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ABSTRACT: There is an increasing focus on the usefulness of climate model–based seasonal precipitation forecasts as inputs
for hydrological applications. This study reveals that most models from the North American Multi-Model Ensemble (NMME)
have potential to forecast seasonal precipitation over 17 hydroclimatic regions in continental China. In this paper, we evaluated
the NMME precipitation forecast against observations. The evaluation indices included the correlation coefficient (R), relative
root-mean-square error (RRMSE), rank histogram (RH), and continuous ranked probability skill score (CRPSS). We presented
the RRMSE-R diagram to distinguish differences between the performances of individual models. We find that the predictive
skill is seasonally and regionally dependent, exhibiting higher values in autumn and spring and lower values in summer. Higher
predictive skill is observed over most regions except the southeastern monsoon regions, which may be attributable to local
climatology and variability. Among the 11 NMME models, CFS, especially CFSv2, exhibits the best predictive skill. The
GFDL and NASA models, which are followed by CMC, perform worse than CFS. The performances of IRI and CCSM3 are
relatively worse than that of the other models. The forecast skills are significantly improved in multi-model mean forecasts
based on simple model averaging (SMA). The improvement is more obvious for Bayesian model averaging (BMA), which is
employed to further improve the forecast skill and address model uncertainty using multiple model outputs, than individual
model and SMA.
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1. Introduction

Precipitation is an active and critical variable in climate
dynamics. Furthermore, assessing retrospective climate
model forecasts, i.e. the predictive skill of climatic vari-
ables, can give valuable baseline information for many
applications, including streamflow, flood and drought
monitoring, and agriculture and water resource man-
agement (He et al., 2010; Pappenberger et al., 2011).
Although individual weather events are generally not
predictable more than 14 days ahead due to the chaotic
climate system, forecasting at seasonal lead times is
potentially possible because of interactions between the
atmosphere and the slowly varying components (Wang
et al., 2007), such as the ocean and land surfaces. The
predictability of precipitation depends not only on the
investigated region but also on the time scale and the rel-
evant internal atmospheric dynamical processes (Unganai
and Mason, 2002; Korecha and Barnston, 2007; Verbist
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et al., 2010; Lorenzo et al., 2011; Nicholson, 2014).
Therefore, precipitation prediction, model biases, and
observational uncertainties have recently attracted sub-
stantial attention (Phillips and Gleckler, 2006; Yuan et al.,
2011; Liu et al., 2013; Sun et al., 2014).

Recently, multi-model ensemble prediction has become
a powerful tool for monthly-to-seasonal time scale predic-
tions to address uncertainties (Peng et al., 2002; Palmer
et al., 2004; Doblas-Reyes et al., 2005; Hagedorn et al.,
2005; Kirtman and Min, 2009; Lavers et al., 2009). Com-
pared with single-value deterministic weather predictions,
ensemble predictions provide not only predictions of the
most likely events but also uncertainty information (Park
et al., 2008). Moreover, ensemble predictions have the
added advantage of extended prediction lead times by
considering the uncertainty in initial conditions and in
model physics. Furthermore, recent studies have shown
that a multi-model ensemble, even using a simple equal
weight combination, has higher prediction skill scores
than that of any individual model in the prediction of
climate variables. The benefits stemming from the use
of a multi-model approach have been extensively doc-
umented for seasonal to interannual predictions and for
long-term climate projections (Palmer et al., 2004; Lewis,
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Table 1. The NMME model properties.

Model name Abbreviation Institute Period
(monthly)

Ensemble
size

Lead
time

(months)

Reference

CMC1-CanCM3 CMC1-3 Canadian Meteorological Centre
(CMC) – Canada

1981–2010 10 0–11 Merryfield et al.
(2013)

CMC2-CanCM4 CMC2-4 Canadian Meteorological Centre
(CMC) – Canada

1981–2010 10 0–11 Merryfield et al.
(2013)

COLA-RSMAS-
CCSM3

CCSM3 National Center for Atmospheric
Research (NCAR) – United States

1982–2009 6 0–11 Collins et al.
(2006)

GFDL-CM2p1 GFDL Geophysical Fluid Dynamics
Laboratory
(NOAA/GFDL) – United States

1982–2010 10 0–11 Zhang et al. (2007)

GFDL-CM2p1-
aer04

GFDL-a Geophysical Fluid Dynamics
Laboratory (NOAA/GFDL) –
United States

1982–2009 10 0–11 Zhang et al. (2007)

IRI-ECHAM4p5-
Anomaly Coupled

IRI-A International Research Institute for
Climate and Society (IRI) – United
States

1982–2009 12 0–-7 DeWitt (2005)

IRI-ECHAM4p5-
Direct Coupled

IRI-D International Research Institute for
Climate and Society (IRI) – United
States

1982–2009 12 0–7 DeWitt (2005)

NASA-GMAO NASA National Aeronautics and Space
Administration (NASA) – United
States

1981–2012 10 (6) 0–8 Holdaway et al.
(2014)

NASA-GMAO-
062012

NASA-0 National Aeronautics and Space
Administration (NASA) – United
States

1981–2013 12 (11) 0–8 Holdaway et al.
(2014)

NCEP-CFSv1 CFSv1 National Centers for
Environmental Prediction
(NOAA/NCEP) – United States

1981–2009 15 0–8 Saha et al. (2006)

NCEP-CFSv2 CFSv2 National Centers for
Environmental Prediction
(NOAA/NCEP) – United States

1982–2009 24 0–9 Saha et al. (2014)

2005; Tebaldi and Knutti, 2007; Weisheimer et al., 2009).
Furthermore, Xu et al. (2007) found that ensemble pre-
dictions perform better than single deterministic control
simulations in forecasting precipitation amounts from
severe storms. Therefore, the simple model averaging
(SMA) (Hagedorn et al., 2005; Duan and Phillips, 2010)
and Bayesian model averaging (BMA) (Duan and Phillips,
2010) methods have been utilized to merge climate fore-
casts from multiple models to produce more skillful
predictions. For example, seasonal hydrologic predictions
are determined using seasonal climate forecasts from a
combination of several climate models with observed
climatology in a Bayesian framework over the Ohio
River basin in the eastern United States (Luo and Wood,
2008). Miao et al. (2013) also found that the performance
of BMA in simulating annual temperature dynamics is
significantly better than single climate models and SMA.

The North American Multi-Model Ensemble (NMME)
is a newly formed multi-model ensemble system for
intra-seasonal to interannual (ISI) prediction. The NMME
Phase I archive consists of hindcast data from 11 models
representing six modelling centres (Kirtman et al., 2014).
Table 1 lists the models included in NMME phase I. The
motivation for the development of NMME was increasing
studies indicating that a multi-model strategy may be a

practical approach for adequately resolving forecast uncer-
tainties (Palmer et al., 2004; Hagedorn et al., 2005; Palmer
et al., 2008). The NMME, which was previously reviewed
by Kirtman et al. (2014), provides a new opportunity to
improve the seasonal predictability of precipitation using
multi-model approaches (Infanti and Kirtman, 2014).
A first look at the NMME system for monthly and seasonal
predictions was presented by Zhang et al. (2011). Misra
and Li (2014) compared seasonal predictability of the
Atlantic Warm Pool and seasonal rainfall anomalies over
the continental United States using subsets of the NMME.
The NMME can also capture some aspects of ENSO vari-
ability, including sea surface temperature (SST) anomalies
and rainfall at short lead times (Kirtman et al., 2014). Cur-
rently, Yuan and Wood (2013) have investigated the
capability of seasonal forecasting of global drought onset
using NMME predictions. The NMME system is also used
for seasonal drought prediction in the United States by the
Climate Prediction Center (CPC) (Kirtman et al., 2014).
And given its global coverage, it would need to be exam-
ined if the NMME predictions can be effectively applied
to other countries, including China. This application is
important because we are focused on enhancing seasonal
drought prediction capability for China using climate pre-
dictions from multiple dynamic models, e.g. the NMME.
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Figure 1. Seventeen hydroclimatic regions in continental China.

Therefore, the primary purpose of this paper is to demon-
strate the potential usefulness of the NMME forecasts in a
Chinese setting by analyzing precipitation forecasts for 17
hydroclimatic regions in continental China. This paper is
organized as follows: Section 2 introduces the 17 hydro-
climatic regions in continental China, NMME datasets and
observational data used in this study. Section 3 presents the
simple model averaging (SMA), Bayesian model averag-
ing (BMA), and verification methods. Section 4 evaluates
and discusses the predictive skill of the NMME precipita-
tion forecasts; a summary is provided in Section 5.

2. Study area and data

2.1. Seventeen hydroclimatic regions in continental
China

In this study, based on the standard watershed divisions and
climate categories, such as Köppen-Geiger climate types
(Peel et al., 2007), continental China is divided into 17
hydroclimatic regions (Figure 1). The list of information
about these regions is provided in Table 2, including the
area and annual precipitation.

2.1.1. Climate model forecasts and observational data

Two types of data are used in this study: the retrospec-
tive NMME precipitation forecasts and gauge-based
daily precipitation data. Forecast datasets are available
from http://iridl.ldeo.columbia.edu/SOURCES/.Models/

Table 2. Information for the 17 large hydroclimatic regions
(Lang et al., 2014).

ID Region name Annual
precipitation

(mm)

Area
(km2)

1 Inland rivers in Inner Mongolia 220.4 1 537 520
2 Inland rivers in Xinjiang 168.3 1 104 104
3 Inland rivers in northern Tibet 199.9 694 413
4 Yellow River 391.0 448 864
5 Southeast rivers 1705.9 226 496
6 Hai River 515.9 578 092
7 Southwest rivers in Yunnan 882.2 316 057
8 Southwest rivers in southern Tibet 876.7 908 881
9 Huai River 819.5 415 287
10 Lower Yangtze River 1606.5 324 061
11 Yangtze River 1001.1 323 970
12 Upper Yangtze River 795.2 399 541
13 Middle Yangtze River 1276.5 567 237
14 Upper Yellow River 169.3 504 092
15 Liao River 566.1 310 117
16 Songhua River 535.5 199 721
17 Pearl River 1700.7 567 520

.NMME/. Some pertinent information of the NMME,
including the individual model names (as well as abbre-
viation), predicted period, number of ensembles and
model lead times, are shown in Table 1. More detailed
descriptions of the NMME model datasets can be found
in Kirtman et al. (2014). Gauge-based daily precipita-
tion datasets (Xie et al., 2007) over East Asia for the
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period 1978–2007 at a horizontal resolution of 0.5∘ × 0.5∘
latitude-longitude grid are used to evaluate the NMME
forecasts. The evaluation focuses on comparing spatially
averaged NMME predictions and observations of each
hydroclimatic region.

3. Methodology

3.1. Simple model averaging method

The simplest multi-model mean is determined using sim-
ple model averaging (SMA) method, i.e. each model in
the multi-model forecasts gets the same weight (wk = 1/K,
where K is the number of models), without considering the
performance of the model (Miao et al., 2013). In this study,
we use the weighted average of single-model ensemble
(Katz and Ehrendorfer, 2006) to improve the skill relative
to using any individual ensemble member (Atger, 1999).

3.2. Bayesian model averaging method

The Bayesian model Averaging (BMA) method (Duan
and Phillips, 2010) is a common solution to the problem
of reducing model uncertainty, considering a predicted
climatological variable y, the corresponding observational
data yT, and K model forecasts {f 1, f 2,… , f K} of variable
y. In the method of BMA, we assumed that each model
forecast, fk, is associated with a conditional PDF, g(y|fk),
that can be represented by a Gaussian distribution. Under
the law of total probability, the BMA predictive model,
given observational data yT, can be expressed as

p
(
y|f1, f2, … , fk

)
=

K∑
k=1

p
(
y|fk) ∗ p

(
fk|yT

)
(1)

where, p(y|fk) follows that

p
(
y|fk) = g

(
y|fk) (2)

and p(fk|yT) is the posterior probability of forecast k as the
best one. We can identify p(fk|yT) as a statistical weight
wk, whose magnitude reflects an individual model’s rela-
tive contribution to predictive skill over the validity period.
They are non-negative and follow that

∑
wk = 1. To esti-

mate unknown wk, the likelihood function (Equation (3))
is maximized using Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977; Mclachlan and Krishnan,
1997).

l
(
w1, … wk; c0; c1

)
=
∑

t

log
(
p
(
yt|f1t, … fkt

))
(3)

where,
∑

t denotes a summation over all period time t.
Subsequently, The BMA can be computed by combining
different models with corresponding weights (wk) into a
multi-model prediction as Equation (4).

E
[
y|f1, … , fk

]
= E

[
p
(
y|f1, … , fk

)]
= E

[
K∑

k=1

wkg
(
y|fk)

]
=

K∑
k=1

wkfk (4)

Recently, the BMA method has been improved (Fraley
et al., 2010; Tian et al., 2011.) and applied in many stud-
ies (Duan et al., 2007; Sloughter et al., 2007; Duan and
Philips,2007; Zhao et al., 2011; Sloughter et al., 2013).

3.3. Verification of forecast skill

A relatively skillful model should be able to accurately
simulate both the pattern and magnitude of variability
(Taylor, 2001). To compare the forecast skill of the NMME
forecasts, we utilize two types of statistical measures.
One type is the accuracy of the ensemble prediction
means, which measures the performance of the ensem-
ble prediction means against the observations. The rel-
ative root-mean-squared error and correlation coefficient
(RRMSE-R) diagram is used for this purpose. The second
type is the skill of the ensemble forecasts, which include
rank histograms (RHs) and continuous ranked probability
skill scores (CRPSSs).

3.3.1. The RRMSE-R diagram

The statistic most often used to quantify pattern similarity
is the correlation coefficient. Here, the correlation coeffi-
cient R between forecasts and observation is defined con-
sidering Taylor diagram (Taylor, 2001), but with some
modifications as Equation (5).

R =
R′ − Rmin

Rmax − Rmin
, r = Rmin + r′

(
Rmax − Rmin

)
(5)

We can calculate 𝜃 (cos 𝜃 =R) to plot the RRMSE-R dia-
gram using both R and r. Here, 𝜃 is the angle corresponding
to the correlation coefficient, R and R′ are the correlation
coefficients of RRMSE-R and Taylor diagram for calcu-
lating 𝜃, respectively, r and r′ denote the correlation coef-
ficients labelled in the RRMSE-R and Taylor diagrams,
respectively, and Rmin and Rmax are the minimum and max-
imum correlation coefficients in the RRMSE-R diagram,
respectively.

A statistic often used to quantify differences in two fields
is the RRMSE, which is defined as the ratio of RMSE
to the average of the observation. With the two mea-
sures, it is possible to construct a diagram that statistically
quantifies the performance of forecasts. A point is plotted
on a polar style graph determined by correlation coeffi-
cient and RRMSE. The radial distances from the origin
to the points are the RRMSE, and the azimuthal positions
(cos𝜃) give the correlation coefficient. A point with small
RRMSE*sin𝜃 corresponds to a good forecast.

3.3.2. Efficiency criteria of ensemble forecast (RH and
CRPSS)

The rank histogram (RH) (Hamill, 2001) is a tool to evalu-
ate the spread of an ensemble, which is useful for assessing
the reliability of ensemble forecasts and ensemble dis-
persion. The underlying assumption is that the ensemble
forecasts are distributed with easily delineated ranges or
‘bins’ of the predicted variable such that the probability of
occurrence of the observation within each bin is constant.

© 2015 Royal Meteorological Society Int. J. Climatol. 36: 132–144 (2016)
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Rank histograms are generated by repeatedly tallying the
rank of the verification (usually an observation) relative
to values from an ensemble that has been sorted from
the lowest to the highest (Hamill, 2001). The shape of
the rank histogram typically implies ensemble qualities
in the forecasts. For example, a flat rank histogram is
typically indicative of reliability, a U-shaped one denotes
a lack of spread and the observations fall outside the
ensemble, a Dome-shaped one indicates too much spread
and the observations fall within the ensemble centre. Bias
(wet/dry) excessively populates the (left/right) of a sloped
histogram. A skill score for the rank histogram is the
mean error (Err), which is calculated as the mean of the
differences between the model and perfect histograms.
The Err is defined as

Err =

√√√√ 1
N + 1

N+1∑
i=1

[
Ri −

1
N + 1

]2

, (6)

where Ri is value of ith rank in rank figure, N is the mem-
ber’s number. To make a fair comparison between models
with different ensemble size, the Err is normalized by the
value for a perfect ‘flat’ rank histogram as Equation (7):

FracErr = Err
1∕ (N + 1)

= Err∗ (N + 1) , (7)

where FracErr is the mean fractional error, which is not
biassed by the number of bins.

The continuous ranked probability score (CRPS) applies
to probabilistic forecasts that exhibit predictive cumulative
distribution functions. The CRPS (Hersbach, 2000) is the
integrated squared error between the cumulative distribu-
tion function (CDF) of the forecasts and the CDF of the
observations. The CRPS is defined as

CRPS = ∫
+∞

−∞

[
PF (x) − PO (x)

]2
dx, (8)

where PF and PO are the CDFs of the forecasts and obser-
vations, respectively. x denotes the events to be analyzed.
Note also that a small CRPS indicates a good forecast. The
continuous rank probability skill score (CRPSS) is a skill
score based on the CRPS with a normal skill score format:

CRPSS = 1 − CRPS
CRPS∗ (9)

where CRPS* is the CRPS for a reference system, which
is a climatological forecast of the predictand. Because the
CRPS measures the average square error in probability,
values approaching zero are preferred. It follows that a
CRPSS closer to 1 is preferred because this value indicates
a low CRPS of the forecasting system relative to the CRPS
of the reference system.

4. Results and discussion

The purpose of this study is to assess the predictive skill of
the NMME precipitation forecasts over 17 hydroclimatic
regions in continental China. Both the mean and spread
of the ensemble forecasts are verified compared with the
observations.

4.1. Evaluation of ensemble mean precipitation

In this section, the NMME ensemble mean precipitation
is evaluated over 17 hydroclimatic regions in continental
China. The performance measures include the Pearson
correlation coefficient (R), and relative root-mean-square
error (RRMSE). We calculated the two performance
indices to compare the monthly observation with the
ensemble mean of each model in NMME.

The correlation coefficients for the 17 hydroclimatic
regions based on the CMC1-CanCM3 forecasts are pro-
vided in Figure 2.

The correlation coefficients between the forecasts and
the observations are computed for each month of an
individual year (from January to December) (vertical axis
in Figure 2) and for different lead months (horizontal axis
in Figure 2) during the period 1981–2009. The sample
size (29 years) is small to be more precise in its correlation
coefficient calculations. Therefore, the target months are
defined for spanning 3 months, where the months before
and after the target month within the same lead are added.
For example, target month 1 at lead month 1 is December
at lead month 1, January at lead month 1 and February at
lead month 1; target month 2 at lead month 1 is January at
lead month 1, February at lead month 1 and March at lead
month 1; and so on. The approach expands the sample size
to remove random sampling noise from extreme events
and to better estimate the correlation coefficients (Schaake
et al., 2007).

In all regions, the correlation coefficients are high in
autumn (September to November) and spring (April to
June), while the correlation coefficients are low in summer
(July to August) and winter (December to March). There-
fore, CMC1-CanCM3 has a high predictive skill in autumn
and spring over the 17 hydroclimatic regions. The predic-
tive skill is low in summer and winter, indicating that some
challenges in predicting precipitation in summer and win-
ter are present over these regions. This phenomenon may
be attributed to the presence of the strong weather noise
variability in summer, including strong blocking events in
the extratropics and the intra-seasonal oscillation events
(Madden–Julian Oscillation, MJO) in the tropics (Zheng
et al., 2000). Madden and Shea (1978) suggested that there
will be better potential predictability when small climatic
noise variance exists. As shown in Zhao et al. (2008), cli-
matic noise varies with pronounced seasonal variations.
The largest variations typically occur in summer, and the
seasonal variations are larger in inland areas compared
with coastal regions. These appear consistent with Zheng
et al. (2004), who reported that the potentially predictable
variability is low in summer. IPCC AR5 (Kirtman et al.,
2013) also showed that the effect of the external forcing on
predictability increases with time. Therefore, the potential
predictability of precipitation in China exhibits large sea-
sonal differences, with better predictability in spring and
autumn and reduced predictability in summer over most
regions. These findings may be attributable to the effects of
the climatic noise variations and atmospheric circulation.

The correlation coefficients are high over most regions,
but are relatively low over region 2 (Inland rivers in
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Xinjiang), 5 (Southeast rivers), 9 (Huai River), 10 (Lower
Yangtze River), and 13 (Middle Yangtze River). It can be
indicated that CMC1-CanCM3 has relatively better pre-
dictability over some regions, such as upstream Yangtze
River, Yellow Rivers, and Southwest Rivers. The upstream
Yangtze River and Yellow Rivers are located in the Tibetan
Plateau climate zones, which are located in the middle tro-
posphere (Shao and Zhang, 1998). However, limited pre-
cipitation predictability appears in the Huai River basin,
the downstream Yangtze Rivers, and southeast rivers. In
particular, the variability of precipitation in these regions
has been recognized as one of the prominent features
associated with the behaviour of the East Asia summer
monsoon (EASM) (Ying et al., 2013). Regional climate
anomalies can arise from many sources of external forc-
ings, such as ocean and land anomalies, and internal pro-
cesses inherent in the atmosphere (Kang et al., 2003).
There are two dominant factors influencing the predictable
precipitation signal in the Yangtze–Huai River basin. The
first is the variations in the Kuroshio-related SST in the
northwest Pacific from MAM to JAS, the second is the
ENSO-related SST in the eastern tropical Pacific from
ASO to DJF (Ying et al., 2013). However, internal pro-
cesses (e.g. Madden–Julian oscillation), which are known
to have a predictability of only a few days, also affect the
activity of EASM. Thus, these regions are less predictable
due to the large contribution of the internal atmospheric
processes to the seasonal mean (Kang et al., 2003). Bei and
Zhang (2007) also suggests that mesoscale predictability
of heavy precipitation event along Mei-Yu front of China
is inherently limited. However, the predictability of South
China winter rainfall has not been documented in the liter-
ature (Yang et al., 2014).

The close relationship with varying climatic noise may
make predictability of China precipitation seasonal and
regional dependent. As stated in Liu et al. (2000), the
climatic noise of monthly precipitation over China has
obvious seasonal variation and it is greater in summer than
in winter; in most areas, the climatic noise is prominently
decreasing from south to north and from coast to inland.

The other models have similar distributions of corre-
lation coefficient; these results are shown in Supporting
Information (Figures S1–S10). In addition, the correlation
coefficients for SMA and BMA are shown in Supporting
Information (Figures S11–S12). The mean values of the
correlations averaged over all target and lead months and
all 17 regions in Figures S11 and S12 are 0.56 (SMA) and
0.58 (BMA), respectively. The averaging results suggest
that SMA performs better than most models, and BMA
exhibits the best performance.

In this section, we apply cross validation to calculate the
skill scores in RRMSE-R diagram, preventing artificially
high in-sample skill scores. The datasets are separated into
two periods, called the calibration (Jan, Mar, May, Jul,
Sep, Nov 1982–2009) and validation (Feb, Apr, Jun, Aug,
Oct, Dec 1982–2009) periods (Wilks, 1995). The cross
validation was applied to the BMA, which was verified for
the calibration and validation periods. For this approach,
the weights in Equation (4) were computed from (Jan,

Mar, May, Jul, Sep, Nov) for (Feb, Apr, Jun, Aug, Oct,
Dec) forecasts; and from (Feb, Apr, Jun, Aug, Oct, Dec)
for (Jan, Mar, May, Jul, Sep, Nov) forecasts. Then the
(Feb, Apr, Jun, Aug, Oct, Dec) forecasts were used for
calibration (BMA-cal in Figure 3) and (Jan, Mar, May, Jul,
Sep, Nov) forecasts for validation (BMA-val in Figure 3).
The predictive skills of 11 models and multi-model
forecasts (lead month 1) based on SMA and BMA over
the 17 hydroclimatic regions for the entire period are
also presented in Figure 3. As shown in Figure 3, the
performance of multi-model forecasts based on the BMA
for calibration and validation periods are similar.

According to Figure 3, the overall differences between
the 11 models are small over the 17 regions. For the
forecasts at lead month 1, the CFSv2 model exhibits sig-
nificantly higher skill than the other 10 models over most
regions. Moreover, the CFSv1 model skill exceeds the skill
of nine models over 4 of the 17 regions. The GFDL models
exhibits middle skills over 14 of the 17 regions. The NASA
and NASA-062012 models have similar predictive skills
that are analogous to the predictive skill of the CFS model
over 9 of the 17 regions, but perform poorly over regions
8, 11, 12, and 17. The CMC models show moderate skills
over 7 of the 17 regions. IRI models exhibit bad skills over
9 of 17 regions. The CCSM3 exhibits worse skills 11 of the
17 regions, in part because CCSM3 model has only ocean
initialization (Becker et al., 2014). Therefore, the CFS
model, especially CFSv2, outperforms the other models,
GFDL and NASA have relatively better performance. The
CMC models also perform well. The IRI and CCSM3
are worse than the other models over most regions. In
addition, the SMA method performs better than most
models. This finding indicates that a multi-model average
improves the overall predictive ability over all regions.
The BMA method performs the best over 17 regions,
indicating that the BMA approach can reduce model
uncertainty and significantly improve predictive skill of
precipitation. Most correlation coefficients are concen-
trated between 0.6 and 0.95 over regions except regions
2, 5, 9, and 10. Most models perform better in central
China, nevertheless, humid regions and monsoon regions,
such as regions 5 (Southeast rivers), 10 (Lower Yangtze
River), and 9 (Huai River) tend to have relatively low
predictive skills for precipitation. It can be indicated that
these models, whose correlation coefficients exceed 0.6,
produce reliable seasonal precipitation forecasts for most
regions in continental China. These results are at least
partially in accordance with the aforementioned analysis.

4.2. Verification of ensemble forecasts

The above results are focused on deterministic and ensem-
ble mean forecasts. In the following discussion, the ensem-
ble spread and probabilistic predictive skill of the NMME
are evaluated using rank histograms (RHs) and continuous
ranked probability skill scores (CRPSSs) at lead month 1.

Almost all of model forecasts show sloped (left) rank
histograms except region 17 (Pearl River), indicating wet
bias in the ensembles (not shown). It can be concluded
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Figure 6. Continuous ranked probability skill scores (CRPSS) for the
ensemble forecasts from the 11 NMME models at lead month 1 over

the 17 regions in continental China.

that models forecasts typically overestimate the precip-
itation amount over most regions. In order to tell more
information about the forecast ensemble distribution, the
rank histograms are constructed using the forecast and
observed anomalies. Figure 4 shows the rank histograms
of the NMME ensemble forecast anomalies over region
6 (Hai River basin). As shown in Figure 4, most mod-
els (except for the CMC models) show Dome-shaped rank
histogram, indicating too much spread in these models
ensembles over Hai River. Over region 17 (presented in
Figure 5), some models, such as CMC, CCSM3, GFDL,
and IRI, show U-shaped rank histogram, indicating lack
of spread in these ensembles. The NASA and CFS mod-
els show flatter rank histogram, indicating better forecasts
than other models. These results may be helpful to improve
models ensembles and thus forecast skill.

Figure 6 shows the continuous ranked probability skill
scores (CRPSSs) of the ensemble precipitation forecasts
from the 11 NMME models over the 17 regions. The skill
scores are less than 0.6 for the entire models and regions.
The skill scores of CFSv2 are positive over most regions,
indicating that CFSv2 produces reliable forecasts over
most regions. In the case of 17 regions, CFSv2 produces
higher predictive skill. IRI and CCSM3 perform worse
than most models. Also, CRPSSs over regions 15, 16,
17 are positive, showing reasonable forecasts over these
regions. The CRPSSs of most models over regions 2, 3,
4, 8, 9, 14 are less than −0.6, demonstrating unreliable
ensemble forecasts over these regions.

5. Conclusions

In this paper, we compare the NMME seasonal precip-
itation forecasts. Specifically, the predictive skills of 11
models and the SMA and BMA methods are assessed
over 17 hydroclimatic regions in continental China. Vari-
ous methods were used in this study to analyze the data,
including correlation coefficient, RRMSE (indicated by
the RRMSE-R diagram), rank histograms, and CRPSSs.
The results can be summarized as follows.

1 From the correlation coefficient between the fore-
casts and observation, the performance is seasonally
dependent. The forecast reliability is higher in
autumn and spring compared with summer, which
may be primarily related to seasonal differences in
ocean-land-atmosphere interactions and the predictabil-
ity of atmospheric circulation.

2 The 11 models perform differently over different
regions. The correlation coefficient of regions 1 (Inland
rivers in Inner Mongolia), 7, 8 (Southwest rivers), 11
(Yangtze River), 12 (Upper Yangtze River), 14 (Upper
Yellow River), 16 (Songhua River) are larger than
those of the other regions, especially regions 2 (Inland
rivers in Xinjiang), 5 (Southeast rivers), 9 (Huai River),
and 10 (Lower Yangtze River). The Huai River, the
downstream Yangtze and southeast rivers (i.e. south-
eastern monsoon regions) have worse predictive skill.
In contrast, the northeast, southwest and upstream
Yangtze and Yellow Rivers have better predictive skill.
Most models show wet bias in forecasting monthly
precipitation over all regions except region 17 (Pearl
River). Despite these biases, models show much spread
or lack of spread over different regions. Some models
(e.g. NASA and CFS) also show reliable ensemble
forecasts over some regions (such Pearl River). Pre-
dictability of precipitation in one region corresponds to
the contribution of local internal atmospheric processes
and external boundary condition.

3 Most measurements demonstrate that most models tend
to be potentially skillful for use as inputs to hydrological
models. In general, the CFS model, especially CFSv2,
outperforms the other models according to multiple ver-
ification measurements, such as the correction coeffi-
cient, RRMSE, rank histogram, and CRPSS. The GFDL
and NASA models also exhibit relatively high quality
results over most regions. The CMC models have lower
reliability than the aforementioned models. The IRI and
CCSM3 models trail behind the other models. SMA
improves the predictive skill. The improvement is more
obvious for BMA, which combines the advantages of
the individual models.

In brief, this preliminary comparison assists in fur-
ther recognizing the forecast skill of the 11 models from
the NMME over 17 hydroclimatic regions in continen-
tal China. To use the NMME dataset more extensively,
the above results will be a very important reference. For
example, the results can be used as input to hydrolog-
ical models to provide insights into drought monitoring
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in China. With developments over the past decade, great
progress has been made. However, the NMME system con-
tinues to have considerable imperfections in China. To
improve the usefulness of the NMME dataset in China,
much work is needed, such as the re-calibration of model
outputs to the given observed values.
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