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Post-processing of ensemble forecasts in low-flow period
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Abstract:

For water supply, navigational, ecological protection or water quality control purposes, there is a great need in knowing the
likelihood of the river level falling below a certain threshold. Ensemble streamflow prediction (ESP) based on simulations of
deterministic hydrologic models is widely used to assess this likelihood. Raw ESP results can be biased in both the ensemble
means and the spreads. In this study, we applied a modified general linear model post-processor (GLMPP) to correct these biases.
The modified GLMPP is built on the basis of regression of simulated and observed streamflow calculated on the basis of
canonical events, instead of the daily values as is carried out in the original GLMPP. We conducted the probabilistic analysis of
post-processed ESP results falling below pre-specified low-flow levels at seasonal time scale. Raw ESP forecasts from the 1980
to 2006 periods by four different land surface models (LSMs) in eight large river basins in the continental USA are included in
the analysis. The four LSMs are Noah, Mosaic, variable infiltration capacity and Sacramento models. The major results from this
study are as follows: (1) a modified GLMPP was proposed on the basis of canonical events; (2) post-processing can improve the
accuracy and reduce the uncertainty of hydrologic forecasts; (3) post-processing can help deal with the effect of human activity;
and (4) raw simulation results from different models vary greatly in different basins. However, post-processing can always
remove model biases under different conditions. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Low flow is the minimum flow in a river during the dry
periods of the year (Smakhtin, 2001). The international
glossary of hydrology (WMO, 1974) defines low flow as
‘flow of water in a stream during prolonged dry weather’.
Low flows are normally derived from groundwater
discharge or surface discharge from lakes, marshes or
melting glaciers (Smakhtin, 2001). For water supply,
navigational, ecological protection or water quality
control purposes, there is a great need in knowing the
likelihood of the river level falling below certain low-flow
thresholds. Ensemble streamflow prediction (ESP) is a
commonly used approach by hydrologic forecasters to
assess this likelihood of future streamflow magnitude
(Franz et al., 2003). ESP creates a probabilistic outlook of
future streamflow levels for lead times ranging from a few
days to a few seasons, based on streamflow simulations
from a deterministic hydrologic modelling system that is
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run with multiple meteorological forcing inputs and
current basin conditions (Day, 1985).
Because of uncertainties in meteorological forcing,

initial conditions and hydrologic model structure and
parameters, raw ESP results can be biased in both the
ensemble means and the spreads. This is particularly true
for low flows as most hydrologic models are developed
with limited interest in replicating low flows well (Shaw
and Riha, 2012). Streamflow forecast performance
measures, such as the Nash–Sutcliffe efficiency (NSE)
value or the Root-Mean-Square-Error (RMSE), are
heavily weighted towards predictions of high flows than
low flows, i.e. if the model simulates flood peaks well but
low flows poorly, the NSE or RMSE values would still be
good (Pushpalatha et al., 2012). Low flow predictions can
also be complicated by human activities that alter natural
streamflow via reservoir regulation or water diversion for
irrigation (Döll and Siebert, 2002; Sperna Weiland et al.,
2010; Wisser et al., 2010; Falloon et al., 2011). The
effects of the reservoir manifest in simulated hydrographs
that will have a tendency to over-predict high flows and
under-predict low flows, making ESP streamflow simu-
lations incomparable to observations.
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For ESP streamflow predictions to be meaningful, it is
necessary to remove their inherent biases. There are a
number of approaches to improve raw ESP streamflow
predictions. One approach is to improve meteorological
observations and forecasts that are used to drive the
hydrologic models (Schaake et al., 2006). Past research
has also indicated that better initial conditions account for
much of the seasonal streamflow predictability in ESP,
especially for snow-dominated basins (Shukla et al., 2013).
Another approach is, therefore, to improve the initial
conditions in the hydrologic model through better assimi-
lation of observations (Slater and Clark, 2006). The third
approach is to improve hydrologic model structure and to
develop better parameter estimation methods (Duan et al.,
2006; Singh and Frevert, 2006). Multimodel ensemble
strategy has also been promoted recently to account for
model structural uncertainty (Ajami et al., 2007; Duan et al.,
2007). The fourth approach is to perform hydrologic post-
processing of the hydrologic model outputs (Brown and
Seo, 2010; Brown and Seo, 2013; Madadgar et al., 2014).
Hydrologic post-processing addresses uncertainties of
hydrologic model outputs by using a statistical model to
represent the relationship between model outputs and
corresponding observations (Krzysztofowicz and Kelly,
2000; Seo et al., 2006). It can remove or reduce model
systematic biases from all upstream uncertainty sources and
can be regarded as the final step before the issue of actual
hydrologic forecasts (Shi et al., 2008;Yuan andWood, 2012).
The methods of post-processing can be divided into

three categories. One approach is a simple bias correction
method, such as the degree of mass balance (DMB)
(Mccollor and Stull, 2008) and the linearly weighted
DMB (Bourdin and Stull, 2013). Another approach is
using probability calibration methods based on Bayesian
framework (Todini, 2008; Brown and Seo, 2010; Coccia
and Todini, 2011; Brown and Seo, 2013). The quantile
mapping approach is another technique for post-
processing, which maps the probability distribution of
ensemble predictions with the observed frequency (Shi
et al., 2008; Madadgar et al., 2014).
Zhao et al. (2011) developed a generalized linear model-

based approach (general linear model post-processor,
GLMPP) and compared the post-processing results with
calibration results of hydrological models. The idea of
GLMPP is similar to the quantile mapping approach, but in
detail, it is different. GLMPP is a linear regression analysis
of the NQT transformed input–output pairs. They demon-
strated the effectiveness of GLMPP using the streamflow
simulation results from one basin in the Model Parameter
Estimation Experiment (MOPEX) database, where
MOPEX stands for Model Parameter Estimation Experi-
ment (Duan et al., 2006), and reported very promising
results (Zhao et al., 2011). Ye et al. (2014) performed a
comprehensive evaluation of the effectiveness ofGLMPP in
Copyright © 2014 John Wiley & Sons, Ltd.
improving the MOPEX streamflow simulations issued by
seven differentmodels and for 12MOPEXbasins and found
that GLMPP can improve streamflow simulations signifi-
cantly, especially in wet and temperate basins. However,
they also found that performance of GLMPP in dry basins
might not be good. This is probably because in dry basins,
streamflow can have a strong seasonal signature and there
may be many days with zero streamflow values. GLMPP
may fail in these cases because the underlying probability
distributions of the considered variables are truncated
because of the presence of many zero values or the monthly
streamflow in the forecast period. Another issue with the
original GLMPP is that the general linear model is built on
regression of simulated and observed streamflow daily
values no matter how long the forecast lead time is. In
seasonal streamflow predictions, forecasters are more
concerned about the predictability of average monthly or
seasonal values than the exact values on specific days during
the season. For this reason, this paper proposes a modified
GLMPP that is built on the basis of regression of simulated
and observed streamflow values calculated on the basis of
canonical events (CE), which can be daily, monthly or
seasonal events. CEs correspond to streamflow events with
specific lead times and durations. For example, a CE can be
the average daily streamflow from day 6 to day 10 or
monthly streamflow in the forecast period.
This paper systematically compares the performance of

the post-processed and raw-simulated streamflow simula-
tions in an ESP setup for four models and eight different
large river basins in the USA. The organization of the paper
is as follows: we have theMethod Section, which describes
the GLMPP based on canonical events (GLMPP-CE); we
then introduce the Data and Study Domain Section, present
the Post-processing Results and Discussion Section and
finally, provide the Conclusions Section.
METHOD

General linear model post-processor based on canonical
events

The GLMPP is a hydrological post-processor used to
predict future streamflow observations based on raw
streamflow predictions (Zhao et al., 2011; Ye et al.,
2014). GLMPP possesses the following properties: (1)
GLMPP removes bias (i.e. Qs=Qo � 1

�� �� ) in the
streamflow simulations, Qs and Qo being the simulation
and observation over the evaluation period, respectively;
(2) GLMPP produces an ensemble of streamflow
members representing, in an ‘equally-likely’ sense, the
hydrograph being predicted; and (3) GLMPP preserves
space–time variability to be consistent with observation.
The GLMPP is basically a multivariate linear regres-

sion model relating forecasted streamflow values to the
Hydrol. Process. 29, 2438–2453 (2015)



Figure 1. Schematic diagram for Normal Quantile Transform

Figure 2. The data window for the general linear model post-processor
based on canonical events
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observed values. The forecasted and observed streamflow
values first go through the Normal Quantile Transform
(NQT) (Krzysztofowicz, 1997; Bogner et al., 2011) to
ensure these variables are normally distributed.
The NQT is a procedure to ensure that considered

variables (observed and simulated streamflow) are
normally distributed. The NQT involves the following
steps: (1) compute the cumulative frequency curve of the
data set, Q ¼ q1; q1; ⋯; qMf g (Figure 1); (2) each
data point qi corresponds to a unique frequency value, pi;
(3) replace qi in Q with the corresponding value q ̃i, which
is a Normal variate from a standard Normal distribution
(N(0,1)).
Given the forecast date N, the analysis period before this

date and the forecast period after this date, the mathemat-
ical expression of GLMPP is expressed as follows:

Y ¼ A�X þ B�E (1)

where Y ¼ eQf
o

h i
is the predictand (i.e. the streamflow

observations in the forecast period) and X ¼eQf

s
eQa

o
eQa

s

h iT
is the predictor (i.e. streamflow forecasts

in the forecast period and streamflow observations and

simulations in the analysis period); X ¼ eQf

s
eQa

o
eQa

s

h iT
and Y ¼ eQf

o

h i
are the NQT transformed values of Q2 ¼

Qf
s;Q

a
o;Q

a
s

� �
, andQ1 ¼ Qf

o

� �
, respectively. A and B are the

undetermined coefficient matrices in the regression
equation. E~N(0,1) is a normally distributed random
variable with a mean of zero and a standard deviation of 1.
See Figure 2a for the schematic illustration of the forecast
date, the analysis period and the forecast period.
To solve for the coefficient matrices A and B, we need to

fill in the predictand and predictor vectors using Ny years of
historical hindcast data and the corresponding observations:

Qa
o ¼ Qa

o;1 Qa
o;2 ⋯ Qa

o;i ⋯ Qa
o;Ny

� �
;

Qa
s ¼ Qa

s;1 Qa
s;2 ⋯ Qa

s;i ⋯ Qa
s;Ny

� �
;

Qf
o ¼ Qf

o;1 Qf
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o;i ⋯ Qf
o;Ny

h i
;

Qf
s ¼ Qf

s;1 Qf
s;2 ⋯ Qf

s;i ⋯ Qf
s;Ny

h i
;
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where Qa
o;i and Qa

s;i are the observed and simulated
streamflow in the analysis period; Qf

o;i and Qf
s;i are the

observed and forecast streamflow in the forecast period; i
(ranging from 1 to Ny) is the year indices; a means analysis
period; f means forecast period; o means observation; and s
means simulation. To enlarge the sample size to solve
GLMPP, if we assume that the coefficient matrices A and B
for the dates within a time window (called the buffer period,
see Figure 2b) around the forecast date are similar (i.e. the
data samples come from the same distribution), then, the full
data matrices are shown as follows:

Qa
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qo
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Nb

2
� Na
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⋯ qo
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2
� 1
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2
� 1

2666666666664

3777777777775
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Figure 3. Flow chart for the post-processor on canonical events
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Qf
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where qoi;k and qsi;k are the observed and simulated daily
streamflow (m3/s) on day k in year i; N is the present day
from 1 to 365 in a year; Na is the number of data points in
the analysis period (i.e. the period prior to the day the
forecast is made); and Nf is the number of data points in
the forecast period (Figure 2). With the Gaussian assump-
tion made for all variables in Equation (1), it can be easily
solved by multivariate linear regression. To make the
parameter estimates more robust, a ‘buffer’ period with a
length of Nb (in days) is introduced to include more data
pairs (i.e. Y and X pairs corresponding to days immediately
before and after the forecast date considered) to enlarge the
data sample size. The data pairs for Nb/2days prior to the
forecast date and Nb /2 days after the forecast date are
included in the regression equation when solving GLMPP.
A and B are coefficient matrices of the regression equation
in the N day. If we denote Σ11 as the covariance matrix of
Y, Σ22 as the covariance matrix of X, and Σ12 (or Σ21) as
the covariance matrices between Y and X (or X and Y), then
we obtain A=Σ12 �Σ22� 1 and BBT=Σ11�Σ12 �Σ22� 1 �Σ21.
When we obtain A and B, then set Qa

o;i ¼ qoi;N�Na

�
qoi;N�Naþ1⋯ qoi;N�1�T , Qa

s;i ¼ qsi;N�Na
qsi;N�Naþ1⋯

�
qsi;N�1�T , Qf

s;i ¼ qsi;N qsi;Nþ1 ⋯ qsi;NþNf�1

� �T
, Qf

s;Q
a
o ,

and Qa
s , we can obtain the streamflow observations in the

forecast period with Equation (1).

In the original GLMPP, eQf

o;
eQf

s;
eQa

o, and eQa

s are the daily
streamflow values. In this study, we modify the original
GLMPP and rename it as GLMPP-CE. In GLMPP-CE,
the values of eQf

o;
eQf

s;
eQa

o, and eQa

s correspond to the values
of CEs, which are defined as the average values of
streamflow over a certain specific period. This modifica-
tion is made for seasonal streamflow predictions, which
have lead times of several months into the future. At this
time scale, we are more interested in the streamflow
values averaged or totalled over a period (e.g. 30 or
90 days) instead of the exact value on a particular date
several months away from the forecast date. For instance,
we are interested in the total seasonal streamflow volume
flowing into a reservoir 6months from now, but we have
little interest in knowing the exact lowest flow on the
180th day in the future because we doubt the future
lowest flow value.
For each day in a calendar year, we obtain A’s and B’s

by solving Equation (1). Thus, 365 sets of A’s and B’s are
obtained. Using the A’s and B’s and raw streamflow
Copyright © 2014 John Wiley & Sons, Ltd.
simulations, we can generate streamflow ensembles by
using the Monte Carlo method.
Figure 3 is the flow chart illustrating the procedure of

GLMPP-CE. Given observed and simulated streamflow
data, we first set the forecast date, choose the time
window and define the CEs. The time window consists of
an analysis period prior to the forecast date and a forecast
period from the forecast date. Each CE has a start time
(CEb) and an end time (CEe). The streamflow value for
each CE is the average of observed or simulated
streamflow over the period from CEb and CEe.

Determination of the low-flow period and low-flow
probability forecast

Low-flow period (LFP) refers to the dry season. We use
low-flow threshold (LFT) to determine LFP. LFP is the
period when daily streamflow is less than LFT. LFT (m3/s)
is the streamflow when accumulated frequency is 0.2. LFT
is determined as follows: (1) obtain the observed annual
daily streamflow; (2) calculate the accumulated frequency
observed of the daily streamflow; and (3) find the observed
Hydrol. Process. 29, 2438–2453 (2015)
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daily streamflow, which corresponds to the accumulated
frequency of 0.2.
We defined low-flow probability as the probability

when the streamflow is less than LFT. GLMPP-CE can
afford ensemble streamflow forecast, so we can obtain the
post-process low-flow probability from ensemble forecast
in each day. The deterministic simulated streamflow and
observed streamflow are single value, the probability is 1
if the streamflow is less than LFT; otherwise, the
probability is 0.

Model performance measures

To evaluate GLMPP-CE, we consider the following
model performance measures: the NSE value calculated
on inverse flows (Pushpalatha et al., 2012), correlation
coefficient (R), water balance bias (Bias) and RMSE.
They are computed as follows:

NSE ¼ 1�

XN
i¼1

1
Qo;i þ ε

� 1
Qs;i þ ε

� �2

XN
i¼1

1
Qo;i þ ε

� 1
QO;i þ ε

� �2

266664
377775 (2)

R ¼

XN
i¼1

Qs;i � Qs;i

� �
Qo;i � Qo;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Qs;i � Qs;i

� �2XN
i¼1

Qo;i � Qo;i

� �2s (3)

Bias ¼ Qs

Qo

� 1 (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Qs;i � Qo;i

� �2vuut (5)

where QO;Qs;QO ;Qs are observed, simulated, average
observed and average simulated streamflow discharges
(m3/s), ε is a small constant and N is the total number of
time steps. A NSE score of 1 indicates perfect forecast of
flow observations. Long-term mean of inverse flow
Table I. River ba

Basin ID Area (km2) Annual prec. (mm) Long.

B1 14105700 613827 477 �121.17
B2 06934500 1353269 539 �91.44
B3 03611500 525768 1092 �88.74
B4 07263450 409296 742 �92.36
B5 05474500 308209 798 �91.37
B6 01646502 29940 1006 �77.13
B7 09421500 444701 351 �114.74
B8 02428400 55615 1359 �87.55

Copyright © 2014 John Wiley & Sons, Ltd.
means NSE of 0. A negative NSE value suggests that
the forecast is worse than the long-term average. A RMSE
value of 0 indicates that forecasts are equal to flow
observations. The squared difference is used in the
calculation, so RMSE gives more weight to high than
low values of errors.
In order to evaluate the reliability of the predictive

distributions, the rank histogram is used here to diagnose
whether the spread of the ensembles is reasonable for
both the raw and the post-processed streamflow simula-
tions. A perfect rank histogram would show observations
evenly spread across equi-probability bins (Wilks, 2011;
Yuan and Wood, 2012). The perfect rank value is 1
divided by ensemble members.
DATA AND STUDY DOMAIN

We used simulated daily streamflow data for eight large
river basins (Table I) in theUSA (see Figure 4 for location of
the river basins), which are available at (ftp://nomad6.ncep.
noaa.gov/pub/raid2/wd20yx/nldas/Streamflow/). These
streamflow simulations are generated by four different land
surface hydrological models in the North American Land
DataAssimilation System (NLDAS) (Lohmann et al., 2004;
Mitchell et al., 2004). The four models are Mosaic model,
Noah model, Sacramento model (Sac) and variable
infiltration capacity (VIC) model. The Noah model is the
land surface model of the National Centers for Environ-
mental Prediction (Chen et al., 1996). The Mosaic land
surface model is a surface-vegetation-atmosphere transfer
scheme with a mosaic approach (Koster and Suarez, 1996).
The VIC model is a macroscale hydrologic model that
solves full water and energy balances, originally developed
by Liang et al. (1996). The Sacramento model (SAC) is a
conceptual rainfall-runoff model (Burnash et al., 1973;
Lohmann et al., 2004). The simulated streamflow data
covers the period from 1980 to 2006. Corresponding
streamflow observations are available from the U.S.
Geological Survey website (http://waterdata.usgs.gov/usa/
nwis/sw). The eight river basins have different hydro-
climatic conditions, and seven river basins of them are
sin information

Lat. Site name

45.61 Columbia River at The Dalles, OR
38.71 Missouri River at Hermann, MO
37.15 Ohio River at Metropolis, IL
34.79 Arkansas River at Murray Dam Near Little Rock, AR
40.39 Mississippi River at Keokuk, IA
38.95 Potomac River (Adjusted) Near Washington, DC
36.02 Colorado River Below Hoover Dam, AZ, NV
31.62 Alabama River at Claiborne L&D Near Monroeville, PA

Hydrol. Process. 29, 2438–2453 (2015)
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Figure 4. Spatial location of the streamflow gauges and reservoirs for the eight river basins

Table II. Large reservoirs information in eight basins. Capacity is
referring to the total capacity of all large reservoirs in the basin

Basin
Number of
reservoirs

Capacity
(km3)

Annual
streamflow
(m3/s)

Annual
water
(km3)

Ratio
(%)

B1 14 45.66 5042 159 29
B2 17 120.63 2578 81 148
B3 13 35.93 8325 263 14
B4 8 16.93 1350 43 40
B5 2 2.52 2278 72 4
B6 0 0.00 362 11 0
B7 5 76.18 429 14 564
B8 2 3.77 872 28 14

Annual streamflow is mean annual streamflow of the river. And annual
water is the total annual streamflow volume of the river. Ratio = Capacity/
Annual water. Ratio can show human activity impact. The natural
streamflow is likely to alter if the Ratio is big.

Table III. Low-flow threshold (m3/s)

B1 B2 B3 B4 B5 B6 B7 B8

All data 3370 1266 3115 214 1144 87 261 242
Low-flow period 2860 1104 2280 123 1025 61 214 191
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regulated by large reservoirs (as marked by blue dots in
Figure 4). The annual average precipitation is from 351mm
(B7) to 1359mm (B8) (Cosgrove et al., 2003). The annual
average runoff is from 30mm (B7) to 499mm (B3). The
land covers of eight basins are different. The land cover of
B7 is desert and meadow, and the land cover of B3 is forest.
The reservoir information for the eight basins is listed in
Table II.

Determination of the low-flow period

The LFP can be determined from the observed daily
streamflow during 1980 to 2006 using the method in the
Method Section.
Table III lists the streamflow values corresponding to

the accumulated frequency of 0.2. Figure 5(a) displays
Copyright © 2014 John Wiley & Sons, Ltd.
observed daily streamflow frequency curves for the eight
basins during 1980 to 2006. Figure 5(b) displays
observed daily streamflow frequency curves for the eight
basins in LFP during 1980 to 2006. Figure 6 shows the
observed long-term average monthly streamflow for the
eight basins. We note that the streamflow values during
the period from 1 July to 1 October are almost always less
than the LFTs for all basins except B7 (B7 on 1 October
to 1 January). Accordingly, we set the dry season to the
period from 1 July to 1 October for all basins except B7
(B7 on 1 October to 1 January). The LFTs from all data
are used to determine whether it is dry season, and then
the LFTs from only the LFP data are used to determine
whether it is a low-flow event occurs in the dry season.
POST-PROCESSING RESULTS AND DISCUSSION

GLMPP-CE parameters

We used a set of GLMPP parameters suggested by
Zhao et al. (2011). The length of the forecast period is set
to 93days. For the first two weeks, each CE corresponds
to the daily streamflow value during that period. For the
period from day 15 to day 31, day 32 to day 62 and day
63 to day 93, the average streamflow values for these
periods are also treated as three separate CEs. The length
of the analysis period, Na, is set to 10 days, and the length
Hydrol. Process. 29, 2438–2453 (2015)



Figure 5. Observed daily streamflow frequency curves for the eight
basins. (a) Whole year, (b) low-flow period (1 July to 1 October from 1980

to 2006, B7 on 1 October to 1 January)

Figure 6. Long-term observed monthly streamflow averages for the eight
basins
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of the buffer period, Nb, is set to 15 days. There are seven
days in the past, one day in the present and seven days in
the future.
Copyright © 2014 John Wiley & Sons, Ltd.
Comparing the long-term average streamflow simulations
to the observed values

We analysed long-term average raw daily streamflow
simulations in order to know the accuracy of the raw
streamflow simulations. Table IV exhibited the long-term
annual average observed streamflow discharges and the
relative biases of the long-term annual average
streamflow simulations from the four models in the eight
river basins, respectively. From Table IV, it is clear that
there are significant biases in the simulated streamflow for
all models in all basins, with biases as large as 292%. The
annual average streamflow over the eight basins shows
that the Mosaic and Sac model are under-predicted and
the Noah and VIC model are over-predicted (Table IV).
Figure 7 shows the long-term observed (black dash line)
and bias-corrected simulated daily streamflow from the
four models for the eight basins. The bias-corrected
method is to make average simulated streamflow equal to
average observed streamflow. We note that there are still
significant seasonal differences between streamflow
simulations and observations for all models and all basins
after systematic biases are removed. Particularly in the
basins with large reservoir capacities (i.e. B2 and B7), the
streamflow simulations from all models are generally
larger than the observed values in the wet season, but the
reverse is likely true in the dry season. This is probably
due to the existence of reservoirs in these basins, which
may decrease the streamflow out of the reservoirs during
the wet season and increase the streamflow out of the
reservoirs during the dry season. Because none of the
models in NLDAS have explicit reservoir considerations,
the difference between simulated and observed
streamflow values are significant. In this study, we will
investigate if post-processing can help to reduce the
biases in the streamflow simulations in all basins and also
implicitly consider the reservoir effect in basins such as
B2 and B7.

Evaluating the accuracy of the raw and post-processed
streamflow simulations

The post-processed ensemble forecast means are first
compared with raw simulations of daily streamflow over
different lead times, using observed streamflow. Figure 8
shows the correlation coefficients between the raw-
simulated streamflow values and the observed streamflow
values corresponding to different CEs (1–17) and
different forecast dates in a calendar year for the four
models and eight basins. The differences in correlation
coefficients are compared between different models
across all basins and seasons. The correlation coefficients
for the Colorado River below Hoover Dam (basin 7) are
especially low, probably due to the presence of Hoover
Dam above the stream gauge. Figure 9 displays the
Hydrol. Process. 29, 2438–2453 (2015)



Table IV. Long-term annual average observed and simulated streamflow (m3/s) and Relative biases (%) from 1980 to 2006

ID
Observed
streamflow

Simulated streamflow (m3/s) Relative biases (%)

Mosaic Noah Sac VIC Mosaic Noah Sac VIC

B1 5042 2844 7100 3548 5418 �44 41 �30 7
B2 2578 1192 5310 2334 4980 �54 106 �9 93
B3 8325 3814 8536 4804 9985 �54 3 �42 20
B4 1350 726 2281 1198 2883 �46 69 �11 113
B5 2278 972 4048 1126 3585 �57 78 �51 57
B6 362 125 429 195 519 �65 18 �46 43
B7 429 500 1680 713 902 17 292 66 110
B8 872 612 1066 705 1666 �30 22 �19 91
Average 2655 1348 3806 1828 3742 �42 79 �18 67

Sac, Sacramento model; VIC, variable infiltration capacity.

Figure 7. Observed and bias-corrected simulated daily streamflow climatology for the eight basins from 1980 to 2006
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correlation coefficients between the post-processed sim-
ulated streamflow values and the observed streamflow
values for the four models and the eight basins.
Comparing Figures 8 and 9, it is clear that the correlation
coefficients of the post-processed streamflow values are
much better than those of the raw streamflow simulation
values for all models and in all basins. The correlation
coefficients are high for the events 15–17 in Figure 8
(exception of B7). In Figure 9, the coefficients are
generally higher, so the post-processing has useful skills
especially for lead times smaller than 2weeks. Of
particular note, the events 15–17 have lead times of
Copyright © 2014 John Wiley & Sons, Ltd.
2weeks or more. This suggests that the post-processed
streamflow has useful skills for lead times up to 2weeks
in the future.
The results in Figure 9 were generated using GLMPP-

CE with an analysis period of 10days, i.e. Na=10. To
verify the importance of the analysis period, we also
experimented with GLMPP-CE using no analysis period,
i.e. Na=0days, and the results are shown in Figure 10.
Figure 10 shows lower correlation coefficients when no
analysis period is used, as compared with higher
correlation coefficients displayed in Figure 9. This is
particularly true for the streamflow events of the first
Hydrol. Process. 29, 2438–2453 (2015)



Figure 8. Correlation coefficients between the raw-simulated streamflow values and the observed streamflow values for the four models and the eight
basins from 1980 to 2006. Horizontal axis denotes different canonical events (1–17), and vertical axis denotes the different dates in an annual calendar.

The plot is empty if the correlation coefficients are less than zero

Figure 9. The correlation coefficients between the post-processed simulated streamflow values with an analysis period (Na = 10 days) and the observed
streamflow values for the four models and the eight basins from 1980 to 2006. Horizontal axis denotes different canonical events (1–17), and vertical axis

denotes the different dates in an annual calendar
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Figure 10. The correlation coefficients between the post-processed simulated streamflow values with no analysis period (Na = 0) and the observed
streamflow values for the four models and the eight basins from 1980 to 2006. Horizontal axis denotes different canonical events (1–17) and vertical axis

denotes the different dates in an annual calendar
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14 days in the period, when initial conditions have big
influence on streamflow predictions. For events with lead
times longer than 2weeks, the effects of initial conditions
diminish and, therefore, the correlation coefficients for
events 15–17 are not affected.

Evaluation of the performance of GLMPP-CE for
predicting streamflow values in the dry season

In this section, we focus our attention to the performance
of GLMPP-CE in the dry season, i.e. the forecast period
from1 July to 1October. Figure 11 displays themeans of the
streamflow simulations made from 1 July to 1 October
from 1980 to 2006 by the four models and for the eight
basins (B7 on 1 October to 1 January). The lines include the
means of the raw streamflow simulations (blue-dotted
lines), the post-processed streamflow simulations (the red
dash lines) and the observed streamflow simulations
(black solid lines) in Figure 11. The raw results
(NLDAS data) are always shown to deviate from the
observed results, although the post-processed results
always match the observed results well. The raw results
from different models vary greatly in different basins,
with Mosaic raw results generally smaller than the
observed and Vic and Noah raw results generally
bigger than the observed. The results from this
experiment suggest that GLMPP-CE can effectively
Copyright © 2014 John Wiley & Sons, Ltd.
remove systematic biases in the raw streamflow
simulations in all cases.
If we examine the streamflow forecast for a particular

year (say year 2000), we notice that a similar improve-
ment of the post-processed streamflow simulations over
the raw streamflow simulations is apparent (Figure 12).
To quantitatively evaluate the performance of the post-

processed streamflow simulations by GLMPP-CE and the
raw streamflow simulations, we calculated the four
performance indices as described in Equations (2)–(5)
for all models and all basins. Figure 13 only shows the
Noah model results because the other models’ results are
similar to the results of Noah model. The performance
indices from the raw simulations are denoted as ‘raw’ and
from post-processed as ‘post’. The basins in the following
figures are indexed in the same order as shown in Table I.
‘Red’ indicates good performance and ‘blue’ implies bad
performance for columns 1 (correlation coefficient), 2
(NSE) and 4 (RMSE). For column 3, ‘green’ is desired,
i.e. bias equal to zero. Figure 13 clearly indicates that
the performance indices for the post-processed
streamflow simulations are superior to those of the raw
streamflow simulations. The correlation coefficients
of the post-processed streamflow simulations for all
models in all basins are close to 1, better than the
corresponding values for the raw streamflow simulations.
Hydrol. Process. 29, 2438–2453 (2015)



Figure 12. Daily hydrographs in the eight river basins on 1 July to 1 October 2000 (B7 on 1 October to 1 January)

Figure 11. Long-term average daily streamflow in the seven river basins (B1–B8 except B7) on 1 July to 1 October and B7 on 1 October to 1 January
from 1980 to 2006
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Figure 13. Performance indices of the raw and post-processed streamflow simulations for the dry period by Noah model from 1980 to 2006. The top row
corresponds to the results for raw streamflow simulations, whereas the bottom row corresponds to the results for the post-processed streamflow

simulations. RMSE unit is m3/s
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Interms of the NSE index, we notice that for most of the raw
streamflow simulations, NSE indexes are less than 0.2
(blue), indicating that the raw simulations poorly matched
with the observations. On the other hand, the post-processed
NSE indexes are greater than 0.7 (red), suggesting their
superior performance of post-processed streamflow simu-
lation over the raw streamflow simulations. As for biases,
Figure 14. Rank histograms for raw ensemble streamflow simulated from 198
1 divided by ense

Copyright © 2014 John Wiley & Sons, Ltd.
the values for the raw streamflow simulations can be either
over-predicted (red) or close to zero (green, B8). For post-
processed results, the biases are always close to zero (green).
Dramatic improvement of the RMSE indices is also
noticeable. Most of the raw streamflow simulations RMSE
are greater than 1000m3/s, whereas most of the post-
processed RMSE are less than 1000m3/s.
0 to 2006. Perfect rank histograms value is 3.57% (the perfect rank value is
mble members)
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Figure 15. Rank histograms for ensemble streamflow post-processing from 1980 to 2006. Perfect rank value is 1.96%
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Figure 16. Low-flow probability of variable infiltration capacity model in
the B7 basin on 1 October to 1 January 2000
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Evaluation of the ensemble spread of the raw and
post-processed streamflow simulations

Once the GLMPP-CE is set, we can use the Monte
Carlo method to generate ESPs based on raw streamflow
simulations. For the raw streamflow simulations (NLDAS
simulated streamflow data), we have 27 ensemble
members, each of which corresponds to the streamflow
simulation from each year from 1980 to 2006. For post-
processed streamflow simulations, we can generate any
number of ensembles. The raw streamflow ensembles
have 28 ranks (including rank 0) and the post-processed
streamflow ensembles have 51 ranks (50 ensemble
members). The rank histograms for the raw and post-
processed streamflow ensembles of the four models are
shown in Figures 14 and 15. The ranks of the raw
ensembles for all models are highly variable for all eight
basins (Figure 14), whereas the rank of the post-processed
ensembles are relatively uniform (Figure 15), indicating
that post-processing significantly improves the ensemble
spread. The rank histograms of the Mosaic and Sac
models show that the ranks to the right side are generally
high, suggesting that these models tend to under-predict
the streamflow. On the other hand, the rank histograms of
the Noah and VIC models indicate that the ranks to the
left side are high for most basins, implying that these
models over-predict the streamflow. These findings are
consistent with the daily streamflow shown in Figures 11
and 12.
Copyright © 2014 John Wiley & Sons, Ltd.
Evaluation of the low-flow probability forecasts

The GLMPP-CE can provide low-flow probability
forecasts based on ensemble streamflow forecasts.
Figure 16 shows the probabilities of observed (black
line), raw-simulated (blue dash line) and post-processed
(red dash line) daily streamflow values falling below the
LFT during the evaluation period. The probability based
on post-processed simulation reasonably matches the
frequency of observations. The same cannot be said about
probability based on raw simulation.
Figure 17 compares the average values of the low-flow

probability based on raw (blue-dotted lines) and post-
Hydrol. Process. 29, 2438–2453 (2015)



Figure 17. Long-term mean low-flow probability in the seven river basins (B1–B8 except B7) on 1 July to 1 October from 1980 to 2006 (B7 on 1
October to 1 January). The observed is the low-flow frequency. The raw-simulated is the low-flow frequency. The post-process is the long-term mean

flow probability
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processed (the red dash lines) streamflow against
observed probability (black solid lines) for the evaluation
period by the four models and for the seven basins. The
raw results are shown to deviate consistently from the
observed results, although the post-processed results
always match the observed results well.
CONCLUSIONS

In this study, we presented a version of GLMPP based on
CEs, GLMPP-CE. We used the GLMPP-CE to post-
process the streamflow simulations for eight river basins
in the USA generated by the four land surface hydrology
models in NLDAS. We focused our attention to the
performance of raw and post-processed streamflow
simulations in the predictions of low-flow events.
We found that GLMPP-CE can effectively reduce the

mean biases in the streamflow simulations. Another
interesting finding from the study is that GLMPP-CE
can deal implicitly with the effect of reservoir regulations,
which alter the natural streamflow, as several basins are
heavily regulated by reservoirs (e.g. basins 2 and 7).
Because none of the models in NLDAS have explicit
Copyright © 2014 John Wiley & Sons, Ltd.
reservoir considerations, we can see the significant
difference between raw-simulated streamflow of hydro-
logical models and observed streamflow. However, these
hydrological models have the skill to simulate natural
rainfall-runoff hydrographs; reservoir operation is always
in accordance with some rules, such as reservoirs may
decrease the streamflow out of the reservoirs during the
wet season and increase the streamflow out of the
reservoirs during the dry season. So the biases are
systematic biases in the streamflow simulations. GLMPP-
CE is a statistical model, which can find the biases and
remove them. Of cause, it is difficult to remove random
error. Furthermore, post-processing by GLMPP-CE can
help improve the spread of the streamflow ensemble
predictions and afford low-flow probability forecast. This
suggests that using GLMPP-CE within the ESP frame-
work can help improve the accuracy as well as the
reliability of the ESP. Raw simulations from different
models vary greatly in different basins. But post-
processing can always improve the performance of
streamflow simulations by all models under different
conditions. We also found that using CEs as the factors in
regression helps us achieve significant skill in events with
long lead times.
Hydrol. Process. 29, 2438–2453 (2015)
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