, regression and adaptive sampling. This study evaluates
an adaptive surrogate modeling based optimization (ASMO) method on two benchmark problems: the
Hartman function and calibration of the SAC-SMA hydrologic model. Our results show that: 1) Gaussian
Processes are the best surrogate model construction method. A minimum Interpolation Surface method
is the best adaptive sampling method. Low discrepancy Quasi Monte Carlo methods are the most suitable
initial sampling designs. Some 15e20 times the dimension of the problem may be the proper initial
sample size; 2) The ASMO method is much more efficient than the widely used Shuffled Complex
Evolution global optimization method. However, ASMO can provide only approximate optimal solutions,
whose precision is limited by surrogate modeling methods and problem-specific features; and 3) The
identifiability of model parameters is correlated with parameter sensitivity.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Computer simulation models generally contain model parame-
ters that cannot be measured directly but can only be inferred by
calibration, a trial-and-error process that adjusts the parameter
values to fit themodel simulation outputs to the observations of the
real system (Duan et al., 1994). Model calibration problem can be
converted to a global optimization problem which aims to mini-
mize the difference between model simulations and corresponding
observations. Duan et al. (1992, 1993, 1994) developed a widely
used global optimization procedure, entitled the shuffled complex
evolution (SCE-UA) algorithm. Many case studies have demon-
strated that SCE-UA algorithm is an effective and efficient method
for model calibration (Sorooshian et al., 1993; Gan and Biftu, 1996;
Hogue et al., 2000; Boyle et al., 2000; Moreno et al., 2012). How-
ever, global optimization methods generally require up to tens of
thousands of model runs to find the global optimal solution. This
may place severe computational constraint on solving such an
optimization problem, if the underlying model requires a large
amount of CPU time to run. One approach to reduce the
.
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computational burden is to approximate and replace the expensive
simulation model with a cheaper-to-run surrogate model. There
are two broad families of surrogates: (1) response surface surro-
gates, which are statistical or empirical data-driven models
emulating the responses of a high-fidelity simulation model; and
(2) lower-fidelity physical based surrogates, which are simplified
models of the original system (Razavi et al., 2012b). In this study, we
focus on the former one (referred as surrogate model hereafter).
Some fields also refer to the surrogate modeling as function
approximation, meta-modeling, response surface method, or
model emulation (Blanning, 1975; O'Hagan, 2006).

A surrogatemodel can be understood as a “model of model”. It is
a statistical model of the response surface of a simulation model. A
surrogate model describes the relationship between inputs (i.e.,
model's adjustable parameters) and outputs (i.e., the performance
measure of the simulation model). Training an accurate surrogate
model needs adequate inputeoutput data, which are obtained by
running the simulation model with different sets of parameters
selected in the feasible parameter space. Previous studies use the
“one-shot” approach (i.e., using a set of samples at once) to obtain
inputeoutput data to construct the surrogate model. This method
uses data to establish a surrogatemodel directly. Then it runs global
optimization algorithm on the surrogate model. A high number of
model runs may be required to ensure that the surrogate model
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. A schematic description of the ASMO scheme.
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represents the response surface of the original simulation model
well. One way to economically construct a surrogate model for
optimization is to use adaptive sampling. Adaptive sampling means
that we sample a certain number of points in the initial stage and
then adaptively sample additional points which can most effec-
tively increase the accuracy of the surrogatemodel. For the purpose
of finding an optimum, it is not necessary to map out the whole
surface in a surrogate model exploration. An adaptive sampling
strategy can quickly move the experiment to a region containing
the optimum of the input variables. Only within this region is a
thorough exploration of the surrogate model warranted to find the
optimum (Wu and Hamada, 2009).

There are various studies of surrogate modeling. Queipo et al.
(2005) presented an overview of “one-shot” surrogate based
analysis and optimization methods in the aerospace science and
engineering field. They covered some of the most popular methods
in design of experiments (DoEs), surrogate model construction,
model selection and validation, sensitivity analysis, and surrogate
modeling based optimization. Forrester and Keane (2009) reviewed
progresses made in surrogate modeling research over the past 20
years. Their review includes different adaptive sampling methods
and surrogate based multi-objective optimization. Also, some other
papers generalized the framework of surrogate modeling and using
this for sensitivity analysis and optimization of complex environ-
mental models (Castelletti et al., 2012; Ratto et al., 2012; Carnevale
et al., 2012).

In terms of research progress in adaptive surrogate modeling
research, we found a number of studies in the field of hydrology
and geosciences. For example, Razavi et al. (2012a,b) published a
very comprehensive review of adaptive surrogate modeling and its
applications to hydrological modeling and water resources man-
agement. Also they compared optimization strategies based on
surrogate models against other common optimization strategies
not involving surrogate models. Mousavi and Shourian (2010)
applied adaptive sequentially space-filling (ASSF) meta-modeling
method on optimal water quantity allocation problem. Their re-
sults show that ASSF method model with fewer actual function
evaluations is able to find comparable solutions to other tech-
niques. Castelletti et al. (2010) used a multi-objective adaptive
recursive meta-modeling optimization approach to improving
water quality planning in lakes and reservoirs. Neelin et al. (2010)
made use of a surrogate modeling based parameter optimization
and sensitivity analysis method to identify precipitation bias and
sensitivity of an atmospheric General Circulation Model. They
found that their approach is simple to guide parameter choices and
to aid inter-comparison of sensitivity properties among climate
models.

The studies cited above have adequately demonstrated that
surrogate modeling based optimization methods are promising for
solving computationally intensive optimization problems. Howev-
er, what is the best surrogate model construction method and what
is the most efficient adaptive sampling method are not clear. Razavi
et al. (2012b) pointed out that the effectiveness and efficiency of
surrogate based optimization methods can be impacted by the
choice of initial DoEs and initial sample sizes. Even though previous
studies have looked at this issue, what initial DoEs and sample sizes
should be used for a specific surrogate modeling based optimiza-
tion problem is not clearly demonstrated (Jones et al., 1998;
S�obester et al., 2005; Loeppky et al., 2009). In this study, we aim
to contribute toward answering those questions.

This paper is organized as follows. Section 2 presents the sur-
rogate modeling based optimization framework and a brief intro-
duction of methods used in every step. Section 3 presents the
procedures and results of two case studies. Section 4 provides the
conclusions.
2. The adaptive surrogate modeling based optimization
methods

2.1. The procedure in adaptive surrogate modeling based
optimization

The adaptive surrogate modeling based optimization (referred
as ASMO hereafter) method involves several steps. First, the pa-
rameters to be optimized are chosen. Sensitivity analysis is often
used to screen out the insensitive parameters and identify the pa-
rameters that exert the most influence on model performance for
further optimization (Shi et al., 2012). Then a surrogate model
based on adaptive sampling is constructed to represent the
inputeoutput response surface of the simulation model. Finally an
optimization search is conducted on the surrogate model.
Assuming that the most sensitive parameters have already been
screened out, a specific implementation of how to construct an
adaptive surrogatemodel for optimization is illustrated in Fig.1 and
is described as follows:

Step 1: An initial set of sample points (i.e., parameter sets) is
generated using a specific DoE method. These points are then
used as inputs to run the simulation model. The objective func-
tion values are then computed at all sample points. Generally, at
this stage the location of the points is only required to satisfy
parameters' probability distribution and some space-filling cri-
terion. However, if more detailed prior knowledge is available on
the parameters, it may be incorporated in the sampling design.
This study assumes that no other prior knowledge is available
except the parameter lower and upper bounds.
Step 2: A surrogate model type is selected for representing the
response surface of the simulation model. Several possible
surrogate model types can be considered: Gaussian process
(GP), polynomial regression, multi-variate adaptive regression
splines (MARS), support vector machines (SVMs), among others.
Given the surrogate model type, the surrogate model is con-
structed by fitting a statistical model to the performance mea-
sures of the simulation model at the sample points.
Step 3: New sample points are generated using an adaptive
sampling strategy. The adaptive strategy makes full use of the
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information gained from existing sample points to favor new
sample points in the promising regions. These new sample
points and their simulation results from the simulation model
are then used to update the existing response surface.
Step 4: Aconvergencecheck isperformedon theupdated response
surface. If one or more pre-specified convergence criteria (see
Section 3.1 for definition) are met, then an optimization search is
performed on the final response surface. The simulation model is
run with this optimal parameter set and the corresponding
objective function value is recorded and checked against the best
objective function value from the prior search. If it is the new
objective function value is better than the previous one, then we
accept this parameter set from the surrogatemodel as the optimal
parameter set. Otherwise, new sets of adaptive samples are
generated until the resulted response surface is acceptable.
2.2. Design of experiment (DoE)

DoE is a body of techniques that enable an investigator to
conduct better experiments, analyze data efficiently and make the
connections between the conclusions from the analysis and the
original objectives of the investigation (Wu andHamada, 2009). The
choice of the DoEmethod is an important step in the ASMOmethod.
DoE serves to put an initial set of sample points in the feasible
parameter space. There are awide variety of DoEmethods available.
Among them, Full Factorial, Fractional Factorial (Box et al., 2005),
Central Composite (Myers, 1971), BoxeBehnken (Box and Behnken,
1960), Monte Carlo, Latin Hypercube (McKay et al., 1979) and Quasi-
Monte Carlo (QMC) (Sobol',1967; Halton,1964) designs are themost
widely used. However, not all methods are suitable for surrogate
based optimization. Some methods need a large number of sam-
pling points and become impractical for high-dimensional prob-
lems. For instance, the number of sampling points required for a Full
Factorial design is exponentially proportional to the dimensionality
of the problem (e.g., a 6-dimensional spacewith only 10 levels needs
106 points). Other methods have low space filling capability, e.g.,
BoxeBehnken and crude Monte Carlo methods. Methods such as
Latin Hypercube and QMC are commonly used in ASMO because
they allow flexible sample sizes, have a good space filling capability
and are capable of representing the whole space with relatively few
sample points. Therefore, we evaluate several space-filling DoEs in
this study, including Latin hypercube and two QMC designs. A brief
description of these designs is given in Appendix I.

2.3. Surrogate model construction methods

Generally, surrogate model construction methods are statistical
regression methods that estimate response surface of a simulation
model. A variety of approximation techniques have been developed
and applied as the surrogates of an original simulation model:
polynomial regression (Fen et al., 2009), regression tree method
(Tree) (Breiman et al., 1984), Random Forest (RF) method (Breiman,
2001), MARS (Friedman, 1991), Support Vector Machines (SVMs)
(Zhang et al., 2009), Artificial Neural Networks (ANNs) (Behzadian
et al., 2009) and GP (Rasmussen andWilliams, 2006). At the highest
level, response surfaces can be differentiated based on whether
they are non-interpolating (i.e., it minimizes the sum of squared
errors from some predetermined functional form) or interpolating
(i.e., it passes through all points). It has been suggested that non-
interpolating surfaces, such as fitted quadratic surfaces, are unre-
liable for surrogate based optimization because the surface may not
sufficiently capture the shape of the function (Jones, 2001). On the
other hand, interpolating methods can get more and more accurate
as new points are added, eventually converging to the true
function. In this study, we test seven different surrogate model
construction methods on the Hartman function and then choose
the best one to be used for evaluating the DoEs and initial sample
sizes for ASMO. A brief description of the seven methods is given in
Appendix II.
2.4. Adaptive sampling methods

Adaptive sampling methods (also called sequential design
methods) are iterative algorithms that use data acquired from
previous iterations to guide future sample selections. Adaptive
sampling methods allow significant reduction in the number of
simulations of the original simulation model because they only
search the area that may contain the optimum of the input
variables.

There are many adaptive sampling approaches, including
“Minimizing an Interpolating Surface (MIS)” (Jones, 2001), “Mini-
mizing a Statistical Lower Bound (MSL)” (Cox and John, 1997),
“Maximizing the Probability of Improvement (MPI)” (Stuckman,
1988) and “Maximizing Expected Improvement (MEI)” (Schonlau
et al., 1997; Picheny et al., 2013). All these methods have advan-
tages and disadvantages. Some choose the points where the
probability of improving the response surface is maximized, e.g.,
MSL, MPI and MEI methods. These three methods rely on the
standard error of the GP regression method to force the algorithm
to go back and explore regions where the sampled points are
sparse. However, for surrogate based optimization problem, it is not
necessary to describe the whole response surface. Instead, it is
enough just to delineate a region containing the optimum. MIS is a
method not focused on building the whole response surface but
only the region containing the optimum. Because studies have
shown that the MEI method is superior to MSL and MPI methods
(Jones, 2001), we compare only the MEI method against the MIS
method on Hartman function. See Appendix III for a brief descrip-
tion of MIS and MEI.
3. Evaluation of the ASMO method with two case studies

We evaluate the efficiency and effectiveness of the ASMO
method presented in Section 2 with two case studies. These two
case studies are benchmark problems that are used to in evaluating
optimization methods. The first case is a simple mathematical
function: the Six-Dimensional Hartman function. This example is
used to show the feasibility of the ASMO method and different
adaptive strategies. We test different surrogate model construction
methods and two adaptive sampling methods in this case. Further,
we discuss how different initial DoE methods and initial sample
sizes affect the optimization results. The second case study is closer
to a real-world hydrological modeling problem, i.e., calibration of
the parameters of the Sacramento Soil Moisture Accounting (SAC-
SMA) hydrologic model using the ASMO method. The second case
study makes use of the findings in the first case study.
3.1. Case study I: the six-dimensional Hartman function

The six-dimensional Hartman function is a commonly used
mathematical function used to test optimization algorithms. Its
expression is shown as follows:

f ðxÞ ¼ �
X3
i¼0

c$exp

0
@�

X5
j¼0

Ai;j

�
xj � pi;j

�21A (1)

where



Fig. 2. The predictive errors of different surrogate model methods: (a) N ¼ 100 and K ¼ 10; and (b) N ¼ 300 and K ¼ 10. The center lines are the median error; the top and bottom
lines of the gray boxes are the average ± one standard deviation; the top and bottom lines are the maximum and minimum error of the K cross validation tests. The horizontal labels
denote quadratic regression, regression tree, random forest, MARS, support vector machine, artificial neural network and Gaussian process regression, respectively.
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the six-dimensional Hartman function has six local minima. The
ranges of the independent variables are 0 � xj � 1 where
j2½0;1;…;5�. The function value at the global minimum is
f ðx*Þ ¼ �3:32237, where

x* ¼ ð0:20169;0:150011;0:476874;0:275332;0:311652;0:6573Þ

is the global minimum point. In this study, we will try to find the
optimum by optimizing the surrogate model for the Hartman
function.

The specific objectives of this case study are: (a) to choose the
best surrogate model construction method and adaptive sampling
method for the ASMO method; (b) to determine the most appro-
priate initial DoE methods and initial sample sizes for the ASMO
method; (c) to compare the optimization results of the ASMO
method and the direct global optimization algorithm, the SCE-UA
method.

We first evaluate which of the following surrogate model con-
struction methods are the best for the ASMOmethod: (a) Quadratic
(polynomial), (b) Tree, (c) RF, (d) MARS, (e) SVM, (f) ANN and (g) GP.
The QMC Sobol' method (which is proven the best DoE method for
ASMO later in this section) is used to sampleN points in the feasible
space of the Hartman function. The objective function values at
those sample points are then computed. To check the performance
of the surrogate model construction methods, we used the K-fold
cross validationmethod, which works as follows. The entire sample
set is divided into K subsets. Given a specific surrogate model
construction method, a response surface is created by using only
K � 1 subsets of sample points (i.e., by eliminating one subset). The
difference (i.e., the predictive error) between the true response
surface and the response surface built on the K � 1 subsets of
samples is computed. This procedure iterates K times to obtain the
average predictive error. Fig. 2 shows the predictive errors of
different surrogate model construction methods for K ¼ 10 and
N ¼ 100 and N ¼ 300, respectively. We can see that GP has the
smallest predictive error and ANN has the highest error. Some
methods show a significant variation among the K trials (e.g.,
regression tree and MARS), indicating more sample points are
needed for a more accurate representation of the response surface.
ANN shows no variation among the K trials for both N ¼ 100 and
N¼ 300, suggesting that it is not sensitive to the sample size. Based
on this result, we choose the GP method as the best surrogate
model method for further study.

Given GP as the best surrogate model method, we now evaluate
whether the MIS or MEI method are the best adaptive sampling
methods for the ASMO method. Again we use the QMC Sobol'
design to generate N ¼ 100 and N ¼ 300 random samples,
respectively, and use them as the initial sample sizes for the ASMO
method, respectively. Fig. 3 shows the optimization convergence
process of the two adaptive samplingmethods. From Fig. 3, we note
clearly that MIS performs better than MEI. For the MIS method, it
converges to the true optimum (within <0.001 of the true optimum
value of �3.32237) at 127 total sample points when N ¼ 100 and at
328 when N ¼ 300, suggesting that fewer than 40 additional
sample points are needed in the adaptive sampling stage. For the
MEI method, the optimization search converges at about 155 for
N ¼ 100 and about 428 for N ¼ 300, suggesting 55e130 additional
sample points in the adaptive sampling stage. All two experiments
for MEI fail to find the optimum at convergence. Some previous
findings have suggested that the MEI method is capable to finding
the global minimum asymptotically (Locatelli, 1997). However, it
may take a long time to do so (Jones, 2001). The MEI method
underperforms the MIS method here probably due to the following
reasons: 1) per MEI's algorithm, the adaptive sampling strategy
tends to focus more on regions where there is a large predictive
uncertainty instead of focusing on the more promising regions.
When the initial sample size is small, the predictive uncertainty
estimates of the GP response surfaces are large everywhere. This
means that MEI needs to do a fairly exhaustive search in the entire
feasible parameter space, demanding high computational time
(Jones, 2001); 2) The predictive uncertainty of the surrogate model
near the boundary of the feasible space tends to be larger than



Fig. 3. Comparison of the convergence process by MEI and MIS adaptive sampling methods: (a) N ¼ 100 and (b) N ¼ 300.
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other regions because that is where extrapolation is needed to fit
the GP model. For this reason, MEI tends to put more points near
the boundary of the feasible space in the initial search stage. A
careful examination of theMEI search process confirms that it takes
many iterations near the boundary before the search moves toward
the optimum (see Fig. 3). Based on above results, we choose MIS
adaptive sampling method over MEI for further evaluation of the
ASMO method.

After we have chosen GP as the best surrogate model con-
struction method and the MIS method as the best adaptive sam-
pling method for ASMO, we now examine how different DoE
methods and initial sample sizes influence the optimization results.
Here two space filling DoE methods: LH and QMC are evaluated.
Since LH is a random sampling approach, we repeated LH random
sampling using different random seeds ten times (labeled with
“LH_1”e“LH_10”). QMC method is a pseudo random approach, i.e.,
the sequences of samples look random, but they are actually
deterministic, depending on the sequence generating method. In
this study two QMC sequence generating methods are evaluated:
QMC-Sobol' and QMC-Halton approaches (see Appendix III for a
brief description). Three initial sample sizes, Ninit, are tested, i.e.,
Ninit ¼ 50, 100 and 150. After the initial sample sets are generated,
additional adaptive sampling is then conducted until one or more
convergence criteria is reached. One convergence criterion is that
the best objective function value is sufficiently close to the true
optimal value (in this case, within 0.001 of true optimal value of
�3.32237 for the Hartman function). Another convergence crite-
rion is that the search reaches the maximum number of samples,
Nmax, allowed (in this case Nmax ¼ 300). Fig. 4(a)e(c) shows the
optimization results for three DoEs and three initial sample sizes,
respectively. With any of the three initial sample sizes, the opti-
mization search using some of LH designs and two QMC designs
can all converge to the optimum at different convergence rates.
When Ninit ¼ 50, it takes QMC-Sobol' more than 230 and QMC-
Halton more than 180 total samples to find the optimum. When
Ninit ¼ 150, it takes both QMC-Sobol' and QMC-Halton about 165
total samples to converge to the optimum. On the other hand, it
takes about 120 and 152 total samples for QMC-Sobol' and QMC-
Halton, respectively, to converge to the optimum when
Ninit ¼ 100. The best results from the 10 LH designs are similar to or
even surpass those of QMC designs. However, the search using LH
designs fails to find the true optimum in numerous cases, sug-
gesting that LH is not a robust DoE method for ASMO.

Through this study, we learn that the proper initial sample size
is important. The convergence speed might be slow if the initial
samples are too few and it would be too inefficient if the initial
sample size is too large. Based on this case study, an initial sample
size of Ninit ¼ 100 seems to be the appropriate choice. In terms of
choosing the best DoEs for the ASMOmethod, the two QMC designs
are more reliable than the LH design.

Since the ASMOmethod has been demonstrated to be capable of
finding the optimum of the Hartman function, we nowcompare the
ASMO method with the SCE-UA optimization method. The objec-
tive is to demonstrate the advantage of the ASMO method over a
traditional global optimization approach. The best performing
setup for the ASMO method is used in this comparison, i.e., the GP
method chosen as the surrogatemodel method, MIS as the adaptive
sampling method, Ninit ¼ 100, and QMC Sobol' as the DoE for initial
sampling. The optimization results are shown in Fig. 5, which
shows the convergence process and Fig. 6, which shows both the
ASMO and the SCE-UA methods can find the exact true optimum in
every parameter dimension. For the ASMO method, the optimiza-
tion process converges to the optimal function value of <�3.322
after a total sample of 127 (with 100 initial samples and 27 addi-
tional adaptive samples). On the other hand, the SCE-UA method
requires up to 880 sample points to reach the function value of
<�3.322, which is more than seven times of the AMSO method.
This result indicates that ASMO has a clear advantage over SCE-UA
in terms of optimization search efficiency at least for the Hartman
function case. The probable reason is that SCE-UA is a direct opti-
mization method that explores the entire feasible space. By using
the information obtained from the sample points and mathemat-
ical approximations of the response surface of the original simu-
lation model, the ASMO method does not try to emulate the entire
response surface of the original simulation model. Rather it focuses
on searching the region which is more likely to contain the
optimum.

3.2. Case study II: calibration of the SAC-SMA model

3.2.1. Description of model, study area, datasets and objective
function

In this case study, we evaluate the efficiency and effectiveness of
the ASMO method using a hydrologic model used in real-world
applications, the SAC-SMA model. The SAC-SMA model is a con-
ceptual rainfallerunoff model that represents the soil columnwith
upper and lower zones of multiple storages (Burnash, 1995). It has
been used extensively in both research and operational applica-
tions for river forecasting by the National Weather Service River
Forecast System (NWSRFS) Centers across the United States. It is
also a benchmark problem for evaluation of many parameter esti-
mation methods (Duan et al., 1992, 1994; Yapo et al., 1998; Ajami



Fig. 4. Optimization results of the Six-Dimensional Hartman function by the AMSO method with different DoEs and initial sample sizes.

C. Wang et al. / Environmental Modelling & Software 60 (2014) 167e179172
et al., 2007). Fig. 7 shows the structure of the SAC-SMA model.
There are sixteen parameters in the SAC-SMA model. We consider
only thirteen of them as adjustable parameters, whose feasible
ranges and descriptions are listed in Table 1. Three parameters
RSERV, RIVA, and SIDE are fixed at pre-specified values according to
Brazil (1988).

The study area is the South Branch Potomac River basin near
Springfield,West Virginia in the U.S. It is one of the 12 experimental
watersheds of the Model Parameter Estimation Experiment
(MOPEX) (Duan et al., 2006). The total drainage area of the basin
(U.S. Geological Survey Station No. 01608500) is about 3810 km2.
Historical precipitation, potential evapotranspiration and stream-
flow observations from January 1st, 1960 to December 31st, 1979
were obtained from the MOPEX database for this study (Duan et al.,
2006). The annual average precipitation over this period is
1021 mm, annual average potential evapotranspiration is 762 mm,
and annual average streamflow discharge is 39.5 m3/s yr. The hy-
drological simulations are run with a 6-h time step for each set of



Fig. 5. Comparing the optimization results of the ASMO and SCE-UA methods on the
Six-Dimensional Hartman function.
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model parameters. Additional physical characteristics of the study
area were presented by Duan et al. (2006).

The purpose of a model calibration (i.e., parameter optimiza-
tion) is to find the optimal parameter set for the SAC-SMA model
such that the simulated streamflow would have the best overall
match with the observed streamflow through minimizing the
objective function value. The observed streamflow data in this
study was recreated synthetically according to the following pro-
cedure: (1) an artificial set of parameters was chosen as the “true”
optimal parameters; (2) the SAC-SMA model was run using this set
of “true” parameters, observed precipitation and potential evapo-
transpiration to obtain the streamflow simulation for the historical
period 1960e1979. The simulated streamflow obtained using above
procedure is treated as the “observed streamflow”. The advantage
of using synthetic data is that we know the “true” parameter values
and the “true” streamflow.
x* ¼ f242:868;49:5779;0:4373;0:011;0:063;97:7848;1:8564;325:192;353:817;61:679;0:1092;0:0131;0:262g
The artificially assigned “true” parameter set isIn this study, we
used the Root Mean Square Error (RMSE) as the objective function,
which is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼1

�
Qs;t � Qo;t

�2vuut (2)

where n is the number of time steps, Qs;t is the simulated flow for
time step t, and Qo;t is the observed flow for time step t. In the
model simulation process, we used a warm-up period of 3 months
to remove any impact of uncertain initial conditions, i.e., in
computing RMSE, the streamflow values for the first three months
of 1960 were removed from consideration. In hydrological
modeling, the choice of objective function (i.e., performance met-
rics) can have a great impact on the identifiability of model pa-
rameters (Bennett et al., 2013). Since this is a synthetic case study
with a known optimum, the use of RMSE as an objective function is
sufficient.
Fig. 6. Comparing the converged parameters of the six-dimensional Hartman function
by the ASMO and SCE-UA methods.
3.2.2. The optimization results and analysis
The ASMOmethod described in Section 2 is used to optimize the

parameters of the 13-dimensional SAC-SMA model. Based on the
findings from Section 3.1, we examined only the two QMCmethods
(i.e., the Sobol' and Halton sequences) as the possible choice for the
initial DoE method. Different initial sample sizes at 100, 250 and
400 are experimented to find the best initial sample size. Fig. 8
displays the results. We note that initial sample size at 250 seems
to produce relatively better objective function values than other
sample sizes. However the advantage is not significant. For an
initial sample size of 100, the ASMO search makes quick improve-
ment initially, but settles at a local optimum which is only slightly
worse than the optimum found with an initial sample size of 250.
When the initial sample size is 400, the ASMO search also moves
rapidly toward the optimum in the adaptive stage. However, the
total number of samples is too high (>510) and is therefore regar-
ded too wasteful. The optimization results seem to suggest that the
initial sample does play a role in the effectiveness and efficiency of
the ASMO search process. But what exact initial sample size should
the ASMO method use seems to be not clear-cut. One obvious
observation is that for a 13-dimensional optimization problem, no
more than 20 times the dimension is adequate. The initial sample
size for ASMO seems to be somewhat different from those of other
researchers. For example, S�obester et al. (2005) suggested that
about 35% of the samples should be spent in the initial stage, while
Jones et al. (1998) recommended that the initial sample size should
be about ten times the dimensionality of the problem.

Based on above results, we chose QMC Sobol' sequence as the
initial DoE method and 250 as the initial sample, and compared the
ASMOmethod with the SCE-UA method. The results in Fig. 9 reveal
how the objective function values trend down with increasing
sample points for both the ASMO and SCE-UA methods. This figure
shows that ASMO has an obvious advantage in convergence speed
over SCE-UA, with the former needing about 400 total sample
points and the latter needing close to 1600 sample points to reach
similar objective function value. The SCE-UA method possesses an
edge over the surrogate based optimization in converging to the



Fig. 7. A schematic of the SAC-SMA model (Ajami et al., 2007).

Table 1
The thirteen parameters of the SAC-SMA model and their feasible ranges (Brazil,
1988).

No Parameter Description Lower
bound

Upper
bound

1 UZTWM Maximum capacity of the upper zone
tension water storage (mm)

10.00 300.00

2 UZFWM Maximum capacity of the upper zone
free water storage (mm)

5.00 150.00

3 UZK Lateral drainage rate of upper zone free
water (day�1)

0.10 0.75

4 PCTIM Impervious fraction of the watershed
area (decimal fraction)

0.00 0.10

5 ADIMP Additional impervious area (decimal
fraction)

0.00 0.20

6 ZPERC Proportional increase in percolation
from saturated to dry condition
(dimensionless)

5.00 350.00

7 REXP Exponent of the percolation equation
(dimensionless)

1.00 5.00

8 LZTWM Maximum capacity of lower zone
tension water storage (mm)

10.00 500.00

9 LZFSM Maximum capacity of lower zone
supplemental free water storage (mm)

5.00 400.00

10 LZFPM Maximum capacity of lower zone
primary free water storage (mm)

10.00 1000.0

11 LZSK Lateral drainage rate of lower zone
supplemental free water storage
(day�1)

0.01 0.35

12 LZPK Lateral drainage rate of lower zone
primary free water storage (day�1)

0.001 0.05

13 PFREE Fraction of the percolated water which
is transmitted directly to the lower zone
free water aquifers during the period
when the lower zone tension water has
a soil moisture deficiency (decimal
fraction)

0.00 0.80

The three fixed parameter value is: RSERV ¼ 0.3; RIVA ¼ 0.0; SIDE ¼ 0.0.

C. Wang et al. / Environmental Modelling & Software 60 (2014) 167e179174
“true” optimal parameter set if there is no limit on the number of
sample points. In other words, the SCE-UA method is capable of
finding the exact “true” parameter values, while the ASMOmethod
can only provide approximate optimization results. Additional
samples points cannot make ASMO to find the exact “true” optimal
values, as illustrated in Fig. 9, which shows that the optimization
results would not improve after certain iterations.
3.2.3. The influence of parameter sensitivity on optimization results
From Section 3.2.2, we found that the ASMO method is able of

identifying an approximate optimal parameter set, but not the
“true” optimum. In theory, when synthetic data were used, we
should be able to locate the “true” parameter set if an optimization
method works effectively. In this section, we investigate how close
the approximate optimal parameters are to the “true” parameters
and why they deviate from their “true” parameters.

Fig. 10 shows the optimal parameters obtained by the ASMO and
SCE-UA methods. Also shown is the “true” parameter set. This
figure shows that some parameters were identified precisely, while
others were not. To find out the reasons, we conducted a global
sensitivity analysis of the 13 parameters to see if there is any
relationship between parameter identifiability and parameter
sensitivity. We used the Sobol' variance decomposition method to
evaluate the sensitivity of the parameters (Saltelli et al., 2000). The
Sobol' method (Sobol', 1993, 2001) provides a quantitative evalua-
tion of the contribution of each parameter to the total variance of
the model outputs, including main effect (i.e., the effect of varying
one parameter alone), two-factor interaction effect (i.e., the effect
of varying two parameters jointly), and total effect (including all the
possible synergetic terms between that parameter and all the
others) (Saltelli and Annoni, 2010).

Fig. 11 shows the main effects and the total effects of different
parameters. The main effects of parameter 1(UZTWM), 4(PCTIM),
5(ADIMP), 8(LZTWM) and 12(LZPK) are relatively high and are thus



Fig. 8. Optimization results of the SAC-SMA model by the ASMO method using different initial DoE methods and different initial sample sizes.
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regarded as highly sensitive. Parameters 2(UZFWM), 3(UZK),
6(ZPERC), 7(REXP), 9(LZFSM) are relatively insensitive parameters
based on their main effects. The optimized parameter values for
parameters 1, 4, 5, 8 and 13 are close to the “true” values, while the
optimized parameter values for parameters 2, 3, 6, 7, 9 are far away
from the “true” values. Interestingly, the closeness of the optimized
parameters to the “true” values seems to be proportional to the
main effects of the parameters. This finding is similar to the one by
van Werkhoven et al. (2009). However, van Wekhoven used total
effects to assess parameter sensitivity. This observation is particu-
larly obvious for the results from the SCE-UA method, in which all
highly sensitive parameters are identified precisely, while the
insensitive parameters can be far away from the “true” values (i.e.,
parameters 2, 3, 6, 7 and 9). The optimized parameter values from
the ASMO method deviate from the “true” parameter values more
than those from the SCE-UA method at about 1000 samples.

There are a number of reasons for the deviations of the opti-
mized parameters from the “true” values. The main reason is that,
for insensitive parameters (parameters 2, 3, 6 and 7), their values
are not identifiable because they have little influence on the model
Fig. 9. Optimized objective function values and sampling sizes o
output. There is another group of parameters, which have small
main effects, but high total effects (i.e., parameters 3, 9, 10 and 11),
consistent with the findings by Wu and Hamada (2009). That
means they have strong interaction effect that can be estimated by
the difference between the total and the main effects. We suspect
that the strong interaction among these parameters resulted in
optimization convergence to the wrong parameter values. This is
consistent with the findings by other researchers. According to the
finding by Pokhrel et al. (2008), some SAC-SMA parameters have
strong inter-parameter correlations: e.g., LZSK (parameter 11) co-
varies with UZK (parameter 3), LZFPM (parameter 10) co-varies
with PFREE (parameter 13) and REXP (parameter 7), LZPK
(parameter 12) co-varies with LZTWM (parameter 8). The correla-
tions among these parameters make the identification of these
parameters very difficult.

4. Conclusions

To provide the practitioners with a clear perspective on how to
use the surrogate modeling based optimization properly, we
f the SAC-SMA model by the ASMO and SCE-UA methods.



Fig. 10. Comparison of optimal parameter sets of the SAC-SMA model obtained by the ASMO and SCE-UA methods with the “true” parameter set.
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conducted a detailed analysis of an ASMO method with respect to
the selection of the most appropriate surrogate model construction
method, the adaptive sampling method, the initial DoE methods
and initial sample sizes. To sum up, we compared seven different
surrogate model construction methods and two adaptive sampling
methods. Then we explored how different initial DoE methods and
different initial sample sizes affect optimization search results in
two case studies. The main findings are:

1) Generally speaking, the ASMO method is efficient and effective
in finding the approximate optimal parameters of the simula-
tion model. It can acquire good optimization results with fewer
sample points than the SCE-UA method;

2) Surrogate model built using the GP method produces
consistently better optimization results than other methods
and the MIS method is clearly more efficient than the MEI
method as the adaptive sampling strategy. Initial sampling
methods can affect the optimization results of surrogate
Fig. 11. Sobol' global sensitivity analysis results showing the main effect (Black) and
the total effect (White) of different parameters in the SAC-SMA model.
modeling based optimization. The low discrepancy DoE
methods such as QMC-Sobol' and QMC-Halton are better than
the LH method. Proper sampling size can make the method
more efficient and effective. In our study, we found that the
proper initial sample size should not exceed 20 times the
dimension of the problem;

3) The ASMO method is designed to use a cheaper surrogate to
provide approximate solutions to a simulation model. It cannot
be expected to provide a precise solution as the direct opti-
mization method such as the SCE-UA method. The precision of
the surrogates is limited by many factors, including the initial
DoE, initial sample size and the complexity of the original
problem;

4) The precision of the optimized parameters has a close rela-
tionship with the sensitivity indices of the parameters. Highly
sensitive parameters have a higher possibility of being identified
correctly. Parameter interaction, however, may complicate the
identifiability of the parameters, resulting in incorrect param-
eter estimates.

The results from this study are based on two typical case studies,
in which we know the exact optimal solutions. In real world ap-
plications, the model structure may be in error and the data used in
estimating the model parameters may be noisy. Therefore there is
no such thing as a “true” solution. In this case, we may have to find
ways to account for these uncertainties by developing better
models and formulating better objective functions that represent
the model errors better. Since this study focuses onwhether we can
find the approximate solution with limited computer runs, we
believe that most of the findings on the proper choice of DoE
methods and initial sample sizes should help the research com-
munity in dealing with their specific problems. Further research,
however, is necessary to validate if the findings from this study can
be generalized to other cases.

Acknowledgment

This research is supported by the Ministry of Science and
Technology of the People's Republic of China National Science and
Technology Support Program (Grant No. 2013BAB05B04) and the
Natural Science Foundation of China (No. 41375139).



C. Wang et al. / Environmental Modelling & Software 60 (2014) 167e179 177
Appendix I. A brief description of Latin hypercube, quasi
Monte Carlo Sobol' and quasi Monte Carlo Halton designs

Latin hypercube design

Latin hypercube (LH) sampling is a statistical method for
generating a distribution of plausible collections of parameter
values from a multi-dimensional distribution. This method was
first described by McKay et al. (1979) and further elaborated by
Iman et al. (1981) and Hernandez et al. (2012). In the context of
statistical sampling, a square grid containing sample points is
named a Latin Square if there is only one sample in each row and
each column. A Latin hypercube is a sampling design suited for an
arbitrary number of dimensions, where each sample is the only one
in each axis-aligned hyper-plane containing it. When sampling M
points from a function of N variables, the range of each variable is
divided into M equally probable intervals; within each interval,
random values are selected according to the probability density
function (PDF) of each parameter.

QMC Sobol' design and Halton design

A QMC method can be viewed as a deterministic version of
Monte Carlo method (Niederreiter, 1992). It also called a low-
discrepancy procedure. A low-discrepancy sequence is a set of s-
dimensional points, filling the sample area “efficiently” and has a
low discrepancy than straight pseudo-random number set
(Krykova, 2003). The exact location of the sample points is deter-
mined by the base number, the construction method and the
sample size. One popular QMC sequence is called Sobol' sequence,
which was first introduced by Russian mathematician Sobol'
(1967). For a s-dimensional problem, Sobol' sequence uses
different permutations of base-two van der Corput sequences (van
der Corput, 1935) for all dimensions to form successively finer
uniform partitions of the unit interval, and then reorder the co-
ordinates in each dimension. Halton sequence (Halton, 1964) is
another QMC sequence in multiple dimensions. The Halton
sequence is a general s-dimensional sequence in the unit hyper-
cube [0,1]s. It is generated using a different prime number as the
base for van der Corput sequence in each of the s dimension
(Krykova, 2003).

Appendix II. A brief description of seven surrogate model
construction methods

Polynomial regression

Polynomial regression models are parametric models that
represent inputeoutput relationships through polynomials.
Training data will be fitted using a least-square approach. Since
polynomial regression models are global methods, a perturbation
in any sample data will change all parts of the model. Thus, the
presence of outliers can have a disastrous effect on the model itself.
Additionally, when the simulation model is sufficient complex, a
simple polynomial regression model may not be adequate to
approximation the response surface of the simulation model.
Usually we use linear, quadratic and cubic polynomial models.

Regression tree

Tree method is a non-parametric supervised learning method
used to predict a response from several inputs. It can conveniently
be used for Bayesian supervised learning, such as regression and
classification. Whereas the outputs for classification are discrete
class labels, regression is concerned with the prediction of
continuous quantities (Rasmussen andWilliams, 2006). Regression
treemethod is done by growing a binary tree. At each internal node
in the tree, a test is applied to one of the inputs. Depending on the
outcome of the test, one can go to either the left or the right sub-
branch of the tree. Eventually we come to a leaf node where a
prediction is made. However, when the data has lots of features
which interact in complicated, nonlinear ways, assembling a single
global model can be very difficult. Regression tree method chooses
the sub-divide approach or partition to solve this problem. It splits
the space into smaller regions, where the interactions are more
manageable. It then partitions the sub-divisions again, this is called
recursive partition.

Multi-variate adaptive regression splines

Multi-variate Adaptive Regression Splines (MARS) is a proce-
dure for fitting adaptive non-linear regression that uses piecewise
basis functions to define relationships between a response variable
and some set of predictors (Friedman, 1991). MARS is a non-
parametric regression technique and can be seen as an extension
of decision tree method. It uses a class of pairwise spline basis
function for each input. The general form of theMARSmodel can be
represented by the following expression:

by ¼ b0 þ
XM
j¼1

bjBj
�
x
.
�

(A1)

where x
. ¼ ðx1; x2;…; xpÞ is the vector of inputs, Bj is the jth basis

function, which can be a single spline function or a product of two
or more basis function, and the coefficients bjs are estimated by
minimizing the sum of squared residuals (Shahsavani et al., 2010).
MARS uses a forward-backward procedure to construct the final
model. The forward step is very similar to stepwise regression but
uses the basis functions (Shahsavani et al., 2010). Generalized Cross
Validation (GCV) (Golub et al., 1979) evaluates the performance of
the model. MARS chooses the best model with less GCV.

Random forests

Random forests (Breiman, 2001) are one of ensemble methods.
The goal of ensemble methods is to combine the predictions of
several models built with a given learning algorithm in order to
improve generalizability and robustness over a single model.
Random forests are learning ensemble consisting of a bagging of
un-pruned decision tree learners with a randomized selection of
features at each split. The random forests algorithm is as follows: 1)
provide ntree bootstrap samples from the original data; 2) for each
of the bootstrap samples, grow an regression tree with the
following modification: at each node, rather than choosing the best
split among all predictors, randomly sample mtry of the predictors
and choose the best split from among those variables; 3) predict
new data by aggregating the predictions of the ntree trees (Liaw and
Wiener, 2002).

Support vector machines

Support Vector Machines (SVMs) are learning machines
implementing the structural risk minimization inductive principle
to obtain good generalization on a limited number of learning
patterns (Basak et al., 2007). SVM has been first introduced by
Vapnik (1995). There are two main categories for support vector
machines: support vector classification (SVC) and support vector
regression (SVR). We use SVR for constructing surrogate models.
The idea of SVR is based on the computation of a linear regression
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function in a high dimensional feature space where the input data
are mapped via a nonlinear function. Due to the possible high
dimensionality of the input variable, SVR usually solves the dual
problem instead of the original problem. After the dual problem is
solved, using the primaledual relationship to acquire the final
expression.

Artificial neural network

The basic premise of ANN is that biological systems have
extraordinary learning ability when exposed to external signals.
With proper training of an ANN, it has been used for regression
analysis. The complexity of real neurons is highly abstracted when
modeling artificial neurons. These basically consist of inputs, which
are multiplied by weights, and then computed by a mathematical
function which determines the activation of the neuron. Another
function computes the output of the artificial neuron. ANNs
combine artificial neurons in order to process information.

Gaussian process regression

GP is an interpolating regression method that uses basis func-
tions with tuned parameters to represent the original model f(x)
(Jones, 2001). GP regression model is a collection of random vari-
ables, any finite number of which has a joint Gaussian distribution
(Rasmussen andWilliams, 2006). A GP is completely specified by its
mean function mð x.Þ and covariance function kð x.; x0

.
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and a GP can be written as
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A GP is shown to be the predictor that minimizes the expected
squared prediction error subject to: (1) being unbiased and; (2)
being a linear function combination of observations. GP also has a
statistical interpretation, which not only allows us to compute a
predictor, but also allows us to compute a measure of the possible
error in the predictor.

Appendix III. A brief description of two adaptive sampling
methods

Minimum interpolating surface method

In Minimum Interpolating Surface (MIS) method, a surrogate
modeling method is first fitted to initial sample points. Then the
minimum of the response surface is found and is treated as a new
sample point to be added to the existing sample set. The simulation
model is run at this point to obtain the model performance mea-
sure. If the new sample set meets the convergence criterion, the
search stops; otherwise, we begin another loop of adaptive
sampling.

Maximum expected improvement method

The Maximum Expected Improvement (MEI) method needs to
compute how much improvement we expect to achieve if we
sample at a given point. Let Yð x.Þ be a random variable describing
the uncertainty about the function's value at a point x

.
. If the
current best function value is fmin, then we will achieve an
improvement of I if Yð x.Þ ¼ fmin � I. The likelihood of achieving this
improvement is given by the normal density function:

1ffiffiffiffiffiffiffi
2p

p
s
�
x
.
� exp

2
64�

�
fmin � I � by� x

.
��2

2s2
�
x
.
�

3
75 (A4)

where y(x) is the mean and s2(x) is the variance given by the kriging
predictor. The expected improvement can be integrated over this
density function:
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Using integration by parts, one can show that

EðIÞ ¼ s
�
x
.
�
½uFðuÞ þ fðuÞ� (A6)

where

u ¼
fmin � by� x

.
�

s
�
x
.
�

F andf are the normal cumulative distribution function and den-
sity function, respectively (Jones, 2001).
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