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Abstract. Integrated water system modeling is a feasible ap-

proach to understanding severe water crises in the world and

promoting the implementation of integrated river basin man-

agement. In this study, a classic hydrological model (the time

variant gain model: TVGM) was extended to an integrated

water system model by coupling multiple water-related pro-

cesses in hydrology, biogeochemistry, water quality, and

ecology, and considering the interference of human activ-

ities. A parameter analysis tool, which included sensitivity

analysis, autocalibration and model performance evaluation,

was developed to improve modeling efficiency. To demon-

strate the model performances, the Shaying River catchment,

which is the largest highly regulated and heavily polluted

tributary of the Huai River basin in China, was selected as

the case study area. The model performances were evaluated

on the key water-related components including runoff, wa-

ter quality, diffuse pollution load (or nonpoint sources) and

crop yield. Results showed that our proposed model simu-

lated most components reasonably well. The simulated daily

runoff at most regulated and less-regulated stations matched

well with the observations. The average correlation coeffi-

cient and Nash–Sutcliffe efficiency were 0.85 and 0.70, re-

spectively. Both the simulated low and high flows at most

stations were improved when the dam regulation was consid-

ered. The daily ammonium–nitrogen (NH4–N) concentration

was also well captured with the average correlation coeffi-

cient of 0.67. Furthermore, the diffuse source load of NH4–N

and the corn yield were reasonably simulated at the admin-

istrative region scale. This integrated water system model is

expected to improve the simulation performances with ex-

tension to more model functionalities, and to provide a sci-

entific basis for the implementation in integrated river basin

managements.

1 Introduction

Severe water crises are global issues that have emerged as

a consequence of the rapid development of social economy,

and include flooding, water shortages, water pollution and

ecological degradation. These crises have hindered the equi-

table development of regions by compromising the sustain-

ability of vital water resources and ecosystems. It is impos-

sible to address these crises within a single scientific disci-

pline (e.g., hydrology, hydraulics, water quality or aquatic

ecology) because of the complicated interactions among

physical, chemical and ecological components of an aquatic

ecosystem (Kindler, 2000; Paola et al., 2006). The paradigm

of integrated river basin management may be a sensible so-

lution at basin scale by focusing on the coordinated man-

agement of water resources in terms of social economy, wa-

ter quality and ecosystems. Integrated water system models

have been popular since the last decade due to the rapid de-
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velopment of water-related sciences, computer science, Earth

observation technologies and the availability of open data.

The hydrological cycle has been known as a critical link-

age among other water-related processes (e.g., physical, bio-

geochemical and ecological processes) and energy fluxes at

the basin scale (Burt and Pinay, 2005). For example, physi-

ological and ecological processes of vegetation affect evap-

otranspiration, soil moisture distribution and nutrient move-

ment. In the meantime, soil moisture and nutrient constrain

the vegetation growth. Overland flow is a carrier of pollu-

tants to water bodies. Therefore, all the processes should

be considered simultaneously to capture the interactions and

feedbacks between individual cycles. Multidisciplinary re-

search provides an effective way to enable breakthroughs in

the integrated water system modeling by integrating the theo-

ries in water-related sciences (e.g., accumulated temperature

law for phenological development, Darcy’s law for ground-

water flow, Saint-Venant equation for flow routing, balance

equation for mass and momentum, Richards’ equation for

unsaturated zone, Horton theory for infiltration, Penman–

Monteith equation for evapotranspiration). Abundant open

data sources further support the implementation of an inte-

grated water system model, e.g., high-resolution spatial in-

formation data, chemical and isotopic data from field exper-

iments (Singh and Woolhiser, 2002; Kirchner, 2006).

Several models have been developed since the 1980s (Di

Toro et al., 1983; Brown and Barnwell, 1987; Johnsson

et al., 1987; Hamrick, 1992; Li et al., 1992; Abrahamsen

and Hansen, 2000; Tattari et al., 2001; Singh and Wool-

hiser, 2002). Owing to the complexity of the integrated wa-

ter system and the scale conflicts between different pro-

cesses, most existing models focus on only one or two

major water-related processes, and can be categorized into

three major classes. (1) Hydrological models emphasize the

rainfall–runoff relationship and link with some dominating

water quality and biogeochemical processes. These mod-

els generally show satisfactory performances in simulating

the hydrological processes. Some widely accepted models

are TOPMODEL (Beven and Kirkby, 1979), SHE (Abbott

et al., 1986), HSPF (Bicknell et al., 1993), VIC (Liang et

al., 1994), ANSWERS (Bouraoui and Dillaha, 1996), HBV-

N (Arheimer and Brandt, 1998, 2000), HYPE (Lindström

et al., 2010) and its improved version S-HYPE (Strömqvist

et al., 2012). (2) Water quality models focus on the migra-

tion and transformation processes of pollutants in water bod-

ies. These models can simulate the water quality variables

at high spatial and temporal resolutions in river networks

by adopting multi-dimensional dynamic equations. However,

they have difficulties in simulating the overland processes

of water and pollutants. Typical models include WASP (Di

Toro et al., 1983), QUAL2E (Brown and Barnwell, 1987) and

EFDC (Hamrick, 1992). (3) Biogeochemical models have

advantages in simulating the physiological and ecological

processes of vegetation and the vertical movements of nu-

trients and water in soil layers at the field or experimental

catchment scales. However, these models lack accurate hy-

drological features (Deng et al., 2011) and are hard to simu-

late the movements of water, nutrients and their losses along

flow pathways in the basin. Some biogeochemical models

are SOILN (Johnsson et al., 1987), EPIC (Sharpley and

Williams, 1990), DNDC (Li et al., 1992), Daisy (Abraham-

sen and Hansen, 2000) and ICECREAM (Tattari et al., 2001).

Overall, most models usually achieve good performances on

their oriented processes and only approximate the results for

other processes outside of the model’s focus in the integrated

river basin management. An important scientific question is

“does including these extra processes in an integrated manner

improve model results compared to models that are focused

only on one component?”

SWAT is an integrated water system model that can simu-

late most water-related processes over a long period at large

scales (Arnold et al., 1998). However, not all water-related

processes can be well captured in practice because of the in-

accurate descriptions of some processes, such as daily ex-

treme flow events (Borah and Bera, 2004), soil nitrogen and

carbon (Gassman et al., 2007) and regulation rules of dams or

sluices in regulated basins (Zhang et al., 2013). Particularly,

the simulation methods of surface runoff yield in SWAT have

been questioned, e.g., the general applicability of the curve

number (Rallison and Miller, 1981) and the scale limitations

of the Green-Ampt infiltration model (King et al., 1999).

Furthermore, SWAT has difficulties in accurately capturing

the complicated dynamic processes of soil nitrogen and car-

bon by comparing with other biochemical models (Gassman

et al., 2007). Several modified versions have been devel-

oped, such as SWIM (Krysanova et al., 1998) and SWAT-N

(Pohlert et al., 2006).

In this study, we tended to develop an integrated water sys-

tem model based on a hydrological model. The time variant

gain model (TVGM) proposed by Xia (1991) is a lumped

hydrological model based on the rainfall and runoff obser-

vations from many basins with different scales all over the

world. In the TVGM, the rainfall–runoff relationship is con-

sidered to be nonlinear because the surface runoff coefficient

varies over time and is significantly affected by antecedent

soil moisture. The TVGM has a strong mathematical basis

because this nonlinear relationship is transformed into a com-

plex Volterra nonlinear formulation. Wang et al. (2002) ex-

tended the TVGM to the distributed time variant gain model

(DTVGM) by taking advantage of better computing facilities

and available data sources. Currently, the DTVGM performs

well in many basins with different scales and climate zones to

investigate the effect of human activities and climate change

on runoff (Xia et al., 2005; Wang et al., 2009).

In the model development, we would like to produce rea-

sonable simulations simultaneously in both hydrological and

water quality processes and to include more water-related

processes such as soil biogeochemistry and crop growth for

better understandings of the complicated water-related pro-

cesses and their interactions in the real basins. Our proposed

Hydrol. Earth Syst. Sci., 20, 529–553, 2016 www.hydrol-earth-syst-sci.net/20/529/2016/



Y. Y. Zhang et al.: Integrated water system simulation 531

Figure 1. The model structure and the interactions among the major modules (1: hydrological part; 2: water quality part; 3: ecological part;

4: dam regulation part; 5: PAT).

model was built by extending the DTVGM through coupling

of the detailed interactions and linkages among hydrologi-

cal, water quality, soil biogeochemical and ecological pro-

cesses, as well as considering the prevalent regulations of

water projects (dams and sluices) at the basin scale. In or-

der for readers to use the proposed model easily, a parameter

analysis module, which included popular objective functions,

autocalibration approaches and summary statistics, was also

developed. To demonstrate the model performances, we sim-

ulated several key water-related components including flow

regimes, diffuse source (or nonpoint source) pools of nutri-

ents, water quality variables in water bodies and crop yield in

a highly regulated and heavily polluted catchment (Shaying

River catchment) in China.

2 Methods and material

2.1 Model framework

Our proposed model includes eight major modules, namely

the hydrological cycle module (HCM), soil biochemical

module (SBM), crop growth module (CGM), soil erosion

module (SEM), overland water quality module (OQM), wa-

ter quality module of water bodies (WQM) and dam reg-

ulation module (DRM). The parameter analysis tool (PAT)

is also designed for model calibration. The model struc-

ture is shown in Fig. 1. More detailed descriptions of each

module and its interactions with other modules are given in

Sects. 2.1.1 to 2.1.5. The main equations of each module are

deferred to the Appendix and Supplement for readers who

are interested in the mathematical details.

Our model is based on the hypothesis that the cycles of wa-

ter and nutrients (N, P and C) are inseparable and act as the

critical linkages among all the modules. It takes full advan-

tage of the existing models, i.e., the powerful interconnec-

tions of the hydrological models with other processes at the

spatial scale, the elaborative descriptions of the ecological

models on nutrient vertical movement in soil layers, and the

elaborative descriptions of the water quality models on nutri-

ent movements along river networks. First, several key com-

ponents, simulated by the hydrological cycle module (HCM)

(e.g., evapotranspiration, soil moisture and flow), are treated

as critical linkages in all the modules (Sect. 2.1.1). Second,

the soil biochemical processes determine the nutrient loads

absorbed in the crop growth process (CGM) and migrated

into water bodies as the diffuse pollution source (OQM and

WQM). The accurate descriptions of soil biochemical pro-

cesses are helpful in improving the simulation of diffuse

source processes in responding to agricultural management

(Sect. 2.1.2). Third, the hydrological cycle module (HCM)

provides a function for describing the connections between

spatial calculation units to simulate the overland and in-

stream movements of water and nutrients at the basin scale

(Sects. 2.1.1 and 2.1.3).

2.1.1 Hydrological cycle module (HCM)

Surface runoff calculation is the core of hydrological sim-

ulation. The TVGM is adopted to calculate the surface

runoff yields for different land-use/cover areas, such as for-

est, grassland, water body, urban area, unused land, paddy

land and dryland agriculture. The potential evapotranspira-

tion is calculated using the Hargreaves method (Hargreaves

and Samani, 1982) because only the available daily maxi-

mum and minimum temperatures are used. The actual plant

transpiration is expressed as a function of potential evapo-

transpiration and leaf area index, whereas soil evaporation is

expressed as a function of potential evapotranspiration and
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Figure 2. The flowchart of HCM and the interactions with other modules.

surface soil residues (Neitsch et al., 2011). The yields of in-

terflow and baseflow have linear relationships with the soil

moisture in the upper and lower layers, respectively (Wang et

al., 2009). The infiltration from the upper to lower soil layers

is calculated using the storage routing method (Neitsch et al.,

2011). The Muskingum method or kinetic wave equation is

used for river flow routing.

Figure 2 shows that the shallow soil moisture from the hy-

drological cycle module is a major factor that connects the

crop growth module (to control crop growth) and the soil bio-

chemical module (to control the vertical migration and reac-

tion of nutrients in the soil layers). Plant transpiration is also

linked to the soil biochemical module (to drive the vertical

migration of nutrients in the soil layers). The surface runoff

is linked to the soil erosion module, while the overland flow

(surface runoff, interflow and baseflow) is connected to the

overland water quality module (to drive the movements of

nutrients and sediment along flow pathways) and the water

quality module of water bodies (rivers and lakes) for runoff

routing. Moreover, the hydrological cycle module provides

the inflows for individual dams or sluices in the dam regula-

tion module.

2.1.2 Modules for ecological processes

The ecological processes are described in the soil biochemi-

cal module and the crop growth module. The crop growth and

soil biochemical processes directly affect the soil moisture,

evapotranspiration, nutrient transformation and loss from the

soil layers. Therefore, our model incorporates the water cy-

cle, nutrient cycle, crop growth and their key linkages.

Soil biochemical module (SBM)

The soil biochemical module simulates the key processes of

carbon (C), nitrogen (N) and phosphorus (P) dynamics in the

soil layers, including decomposition, mineralization, immo-

bilization, nitrification, denitrification, leaching and plant up-

take. Different forms of N and P outputted from the soil bio-
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Figure 3. The flowchart of SBM (a) and CGM (b) in the ecological part and the interactions with other modules.

chemical module are connected to the crop growth module

as the nutrient constraints of crop growth and to the overland

water quality module as the main diffuse sources to water

bodies (Fig. 3a).

Soil C and N cycle. The sub-models of daily step decom-

position and denitrification in DNDC (Li et al., 1992) are

adopted to simulate the soil biogeochemical processes of C

and N at the field scale. The decomposition and other ox-

idation processes are the dominant microbial processes in

the aerobic condition. The three conceptual organic C pools

are the decomposable residue C pool, microbial biomass C

pool and stable C pool. The decomposition of each C pool

is treated as the first-order decay process with the individual

decomposition rates constrained by the soil temperature and

moisture, clay content and C : N ratio. The major simulated

processes of decomposition under aerobic conditions are

mineralization, immobilization, ammonia (NH3) volatiliza-

tion and nitrification. The mineralization and immobilization

of mineral N (NH+4 and NO−3 ) are determined by the flow

rates of soil organic carbon (SOC) pools. NH3 volatilization

is controlled by the NH+4 concentration, clay content, pH,

soil moisture and temperature. NH+4 is oxidized to NO−3 dur-

ing nitrification and nitrous oxide (N2O) is emitted into the

air during the nitrification. Denitrification occurs under the

anaerobic condition, which is controlled by soil moisture,

temperature, pH and dissolved SOC content. The detailed de-

scriptions are given in Appendix B and Li et al. (1992).

Soil P cycle. The major processes of the soil P cycle are

simulated according to the study of Horst et al. (2001). Six

P pools are considered including three organic pools (sta-

ble and active pools for plant uptake, a fresh pool associated

with plant residue) and three mineral pools (dissolved min-

eral, stable and active pools). The involved processes are the

P release, mineralization and decomposition from fertilizer,

manure, residue, microbial biomass, humic substances and

the sorption by plant uptake (Horst et al., 2001; Neitsch et

al., 2011).

The soil profile is divided into three layers, namely, sur-

face (0–10 cm) and user-defined upper and lower layers, all
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Figure 4. The flowchart of SEM (a), OQM (b) and WQM (c) in the water quality part and the interactions with other modules.

of which are consistent with the soil layers of the hydrolog-

ical cycle module to smoothly exchange the values through

the linkages (e.g., soil moisture) among different modules.

Crop growth module (CGM)

The crop growth module is developed based on the EPIC

crop growth model (Hamrick, 1992). It simulates total dry

matter, leaf area index, root depth and density distribution,

harvest index, nutrient uptake, and so on (Williams et al.,

1989; Sharpley and Williams, 1990). The crop respiration

and photosynthesis drive the vertical movements of water

and nutrients. The output of the leaf area index is a main

factor connecting the hydrological cycle module (to control

the transpiration), and the crop residue left in the fields is a

main source of organic nutrients (C, N and P) connecting to

the soil biochemical module for soil biochemical processes,

to the overland water quality module and to the soil erosion

module as one of the five constraint factors (Fig. 3b).

2.1.3 Modules for water quality processes

The water quality processes focus on the migration and trans-

formation of water quality variables (e.g., sediment, different

forms of nutrients, biochemical oxygen demand, BOD, and

chemical oxygen demand, COD) along the flow pathways in

the land surface and river network. The main modules are

the soil erosion module for the sediment yield, the overland

water quality module for the migration of overland diffuse

source to water bodies and the water quality module for the

migration and transformation of point and diffuse pollution

sources in water bodies.

Soil erosion module (SEM)

The soil erosion by precipitation is estimated using the im-

proved USLE equation (Onstad and Foster, 1975) based on

runoff yields outputted from the hydrological cycle module

and crop management factor outputted from the crop growth

module. The soil erosion module simulates the sediment load

for the overland water quality module to provide the carrier

for the migration of insoluble organic matter along overland

transport paths and water bodies (Fig. 4a).

Overland water quality module (OQM)

This module simulates the overland losses and migration

loads of diffuse source pollutants (e.g., sediment, insoluble

and dissolved nutrients, BOD and COD) (Fig. 4b). The main

diffuse sources include the nutrient loss from the soil lay-

ers and urban areas, and the farm manure from livestock in

rural areas. The nutrient loss from the soil layers, as the pri-

mary diffuse source in most catchments, is determined by the

overland flow and sediment yield (Williams et al., 1989), and

the other sources are estimated using the export coefficient

method (Johnes, 1996). The overland migration processes

contain the dissolved pollutant migration with overland flow

and the insoluble pollutant migration with sediment. All the

processes occur along the overland transport paths.

Water quality module of water bodies (WQM)

This module simulates the transformation and migration

of water quality variables in different types of water bod-

ies (in-stream and water impounding) (Fig. 4c). The sim-

ulated variables include water temperature, dissolved oxy-

gen (DO), sediment, different forms of nutrients (N and P),

BOD and COD. Point pollution sources are also consid-
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ered. Point sources are directly added to the surface water in

the model according to their geographic positions. Common

point sources are urban water treatment plants and industrial

plants.

Two modules are designed for the different types of water

bodies, i.e., the in-stream water quality module and the water

quality module for water impounding (reservoir or lake). The

enhanced stream water quality model (QUAL-2E) (Brown

and Barnwell, 1987) is adopted to simulate the longitudinal

movement and transformation of water quality variables in

the in-streams. The model is solved at the sub-basin scale

rather than at the fine grid scale in order to maintain spatial

consistency with the hydrological cycle module. The water

quality outputs provide the water quality boundary of dams

or sluices in the dam regulation module. The water quality

module for water impounding assumes that water body is at

the steady state and focuses on the vertical interaction of wa-

ter quality processes. The main processes include water qual-

ity degradation and settlement, sediment resuspension and

decay.

2.1.4 Dam regulation module (DRM)

Dams and sluices highly alter flow regimes and associated

water quality processes in most river networks. Thus, the

dam and sluice regulation should be considered in the wa-

ter system models. The dam regulation module provides the

regulated boundaries (e.g., water storage and outflow) to the

hydrological cycle module for flow routing and to the water

quality module of water bodies for pollutant migration.

Given that different types of dams and sluices are likely

to show completely different regulation behaviors, we try to

reproduce their common functionalities for either the flood

control or water supply in this module. Three methods are

proposed to calculate the water storage and outflow of dams

or sluices, namely, the measured outflow, controlled outflow

with target water storage and the relationship between out-

flow and water storage volume. The first method requires

users to provide the measured outflow series during the sim-

ulation period. The second method simplifies the regulation

rules of dams or sluices for long-term analysis based on the

assumption that water is stored according to the usable wa-

ter level during the non-flooding season and the flood control

level during the flooding season, and the surplus water is dis-

charged. This method requires the characteristic parameters

of dam or sluice including water storage capacities of dead,

usable, flood control and maximum flood levels and the cor-

responding water surface areas. The third method is based

on the relationships among water level, water surface area,

storage volume and outflow according to the designed dam

data or long-term observed data (Zhang et al., 2013) (Ap-

pendix C).

2.1.5 Parameter analysis tool (PAT)

In our model, 66 lumped and 94 distributed parameters in-

volve the hydrological, ecological and water quality pro-

cesses. The distributed parameters are divided into 37 over-

land parameters, 17 stream parameters and 40 parameters

of water projects (only for the sub-basin with reservoir or

sluice) according to their spatial distribution. These parame-

ter values are determined by the properties of overland land-

scape and soil, stream patterns and water projects, respec-

tively. Different spatial calculation units share many common

parameter values if their properties are the same.

Owing to a large number of parameters, it is hard to

find optimal parameter values by manual tuning. The lim-

ited number of observed processes causes equifinality in the

model calibration (Beven, 2006). Therefore, the parameter

sensitivity analysis and calibration are important steps to al-

leviate equifinality in the applications of highly parameter-

ized models, particularly for integrated water system models

(Mantovan and Todini, 2006; Mantovan et al., 2007; McDon-

nell et al., 2007). The PAT is designed for parameter sensi-

tivity analysis, autocalibration and model performance eval-

uation (Fig. 5).

To evaluate model performance, five traditionally used cri-

teria are included in the PAT, i.e., bias (bias), relative error

(re), root mean square error (RMSE), correlation coefficient

(r) and Nash–Sutcliffe efficiency (NS defined by Nash and

Sutcliffe, 1970). The detailed definitions of these criteria are

given in Appendix D. Furthermore, flow duration curve and

cumulative distribution function are also provided for captur-

ing multiple signatures of calibrated processes. More criteria

can also be proposed by the users. The objective function(s)

to calibrate the model can be formed by single or multiple

criteria or their function (such as weighted average).

The parameter analysis algorithms in the PAT include the

parameter sensitivity method (Latin hypercube one factor at a

time: LH-OAT) (van Griensven et al., 2006), the single objec-

tive auto-optimization methods such as particle swarm opti-

mization (PSO) (Kennedy, 2010), the genetic algorithm (GA)

(Goldberg, 1989) and shuffled complex evolution (SCE-UA)

(Duan et al., 1994), as well as the multi-objective auto-

optimization methods such as the weighted sum method and

nondominated sorting genetic algorithm II (NSGA-II) (Deb

et al., 2002). The method can be selected on the basis of the

specific requirements of users.

In order to obtain the optimal parameter values, the fol-

lowing treatments are adopted in the PAT. First, the prior

ranges of all the parameter values or their prior distributions

(i.e., uniform or normal) are preset by referring to the litera-

tures or similar basins. The constraints on parameters are also

considered in both parameter sensitive analysis and autocali-

bration. In the hydrological cycle module, the constraints on

soil moisture parameters are Wm (minimum moisture)<Ww

(moisture at permanent wilting point)<Wfc (field capac-

ity) < Wsat (saturated moisture capacity). The basic surface
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Figure 5. The flowchart of PAT and its interactions with other modules.

runoff coefficient (g1) for different land uses/covers is set in

ascending order (water body, paddy land, urban area, forest,

dryland agriculture, unused land and grassland). The inter-

flow yield coefficient (Kss) is greater than the baseflow coef-

ficient (Kbs). In the water quality module of water bodies, the

settling rates of water quality variables (Kset) in the water im-

pounding are greater than the resuspension rates (Kscu) and

the settling rates (Rset) in channels. Second, the sensitive pa-

rameters are determined to reduce the parameter dimensions

by sensitivity analysis. Third, the selected sensitive param-

eters are calibrated by the auto-optimization method, while

the insensitive parameters remain as their default values that

are given by referring to the literatures or other models (e.g.,

SWAT, EPIC and DNDC) in the same/similar basins.

The PAT connects with other modules through the param-

eter values that are used to simulate the processes of other

modules and evaluate the objective functions in sensitivity

analysis and autocalibration. Depending on the algorithm

used, the parameter values are (randomly) sampled from the

multi-dimensional parameter spaces to drive our model, and

the objective function value of each parameter set is then ob-

tained. For the parameter sensitivity analysis, the sensitiv-

ity index of each parameter set is evaluated by comparing

the variation of the objective function value along with the

change in parameter value. For the parameter autocalibra-

tion, the good parameter sets are kept or updated by the auto-

optimization method until the convergence or the maximum

number of iterations is achieved.

2.2 Model operation

2.2.1 Multi-scale solution

The spatial heterogeneities of basin attributes and the differ-

ent timescales used in individual processes cause inconsis-

tent spatial and temporal scales in model integration (Siva-

palan and Kalma, 1995; Singh and Woolhiser, 2002). For

the spatial scale, three levels of spatial calculation units are

designed, namely, sub-basin, land-use/cover and crop from

largest to smallest. These units are defined as the mini-

mum polygons with similar hydrological properties, land

uses/covers and agriculture crop cultivation patterns, respec-

tively. The sub-basins are defined on the basis of a digital

elevation model (DEM), the positions of gauges and wa-

ter projects, and are used in the hydrological cycle module

(e.g., flow routing in both land and in-stream), overland wa-

ter quality module, water quality module of water bodies and

dam regulation module. Seven specific land-use/cover units

of each sub-basin are partitioned by the land-use/cover clas-

sification (i.e., forest, grassland, water, urban, unused land,

paddy land and dryland agriculture) and are used in the hy-

drological cycle module (e.g., water yield, infiltration, inter-

ception and evapotranspiration) and the soil erosion module.

Moreover, several specific land-use/cover units (paddy land,

dryland agriculture, forest and grassland), where agricultural

activities usually occur, are divided further into the crop units

for the detailed analysis of the impact of agricultural manage-

ment on water and nutrient cycles. In the current version of
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Table 1. The data sets and their categories used in the model.

Category Data Objectives Controlled processes

GIS DEM Elevation, area, longitude and lat-

itude, slopes and lengths of each

sub-basin and channel

Hydrology and water quality

Land-use/cover map Land-use/cover types and their

corresponding areas in each sub-

basin

Hydrology, water quality and

ecology

Soil map Soil physical properties of each

sub-basin such as bulk density

and saturated conductivity

Weather Daily precipitation Daily precipitation of each sub-

basin

Hydrology

Daily maximum and minimum

temperature

Daily maximum and minimum

temperature of each sub-basin

Hydrology Observed runoff or other hydro-

logical components, etc.

Hydrological parameter calibra-

tion

Hydrology

Water quality Urban wastewater discharge out-

lets and discharge load

Model input of point source pol-

lutant load

Water quality

Water quality observations (con-

centration or load), etc.

Water quality parameter calibra-

tion

Ecology Crop yield, leaf area index, etc. Ecological parameter calibration Ecology

Economy Basic economic statistical indic-

tors

Populations, breeding stock of

large animals and livestock, wa-

ter withdrawal in each sub-basin

Hydrology and water quality

Water projects Design data attribute parameters Regulation rules of dams or

sluices

Hydrology

Agricultural management Fertilization and irrigation types,

timing and amount, time of seed-

ing and harvest, and crop types

Agricultural management rules

of each sub-basin

Water quality and ecology

our model, these four land-use/cover units are divided into

10 specific categories of crop units as fallow for all these

land-use/cover units, grass for grassland unit, fruit tree and

non-economic tree for forest unit, early rice and late rice for

paddy unit, spring wheat, winter wheat, corn and mixed dry

crop for dryland agriculture unit. The crop unit of a specific

land-use/cover pattern varies depending on crop cultivation

structure and timing. The related modules are the soil bio-

chemical module and the crop growth module. All of the

outputs of the crop unit are summarized at the land-use/cover

scale or sub-basin scale based on the area percentages in dif-

ferent crop units.

For the temporal scale, it is practical to use a daily time

step, as this is consistent with the underlying rainfall–runoff

module and the data availability. The sub-daily scale may

improve the performance in some modules (e.g., SEM and

WQM). However, most observations (e.g., climate data sets,

soil nutrient availability and water quality concentrations) are

at the daily scale, leading to potential uncertainties or in-

stabilities to disaggregate the observations into a sub-daily

scale. Linear or nonlinear aggregation functions are used to

transform different timescales to daily scale (Vinogradov et

al., 2011), such as exponential functions for flow infiltration

and overland flow routing processes in the hydrological cycle

module, for soil erosion processes in the soil erosion module

(Eqs. A5, A6 and S32 in Appendix A and the Supplement),

and accumulation functions for the crop growth process in

the crop growth module (Eq. S7 in the Supplement).

2.2.2 Basic data sets and spatial delineation

The indispensable data sets for model setup are GIS data,

daily meteorological data series, social and economic data

series and dam attribute data. Several monitoring data series

are needed for model calibration, such as runoff and water

quality series in river sections, soil moisture and crop yield

at the field scale. Table 1 shows all of the detailed data sets

and their usages.

The hydrological toolset of the Arc GIS platform is used to

delineate all the spatial calculation units based on a DEM and
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Figure 6. The location of the study area (a) and the digital delineation of the sub-basin, point source pollutant outlets, rural population (b),

animal stock (c) and fertilization (d).

land-use/cover data. The sub-basin attributes (e.g., location,

evaluation, area, land surface slope and slope length, land-

use/cover areas) and flow routing relationship between sub-

basins are obtained during this procedure.

2.3 Study area and model testing

In this study, our model was applied to a highly regulated and

heavily polluted catchment (the Shaying River catchment) in

China. The simulated water-related components contained

daily runoff and water quality concentrations at river sec-

tions, spatial patterns of diffuse source pollution load and

crop yield at sub-basin scale.

2.3.1 Study area

The Shaying River catchment (112◦45′–113◦15′ E, 34◦20′–

34◦34′ N), which is the largest sub-basin of the Huai River

basin in China, is selected as the study area (Fig. 6a). The

drainage area is 36 651 km2, with a mainstream of 620 km.

The average annual population (2003–2008) (Fig. 6b) is

32.42 million, with a rural population of 23.70 million. The

average annual stocks include 8.30 million big animals (cat-

tle, pigs and sheep) and 178.42 million poultry (Fig. 6c). The

average annual use of chemical fertilizer is 1.55 million ton

(N: 38–51 %; P: 16–25 %; and others: 23–47 %) (Fig. 6d).

The catchment is located in the typical warm temperate and
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semi-humid continental climate zone. The annual average

temperature and rainfall are 14–16 ◦C and 769.5 mm, respec-

tively. The Shaying River is the most seriously polluted trib-

utary, with a pollutant load contribution of over 40 % in the

whole Huai River, and is usually known as the water en-

vironment barometer of the Huai River mainstream. To re-

duce flood or drought disasters, 24 reservoirs and 13 sluices,

whose regulation capacities are over 50 % of the total annual

runoff, have been constructed, and fragmented the river into

several impounding pools.

2.3.2 Model setup

All data sets for model setup and calibration were collected

from the government bureaus, official books and scientific

references. The detailed descriptions were presented in Ta-

bles S2 and S3 of the Supplement. The resolutions of GIS and

weather input data were quite satisfactory for the model ap-

plication. However, most data on water quality, ecology and

agricultural management were at monthly or annual temporal

scale. The data for economy, agricultural management and

diffuse source load were collected from individual admin-

istrative regions. Both the temporal and spatial scales were

larger than the required daily scale or spatial calculation units

(sub-basin, land-use/cover and crop). In these cases, the data

values were uniformly distributed to the required temporal

and/or spatial scales, such as the input of point sources, and

social and economic data.

The Shaying River catchment was divided into 46 sub-

basins. According to the land-use/cover classification stan-

dard of China (CNS, 2007), the main land-use/cover types

were dryland agriculture (84.04 %), forest (7.66 %), urban

(3.27 %), grassland (2.68 %), water (1.43 %), paddy land

(0.91 %) and unused land (0.01 %). The soil input param-

eters (the contents of sand, clay and organic matter) were

calculated based on the percentage of soil types in each sub-

basin. The main crops were early rice and late rice in the

paddy land, and winter wheat and corn in the dryland agricul-

ture. The main agricultural management schemes (fertilize,

plant, harvest and kill) were summarized by field investiga-

tion in the studies of Wang et al. (2008) and Zhai et al. (2014)

(Table S3). Crop rotations and management schemes were

considered in the model by setting the start time, the dura-

tion of management and the fertilizer amounts. Two fertil-

izations (base and additional fertilization) were considered

in the model during the complete growth cycle of a certain

crop. The areas of sub-basin, land-use/cover and crop units

ranged from 46.48 to 3771.15 km2, from 0.04 to 2762.5 km2,

and from 3.73 to 2762.5 km2, respectively.

The daily precipitation series from 2003 to 2008 at 65

stations were interpolated to each sub-basin using the in-

verse distance weighting method, while the daily tempera-

ture series at six stations were interpolated using the nearest-

neighbor interpolation method. The social and economic data

(e.g., population and livestock in the rural area, chemical fer-

tilizer amounts) were calculated for each sub-basin based on

the area percentage.

Moreover, 5 reservoirs, 12 sluices and over 200 wastewa-

ter discharge outlets were considered according to their ge-

ographical positions. The farm manure from rural living and

livestock farming was considered as a diffuse source owing

to its scattered characteristics and the deficient sewage treat-

ment facilities in the rural areas.

2.3.3 Model evaluation

The observation series of daily runoff and NH4–N concentra-

tion were used to calibrate the model parameters. There were

five regulated stations (Luohe, Zhoukou, Huaidian, Fuyang

and Yingshang) and one less-regulated station (Shenqiu),

which is the downstream station situated far from water

projects. Moreover, given that the observed yields of diffuse

pollutant loads and crops were hard to collect for the whole

catchment, only the statistical results from official reports or

statistical yearbooks (Wang, 2011; Henan Statistical Year-

books, 2003, 2004 and 2005) were collected to validate the

model performances.

We selected LH-OAT for parameter sensitivity analysis

and SCE-UA for parameter calibration in the PAT. To re-

duce the dimensions of the calibration problem, we restricted

SCE-UA to calibrate only the sensitive parameters defined by

LH-OAT, whereas the rest of the parameters remained con-

stants. The selected evaluation indices of model performance

were bias, r and NS. However, NS was sensitive to the ex-

treme value, outlier and number of the data points, and was

not commonly used in environmental sciences (Ritter and

Muñoz-Carpena, 2013). Thus NS was not used to evaluate

the NH4–N concentration simulation.

The model calibration was conducted by the following

steps. Hydrological parameters were calibrated first against

the observed runoff series at each station from upstream to

downstream, and then water quality parameters against the

observed NH4–N concentration series. The calibration and

validation periods were from 2003 to 2005 and from 2006

to 2008, respectively. The weighted sum method was usu-

ally used to comprehensively handle multi-objectives (Ef-

stratiadis and Koutsoyiannis, 2010). In this study, single-

objective functions were formed by equally weighting the

evaluation indices as (frunoff and fNH4−N) because the case

study was only a demonstration of the model performance.{
frunoff =min[(|bias| + 2− r −NS)/3]

fNH4−N =min[(|bias| + 1− r)/2]
(1)

Moreover, the effect of dam regulation was considered be-

cause of the high regulation in most rivers. The dam and

sluice regulation usually altered the intra-annual distribu-

tion of flow events, such as flattening high flow and increas-

ing low flow. The simulation performances of high and low

flows were separately evaluated and the effectiveness of the

DRM was tested by comparing the simulation with and with-
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Table 2. Sensitive parameters, their value ranges and relative importance for runoff and NH4–N simulations.

Variables Range Definition Relative importance Relative importance

for runoff (%) for NH4–N (%)

Wfc 0.20 to 0.45 Field capacity of soil 32.73 11.10

Wsat 0.45 to 0.75 Saturated moisture capacity of soil 11.68 11.83

g1 0 to 3 Basic surface runoff coefficient 7.30 10.34

g2 0 to 3 Influence coefficient of soil moisture 10.54 12.11

KET 0 to 3 Adjustment factor of evapotranspiration 23.21 10.71

Kss 0 to 1 Interflow yield coefficient 9.55 3.20

Tg 1 to 100 Delay time for aquifer recharge 1.74 –

Kbs 0 to 1 Baseflow yield coefficient 2.91 –

Ksat 0 to 120 Steady-state infiltration rate 0.33 –

Rd(BOD) 0.02 to 3.4 BOD deoxygenation rate at 20 ◦C – 6.62

Rset (BOD) −0.36 to 0.36 BOD settling rate at 20 ◦C – 3.60

Rd (NH4) 0.1 to 1 Bio-oxidation rate of NH4–N at 20 ◦C – 1.97

Kset (NH4) 0 to 100 Settling rate of NH4–N in the reservoirs – 14.17

Kd (BOD) 0.02 to 3.4 BOD deoxygenation rate in the reservoirs at 20 ◦C – 2.12

Kd (NH4) 0.1 to 1.0 Bio-oxidation rate of NH4–N in the reservoirs at 20 ◦C – 4.51

Total relative importance 100.00 92.27

out the consideration of dam regulation. The high and low

flows were determined by the cumulative distribution func-

tion (CDF). A threshold of 50 % was used for easy presenta-

tion; i.e., the flow was treated as high flow (or low flow) if its

percentile was greater than (or smaller than) the threshold.

3 Results

3.1 Parameter sensitivity analysis

Nine sensitive parameters were detected for runoff simula-

tion by LH-OAT (Table 2), including soil-related parameters

Wfc (field capacity), Wsat (saturated moisture capacity), Kr

(interflow yield coefficient) andKsat (steady-state infiltration

rate); TVGM parameters g1 (basic surface runoff coefficient)

and g2 (influence coefficient of soil moisture); baseflow pa-

rameters Kg (baseflow yield coefficient) and Tg (delay time

for aquifer recharge); and evapotranspiration parameter KET

(adjusted factor of actual evapotranspiration). All of these pa-

rameters controlled the main hydrological processes in which

soil water and evapotranspiration processes were distinctly

important and explained 54.3 and 23.2 % of the runoff varia-

tion, respectively.

For NH4–N concentration simulation, over 90 % of ob-

served NH4–N concentration variations were explained by

14 sensitive parameters that were categorized into hydrologi-

cal (59.28 % of variation), NH4–N (20.65 % of variation) and

COD (12.34 % of variation) related parameters. The main ex-

planation was that hydrological processes provided the hy-

drological boundaries that affected the diffuse source load

into rivers and the degradation and settlement processes of

NH4–N in water bodies NH4–N concentration was further

influenced by the settlement and biological oxidation. More-

over, it was a competitive relationship between COD and

NH4–N to consume DO of water bodies in a certain limited

level (Brown and Barnwell, 1987).

3.2 Hydrological simulation

The runoff simulations fitted the observations well at all the

stations (Fig. 7 and Table 3). The biases were very close to

0.0 at all the regulated stations except Zhoukou with an un-

derestimation (bias: 0.24 for calibration and 0.41 for vali-

dation) and Luohe with an overestimation (bias: −0.52 for

validation). The obvious biases were caused by the average

objective function of all three evaluations rather than the bias

only. The r values ranged from 0.75 (Luohe for validation)

to 0.92 (Yingshang for calibration) with the average value of

0.85, whereas the NS values ranged from 0.51 (Luohe for

validation) to 0.84 (Yingshang for calibration) with the aver-

age value of 0.70. The results of the regulated stations were a

little worse than those of the less-regulated station (Shenqiu)

owing to the regulation.

By comparing the simulations with the observations from

2003 to 2008, we saw that the high and low flows were al-

ways overestimated if the model did not consider the regu-

lations (Fig. 8). Except for the high flows at Zhoukou, both

high and low flows at all the stations were simulated well

when the dam and sluice regulation was considered (Ta-

ble 4). The best fitting was at Fuyang, particularly for the

high flow simulation (bias= 0.10, r = 0.89 and NS= 0.78).

From unregulation to regulation settings, the improvements

measured by frunoff ranged from −0.08 (Zhoukou) to −0.29

(Huaidian) for high flow simulations, from−0.05 (Zhoukou)

to −0.31 (Huaidian) for average flow simulations, and from

−1.97 (Fuyang) to −3.91 (Yingshang) for low flow simula-

tions except Zhoukou (1.28). The improvements in the low
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Figure 7. The daily runoff simulation at all stations.

Table 3. Runoff simulation results for regulated and less-regulated stations.

Stations Periods Daily flow Monthly flow

Bias r NS f Bias r NS f

Regulated stations

Luohe Calibration 0.00 0.84 0.70 0.15 0.00 0.87 0.71 0.14

Validation −0.52 0.75 0.51 0.42 −0.52 0.87 0.67 0.33

Zhoukou Calibration 0.24 0.87 0.73 0.21 0.24 0.90 0.76 0.19

Validation 0.41 0.79 0.55 0.36 0.41 0.91 0.70 0.26

Huaidian Calibration 0.03 0.88 0.77 0.13 0.03 0.91 0.81 0.10

Validation 0.12 0.76 0.54 0.27 0.12 0.87 0.70 0.18

Fuyang Calibration 0.00 0.90 0.81 0.10 0.00 0.95 0.89 0.05

Validation 0.14 0.88 0.76 0.17 0.14 0.94 0.86 0.11

Yingshang Calibration −0.13 0.92 0.84 0.12 −0.13 0.92 0.84 0.12

Validation 0.16 0.87 0.74 0.18 0.16 0.93 0.82 0.13

Less-regulated stations

Shenqiu Calibration 0.00 0.91 0.82 0.09 0.00 0.94 0.88 0.06

Validation −0.13 0.83 0.67 0.21 −0.13 0.98 0.94 0.08

flow simulations were very obvious. However, their perfor-

mances still needed to be improved further, particularly for

the underestimation at Zhoukou and Huaidian. The possible

reasons were as follows. On the one hand, the applied evalu-

ation indices (r and NS) were known to emphasize the high

flow simulation rather than the low flow simulation (Push-

palatha et al., 2012), and the objective of autocalibration was

to obtain the optimal solution for the average of three evalu-

ation indices rather than the bias only. The slight sacrifice of

bias improved the overall simulation performance evaluated

by all three indices. One the other hand, the dam regulation

module still could not fully capture the low flows.

Furthermore, the model performances on monthly flows

were even better, particularly for r and NS. The r values

ranged from 0.87 (Luohe for both calibration and validation)

to 0.95 (Fuyang for calibration) with the average value of
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Figure 8. The cumulative distributions of simulated and observed daily runoff at all stations.

Table 4. The runoff simulation results at regulated stations with and without the dam regulation considered. Range means the difference of

the objective function value between regulations considered and not considered. If the range value is less than 0.0, then the simulation with

regulation is better than that without regulation. Otherwise, the simulation without regulation is better.

Stations Regulated capacity (%) Flow event Regulation considered Regulation not considered Range

Bias r NS f Bias r NS f

Luohe 0.26 High −0.16 0.97 0.92 0.09 −0.62 0.97 0.80 0.29 −0.20

Low −0.02 0.98 0.69 0.12 −1.46 0.99 −5.53 2.67 −2.55

Average −0.15 0.97 0.93 0.08 −0.68 0.96 0.82 0.30 −0.22

Zhoukou 1.31 High 0.21 0.98 0.93 0.10 −0.38 0.98 0.87 0.18 −0.08

Low 1.00 0.00 −2.57 1.86 −0.64 0.99 −0.08 0.58 1.28

Average 0.30 0.99 0.93 0.13 −0.41 0.98 0.89 0.18 −0.05

Huaidian 1.37 High 0.02 0.98 0.95 0.03 −0.64 0.98 0.68 0.32 −0.29

Low 0.36 0.97 0.43 0.32 −1.51 0.98 −5.88 2.80 −2.48

Average 0.06 0.98 0.96 0.04 −0.74 0.98 0.72 0.35 −0.31

Fuyang 2.21 High 0.04 0.98 0.96 0.03 −0.39 0.99 0.86 0.18 −0.15

Low 0.17 0.99 0.87 0.10 −1.43 0.99 −3.78 2.07 −1.97

Average 0.05 0.99 0.97 0.03 −0.50 0.99 0.88 0.21 −0.18

Yingshang 1.76 High 0.03 0.98 0.95 0.03 −0.44 0.99 0.86 0.20 −0.17

Low 0.18 0.99 0.82 0.12 −1.77 0.95 −9.26 4.03 −3.91

Average 0.05 0.99 0.96 0.03 −0.60 0.98 0.86 0.25 −0.22
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Figure 9. The simulated NH4–N concentration variation at all stations.

0.92, whereas the NS values ranged from 0.67 (Luohe for

validation) to 0.94 (Shenqiu for validation) with the aver-

age value of 0.80. Compared with the existing results at the

same stations by SWAT (Zhang et al., 2013), the flow simu-

lations at the downstream stations were improved, although

they became a little worse at the upstream stations (Luohe

and Zhoukou for calibration). In particular, the total water

volume and agreements with the observations (i.e., bias and

NS) were well captured.

3.3 Water quality simulation

The simulated concentrations of NH4–N matched well with

the observations according to the evaluation standard recom-

mend by Moriasi et al. (2007) (Fig. 9 and Table 5). The r val-

ues were over 0.60 for all the stations except Zhoukou (0.56

for validation), Yingshang (0.49 for validation) and Shenqiu

(0.41 for validation), and the average value was 0.67. The bi-

ases were considered to be “acceptable” with a range from

−0.27 (Fuyang for validation) to 0.29 (Zhoukou for calibra-

tion). The best simulation was at Luohe station. The obvious

discrepancies between the simulations and observations of-

ten appeared in the period from January to May because of

the poor simulation performances on the low flows. Although

the biases changed markedly from calibration to validation

at Fuyang and Yingshang stations, the model performances

were still acceptable. The possible explanation was that the

biases for corresponding runoff simulations at these two sta-

tions also changed.

Compared with the results without the consideration of

regulation, the simulation results were obviously improved

when the regulation was considered, except those at Fuyang

station in the calibration period. The decreases in the fNH4−N

value ranged from 0.10 (Huaidian for calibration) to 0.49

(Zhoukou for validation), although there was a slight increase

at Fuyang for the calibration (0.02). Therefore, it was con-

cluded that the consideration of dam and sluice regulation

played an important role in the water quality simulation. In

the upper stream of the Shaying River, the flow was small

and the NH4–N concentration decreased obviously because

of the degradation and settlement of large water storage. In

the downstream of the Shaying River, the NH4–N concen-

tration increased because of the pollutant accumulation and

the decreasing flow from dams and sluices owing to the reg-

ulation (Zhang et al., 2010). Therefore, the simulated con-

centrations without regulation were usually overestimated or

higher than the simulation with regulation at the upstream

stations (Luohe and Zhoukou). However, the concentrations

were underestimated at the downstream stations (Huaidian,

Fuyang and Yingshang). The largest differences between the

simulations with and without the consideration of regulation

appeared at Zhoukou.

The spatial pattern of average annual load of diffuse source

NH4–N was shown in Fig. 10a. The estimated annual yield

rates ranged from 0.048 to 11.00 tkm−2 year−1 with the av-

erage value of 0.73 tkm−2 year−1. The yield in each admin-

istrative region was summarized from the results of each sub-

basin according to the area percentage of sub-basins in each

administrative region. Compared with the statistical load of

each administrative region based on the soil erosion, land

use/cover and fertilizer amount in the official report (Wang,

2011), the bias of simulated diffuse source load in the whole
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Table 5. The comparison of NH4–N simulation results with and without dam regulation considered.

Stations Periods Regulated Unregulated Range Ratio of diffuse

Bias r f Bias r f source load (%)

Regulated stations

Luohe Calibration −0.02 0.93 0.05 −0.67 0.60 0.54 −0.49 46.10

Validation – – – – – –

Zhoukou Calibration 0.29 0.61 0.34 −0.56 0.38 0.59 −0.25 44.54

Validation 0.27 0.56 0.36 −1.35 0.66 0.85 −0.49

Huaidian Calibration 0.22 0.73 0.25 0.49 0.80 0.35 −0.10 31.72

Validation 0.02 0.67 0.18 0.22 0.51 0.36 −0.18

Fuyang Calibration 0.28 0.78 0.25 0.26 0.80 0.23 0.02 33.12

Validation −0.27 0.76 0.26 −0.38 0.56 0.41 −0.15

Yingshang Calibration 0.24 0.79 0.23 0.25 0.58 0.34 −0.11 33.26

Validation −0.24 0.49 0.38 −0.76 0.62 0.57 −0.19

Less-regulated stations

Shenqiu Calibration 0.13 0.62 0.26 – – – – 47.13

Validation 0.16 0.41 0.37 – – – –

Figure 10. The spatial pattern of diffuse source NH4–N load (a) and its relationship with paddy area (b) and rice yield (c) at the sub-basin

and regional scale in the Shaying River catchment.
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Figure 11. The spatial pattern of corn yield at the sub-basin and regional scale in the Shaying River catchment.

region was 21.31 % when the two regions with the biggest

biases (Fuyang and Pingdingshan) were excluded as outliers.

The high load regions were in the middle of the Pingding-

shan, Xuchang, Zhengzhou, Fuyang and Zhoukou regions.

The spatial pattern was significantly correlated with the dis-

tribution of paddy area (r = 0.506, p < 0.001) and rice yield

(r = 0.799, p < 0.001) (Fig. 10b and c). The fertilizer losses

in the paddy areas might be the primary contributor to the dif-

fuse source NH4–N load because the average nitrogen loss

coefficient in China was just 30–70 % in the paddy areas,

which was higher than that in the dryland agriculture (20–

50 %) (Zhu, 2000; Xing and Zhu, 2000).

Summarized from the collected data for model input, the

observed average load of point source NH4–N into rivers was

approximately 4.70×104 t year−1 in the Shaying River catch-

ment. The diffuse source contributed 38.57 % of the over-

all NH4–N load on average from 2003 to 2005, and this

value was slightly higher than the statistical results (29.37 %)

given in the official report (Wang, 2011). Moreover, the dif-

fuse source contributions at the stations ranged from 31.72 %

(Huaidian) to 47.13 % (Shenqiu). Compared with the diffuse

source loads in the individual administrative regions in 2000,

the simulated loads tended to increase from 2003 to 2005,

except in the Kaifeng region. The yields in the Fuyang and

Pingdingshan regions increased at the highest rates. The pri-

mary pollution source in the Shaying River catchment was

still the point source, but the diffuse source was also an im-

portant concern. In terms of spatial variation, the contribu-

tion of diffuse source to the pollutant load was high in the

upstream and low in the middle and downstream because the

point source emission was usually concentrated in the mid-

dle and downstream. Therefore, compared with the results

in Zhang et al. (2013), the overall simulation performance

of NH4–N concentration was also improved remarkably by

considering the detailed nutrient processes in the soil layers.

3.4 Crop yield simulation

The simulated corn yield and its spatial pattern were

shown in Fig. 11. The average annual yields were

summarized at sub-basin scale and ranged from 0.08

to 326.95 tkm−2 year−1 with the average value of

76.84 tkm−2 year−1. The yield of each administrative

region was further summarized and compared with the

data from statistical yearbooks from 2003 to 2005 (Henan

Statistical Yearbook, 2003, 2004 and 2005). The high-yield

regions were Luohe, Fuyang and Zhoukou in the middle

and downstream where the primary land use/cover was the

dryland agriculture (93.12, 95.87 and 93.18 %, respectively).

The crop yields in the Luohe, Nanyang and Kaifeng regions

were well simulated. The total yield was underestimated in

the whole basin with a bias of 19.93 %. The discrepancies

might be caused by the boundary mismatch between the

administrative region and sub-basin, spatial heterogeneities

of human agricultural activities and inaccurate cropping

pattern used in such huge regions. A high-resolution remote

sensing image and field investigation might be helpful to

improve the model performance.

www.hydrol-earth-syst-sci.net/20/529/2016/ Hydrol. Earth Syst. Sci., 20, 529–553, 2016



546 Y. Y. Zhang et al.: Integrated water system simulation

4 Discussion

4.1 Comparison with other models

It is a natural tendency that models grow in complexity in

order to capture more interactions of complex water-related

processes in the real basins because of more and more avail-

able observations and improved accuracies (Beven, 2006).

Our proposed model was developed in this direction and

tended to benefit integrated river basin management, al-

though the model applicability needs to be further evaluated

in different regions. In comparison with most existing mod-

els, our proposed model considered all the water-related pro-

cesses as an integrated system rather than isolated systems

for individual processes.

Our model provided competitive simulation results in the

Huai River basin (Figs. 7–9; Tables 3–5). Several typical

models were also applied in this basin, such as SWAT for

the monthly runoff and water quality simulation at the reg-

ulated stations (Zhang et al., 2013), the SWAT and Xingan-

jiang models for the daily runoff simulation at the unregu-

lated upstream stations (Shi et al., 2011) and the DTVGM

for daily runoff simulation (Ma et al., 2014). Compared with

the results of these models, our model generally performed

better in the runoff or water quality simulations. In particular,

our model performed even better than SWAT at the regulated

stations, as more detailed dam regulation rules and soil bio-

chemical processes were considered. For example, the aver-

age values of frunoff at the monthly scale decreased from 0.32

(SWAT in Zhang et al., 2013) to 0.15 (our model) at the regu-

lated stations. The average values of fNH4−N decreased from

0.47 (SWAT in Zhang et al., 2013) to 0.27 (our model). More-

over, both the Xinanjiang model and the DTVGM are lim-

ited to simulating the flow series at the unregulated or less-

regulated stations because they do not consider the dam reg-

ulation in their current model frameworks (Shi et al., 2011;

Ma et al., 2014).

4.2 Equifinality

Until now, our understandings of water-related processes

have still been ambiguous, and it is hard to describe all these

processes in the real-word systems from strong physical

foundations (Beven, 2006; Hrachowitz et al., 2014). Empiri-

cal equations are usually adopted to approximate the physical

processes with numerous unknown parameters, especially in

the large-scale models. A single output variable of models

is associated with multiple processes and many parameters.

For examples, SWAT contains over 200 parameters (Arnold

et al., 1998) and DNDC has nearly 100 parameters (Li et

al., 1992). Pohlert et al. (2006) reported that six hydrolog-

ical and 12 N-cycle sensitive parameters were detected in

SWAT-N for the simulation of water flow and N leaching.

In the case study, 9 and 14 sensitive parameters of our model

were detected for runoff and NH4–N simulation, respectively

(Table 2). Therefore, due to the large numbers of model pa-

rameters and limited observations, most existing models are

subject to equifinality, which is more serious if more water-

related processes are considered or more sub-basins are de-

lineated for the distributed models.

Several strategies would be helpful to alleviate the equifi-

nality, such as field experiments on the physical parameters

(Kirchner, 2006), the utilization of more observed processes,

multiple evaluation measures for a single predicted compo-

nent (Her and Chaubey, 2015), parameter regularization and

process constraints (Tonkin and Doherty, 2005; Pokhrel et

al., 2008; Euser et al., 2013). Moreover, some attempts are

made to move away from traditional curve fitting towards

more process consistency and efficient model selection tech-

niques (Hrachowitz et al., 2014; Fovet et al., 2015).

For our model, all the independent calibration and valida-

tion data sets were specified in Table 1, and most widely used

measures of model performances were also provided in the

PAT. In the case study, we also employed several observation

sources (e.g., runoff and water quality observations at differ-

ent stations, the diffuse pollution load and crop yield data)

and used three measures to evaluate model performance for

the individual components (e.g., bias, r and NS). To make

full use of the existing data in practice, parameter sensitivity

analysis would be an effective way to reduce dimensional-

ity in model calibration and then focus only on the critical

processes and parameters that are sensitive to model outputs

(van Griensven et al., 2006). Model autocalibration would

be efficient to obtain the optimal simulations from numerous

samples in multi-dimensional parameter spaces.

4.3 Model limitations

It should be noted that our extended model still has several

limitations.

1. The mathematical descriptions of groundwater, crop

growth processes and agriculture management practices

were still inaccurate. The current version focused on the

detailed descriptions of hydrological and nutrient cycles

in the soil layers and water bodies, and the consider-

ation of dam regulation. Satisfactory performances on

water quantity and quality simulation were achieved in

our case study. However, the simulations for groundwa-

ter, diffuse pollution and crop yield in the agriculture

regions could be improved further. The stratification of

water impounding in the water quality module should

be considered if the high-resolution bathymetric data of

dams or lakes are available.

2. High parameterization is an inevitable issue because of

its all-inclusive framework. Our model considered the

main water-related processes in the hydrological, ecol-

ogy and water quality subsystems, but numerous pro-

cesses were still controlled by unmeasurable parame-

ters because of their empirical and/or scale-dependent
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nature (Her and Chaubey, 2015). Although the param-

eter sensitivity analysis and calibration are widely used

to handle the high parameterization issue, the equifinal-

ity and parameter uncertainty are still inevitable because

of the insufficient observations and the complex interac-

tions among different subsystems.

5 Conclusions

In this study, the TVGM hydrological model was extended

primarily to an integrated water system model to address

the complex water issues emerging in the basins. The model

performance was demonstrated in the Shaying River catch-

ment, China. The model provided a reasonable tool for the ef-

fective water governance by simultaneously simulating sev-

eral indicative components of water-related processes includ-

ing the hydrological components (e.g., runoff, soil mois-

ture, evaporation and plant transpiration, water storage in

the dams and sluices), water quality components (e.g., dif-

fuse pollution source load, water quality concentrations in

water bodies) and ecological components (e.g., crop yield),

which could be calibrated if observations were available. The

case study showed that the simulated runoffs at most stations

fitted the observations well in the highly regulated Shaying

River catchment. All the evaluation criteria were acceptable

for both the daily and monthly simulations at most stations.

This model simulated the discontinuous daily NH4–N con-

centration well and properly captured the spatial patterns of

diffuse pollution load and corn yield.

Owing to the heterogeneity of spatial data in large basins

and insufficient observations of individual subsystems, not

all the results were acceptable and several processes were

still not well calibrated (such as low flow events, diffuse pol-

lution source load and crop yield). More available data and

improved data quality will reduce the model uncertainty and

equifinality problem, especially the higher-resolution data

for surface conditions, water quality, agricultural manage-

ment and socio-economic data. The model would be im-

proved by further considering more accurate human activities

in the agricultural management, calibrating multiple compo-

nents by multi-objective optimization and model uncertainty

analysis because of the interactions and tradeoffs among dif-

ferent processes. The over-parameterization and the reason-

able prior parameter conditions should also be treated care-

fully in applications. Advanced analysis technologies would

benefit the future model development, such as model se-

lection techniques, parameter regularization. Moreover, an

easily used operational software package can broaden the

model’s applications in different regions. More case studies

are needed to further demonstrate its applicability.
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Appendix A: Hydrological cycle module

The basic water balance equation is

Pi +SWi = SWi+1+Rsi +Eai
+Rssi +Rbsi + Ini, (A1)

where P is the precipitation (mm); SW is the soil mois-

ture (mm); Ea is the actual evapotranspiration (mm) includ-

ing soil evaporation (Es, mm) and plant transpiration (Ep,

mm); Rs, Rss and Rbs are the surface runoff, interflow and

baseflow (mm), respectively; In is the vegetation interception

(mm) and i is the time step (day).

Es and Ep are determined by the potential evapotranspi-

ration (E0, mm), leaf area index (LAI, m2 m−2) and surface

soil residues (rsd, t ha−1) (Ritchie, 1972) as
Ea = Et+Es ≤ E0,

Ep =

{
LAI ·E0/3 0≤ LAI≤ 3.0,

E0 LAI> 3.0,

Es = E0 · exp(−5.0× 10−5
× rsd),

(A2)

where E0 is calculated by the Hargreaves method (Harg-

reaves and Samani, 1982).

The surface runoff (Rs, mm) yield equation (TVGM; Xia

et al., 2005) is given as

Rs= g1(SWu/Wsat)
g2 · (P − In), (A3)

where SWu and Wsat are the surface soil moisture and satu-

ration moisture (mm), respectively; g1 and g2 are the basic

coefficient of surface runoff and the influence coefficient of

soil moisture, respectively.

The interflow (Rss, mm) and baseflow (Rbs, mm) have

linear relationships with the soil moistures in the upper and

lower layers, respectively (Wang et al., 2009), as{
Rss= kss ·SWu,

Rbs= kbs ·SWl,
(A4)

where kss and kbs are the yield coefficients of interflow and

baseflow, respectively; SWl is the soil moisture in the lower

layer (mm).

The infiltration from the upper to lower soil layers is calcu-

lated using the storage routing method (Neitsch et al., 2011)

as{
Winf = (SWu−Wfc) · [1− exp(−24/Tinf)],

Tinf = (Wsat−Wfc)/Ksat,
(A5)

where Winf is the water infiltration amount on a given day

(mm); Wfc is the soil field capacity (mm); and Tinf is the

travel time for infiltration (h), respectively; Ksat is the sat-

urated hydraulic conductivity (mmh−1).

The calculation of overland flow routing is adopted from

Neitsch et al. (2011) as

Qoverl =
(
Q′overl+Qstor,i−1

)
·
[
1− exp(−Tretain/Troute)

]
,

Troute = Toverl+ Trch =
L0.6

overl · n
0.6
overl

18 · slp0.3
overl

+
0.62 ·Lrch · n

0.75
rch

A0.125 · slp0.375
rch

,

(A6)

where Qoverl is the overland flow discharged into the main

channel (mm); Q′overl is the lateral flow amount generated in

the sub-basin (mm); Qstor,i−1 is the lateral flow in the pre-

vious day (mm); Tretain is the residence time of flow (days);

Troute is the flow routing time in sub-basin (days); Toverl and

Trch are the routing times of overland flow and river flow,

respectively (days); Loverl and Lrch are the lengths of sub-

basin slope and river, respectively (km); slpoverl and slprch

are the slopes of sub-basin and river, respectively (mm−1);

noverl and nrch are the Manning roughness coefficients for

sub-basin and river, respectively (mm−1); and A is the sub-

basin area (km2).

Appendix B: Soil biochemical module

B1 Soil temperature (Williams et al., 1984)

T (Z, t)= T̄ + (AM/2 · cos[2π · (t − 200)/365]

+TG− T (0, t)) · exp(−Z/DD), (B1)

where Z is the soil depth (mm); t is the time step (days);

T̄ and TG are the average annual temperature and surface

temperature (◦C), respectively; AM is the annual variation

amplitude of daily temperature; and DD is the damping depth

(mm) of soil temperature given as
DD= DP · exp

{
(ln(500/DP) · [(1− ξ)(1+ ξ)]2

}
,

DP= 1000+ 2500BD/
[
BD+ 686exp(−5.63BD)

]
,

ξ = SW
/

[(0.356− 0.144BD) ·ZM] ,
TGIDA = (1−AB) · (Tmx+ Tmn)/2 · (1−RA/800)

+Tmx ·RA/800+AB ·TGIDA−1,

(B2)

where DP is the maximum damping depth of soil temperature

(mm); BD is the soil bulk density (tm−3); ζ is a scale param-

eter; IDA is the day of the year; AB is the surface albedo; and

RA is the daily solar radiation (ly).

B2 C and N cycle (Li et al., 1992)

Decomposition. The decomposition of resistant and labile C

is described by the first-order kinetic equation, viz.

dC/dt = µCLAY ·µC:N ·µt,n · [S · k1+ (1− S) · k2], (B3)

where µCLAY, µC:N and µt,n are the reduction factors of clay

content, C : N ratio and temperature for nitrification, respec-

tively; S is the labile fraction of organic C compounds; k1
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and k2 are the specific decomposition rates of labile faction

and resistant fraction, respectively (day−1).

The NH4 amount (FIXNH4, kgha−1) absorbed by clay and

organic matter is estimated by

FIXNH4
=
[
0.41− 0.47 · log(NH4)

]
· (CLAY/CLAYmax) , (B4)

where NH4 is the NH+4 concentration in the soil liquid

(gkg−1). CLAY and CLAYmax are the clay content and the

maximum clay content, respectively.


log(KNH4

/KH2O)= log(NH4m/NH3m)+ pH,
NH3m

= 10

{
log(NH4)−(log(KNH4

)−log(KH2O))+pH
}
·(CLAY/CLAYmax)

,

AM= 2 · (NH3) · (D · t/3.14)0.5,

(B5)

where KNH4
and KH2O are the dissociation constants for

NH+4 : NH3 equilibrium and H+ : OH− equilibrium, respec-

tively; NH4m and NH3m are the NH+4 and NH3 concentra-

tions (molL−1) in the liquid phase, respectively; AM and D

are the accumulated NH3 loss (molcm−2) and diffusion co-

efficients (cm2 d−2), respectively.

The nitrification rate (dNNO, kg/ha/day) is a function of

the available NH+4 , soil temperature and moisture; N2O emis-

sion is a function of soil temperature and soil NH+4 concen-

tration, and is given as{
dNNO= NH4 · [1− exp(−K35 ·µt,n · dt)] ·µSW,n,
N2O= (0.0014 ·NH4/30.0) · (0.54+ 0.51 · T )/15.8,

(B6)

where K35 is the nitrification rate at 35 ◦C (mgkg−1 ha−1);

µSW,n is the soil moisture adjusted factor for nitrification.

Denitrification. The growth rate of denitrifiers ((dB/dt)g,

kgha−1 day−1) is proportional to their respective biomass

and is calculated by the double Monod kinetics equation as
(dB/dt)g = µDN ·B(t),

µDN = µt,dn · (uNO3
·µPH,NO3

+ uNO2
·µPH,NO2

+uN2O ·µPH,N2O),

uNxOy = uNxOy ,max · (C/KC,1/2+C)

·(NxOy/KNxOy ,1/2+NxOy),

(B7)

where B is the denitrifier biomass (kg); µDN is the relative

growth rate of the denitrifiers; uNxOy and uNxOy ,max are the

relative and maximum growth rates of NO−2 , NO−3 and N2O

denitrifiers, respectively. KC,1/2 and KNxOy ,1/2 are the half

velocity constants of C and NxOy , respectively; µPH,NxOy

and µt,dn are the reduction factors of soil pH and temper-

ature, respectively. The mathematical expressions are given

as
µPH,NO3

= 7.14 · (pH− 3.8)/22.8,

µPH,NO2
= 1.0,

µPH,N2O = 7.22 · (pH− 4.4)/18.8,

µt,dn =

{
2(T−22.5)/10 if T < 60 ◦C,

0 if T ≥ 60 ◦C.

(B8)

The death rate of denitrifier ((dB/dt)d , kgha−1 h−1) is pro-

portional to denitrifier biomass and is given as

(dB/dt)d =MC ·YC ·B(t), (B9)

where MC and YC are the maintenance coefficient of

C (1 h−1) and maximum growth yield of dissolved C

(kgha−1 hr−1), respectively.

The consumption rates of dissolved C and CO2 production

are calculated as{
dCcon/dt = (µDN/YC+MC) ·B(t) ·µSW,d

dCO2/dCcon,tdt − (dB/dt)d ,
(B10)

where µSW,d is the soil moisture adjusted factor for denitri-

fication.

The NO−3 , NO−2 , NO and N2O consumption is calculated

as

dNxOy/dt = (uNxOy/YNxOy +MNxOy ·NxOy/N)

·B(t) ·µPHNxOy ·µt,dn, (B11)

where MNxOy and YNxOy are the maintenance coefficient

(1 h−1) and maximum growth yield on NO−3 , NO−2 , NO or

N2O (kgha−1 h−1), respectively.

N assimilation is calculated on the basis of the growth rates

of denitrifiers and the C : N ratio (CNRD:N ) in the bacteria,

viz.

(dN/dt)ass = (dB/dt)g · (1/CNRD:N). (B12)

The emission rates are the functions of adsorption coeffi-

cients of the gases in soils and to the air-filled porosity of

the soil, and are given as
P(N2)= 0.017+ ((0.025− 0.0013 ·AD) ·PA

P(N2O)= [30.0 · (0.0006+ 0.0013 ·AD)

+(0.013− 0.005 ·AD)] ·PA

P(NO)= 0.5 · [(0.0006+ 0.0013 ·AD)

+(0.013− 0.005 ·AD) ·PA]

(B13)

where P(N2), P (NO) and P(N2O) are the emission rates of

N2, NO, and N2O, respectively, during a day; PA and AD

are the air-filled fractions of the total porosity and adsorption

factor depending on the clay content in the soil, respectively.

Nitrate leaching. The NO−3 leaching rate is a function of

clay content, organic C content and water infiltration in the

soil layer, and is given as

LeachNO3
=Winf ·µCLAY ·µsoc, (B14)

where LeachNO3
is the NO−3 leaching rate; µCLAY and µsoc

are the influence coefficients of clay content and soil organic

C, respectively.

B3 P cycle

The descriptions of P mineralization, decomposition and

sorption are adopted from Neitsch et al. (2011) and are pro-

vided in the Supplement.
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Appendix C: Dam regulation module (Zhang et al.,

2013)

The water balance model of the dam or sluice is considered

the inflow, outflow, precipitation, evapotranspiration, seep-

age and water withdrawal. The equation is

1V = Vflowin−Vflowout+Vpcp−Vevap−Vseep−Vwithd, (C1)

where 1V ,Vflowin and Vflowout are the water storage varia-

tion, and water volumes of entering and flowing out, respec-

tively (m3), and are calculated by HCM; Vpcp, Vevap and Vseep

are the volumes of precipitation, evaporation and seepage, re-

spectively (m3), and are the functions of surface water area

and water storage. Vwithd is the water withdraw volume (m3)

by humans and is given as a model input.

According to the design data of dams and sluices in China,

there is a particular relationship among water level, storage

and outflow. The outflow is determined by the water level

or water storage volume. The relationships are described by

equations.{
Vflowout = f

′(V ,H),

SA= f ′′(V ,H),
(C2)

where V and H are the water storage volume (m3) and wa-

ter level (m) during a day, respectively; f ′() and f ′′() are

the functions that could be determined by statistical analy-

sis methods (e.g., correlation analysis, linear or nonlinear re-

gression analysis, polynomial regression analysis and least

squares fitting).

Appendix D: Evaluation indices of model performance

Bias:

bias=

N∑
i=1

(Oi − Si)

/
N∑
i=1

Oi (D1)

Relative error:

re=

N∑
i=1

Oi − Si

Oi
× 100% (D2)

Root mean square error:

RMSE=

√√√√ N∑
i=1

(Oi − Si)2/N (D3)

Correlation coefficient:

r =

N∑
i=1

(Oi − Ō) · (Si − S̄)

/√√√√ N∑
i=1

(Oi − Ō)2 ·

N∑
i=1

(
Si − S̄

)2
(D4)

Nash–Sutcliffe efficiency:

NS= 1−

N∑
i=1

(Oi − Si)
2

/
N∑
i=1

(Oi − Ō)
2 , (D5)

where Oi and Si are the ith observed and simulated values,

respectively; Ō and S̄ are the average observed and simulated

values, respectively. N is the length of the series.
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The Supplement related to this article is available online

at doi:10.5194/hess-20-529-2016-supplement.

Acknowledgements. This study was supported by the Natural

Science Foundation of China (no. 41271005), the China Youth

Innovation Promotion Association CAS (no. 2014041), the Pro-

gram for “Bingwei” Excellent Talents (no. 2015RC201) and the

Key Project for the Strategic Science Plan (no. 2012ZD003) in

IGSNRR, CAS, the Endeavour Research Fellowship, the China

Visiting Scholar Project from the China Scholarship Council,

and the CSIRO Computational and Simulation Sciences Research

Platform. The authors would like to thank Yongqiang Zhang and

James R. Frankenberger for their participation in our internal

review procedure, Markus Hrachowitz and Christian Stamm for

improving the quality and presentation of the manuscript, and the

anonymous reviewers for their valuable comments and suggestions.

Edited by: M. Hrachowitz

References

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E.,

and Rasmussen, J.: An Introduction to the European System:

Systeme Hydrologique Europeen (SHE), J. Hydrol., 87, 61–77,

1986.

Abrahamsen, P. and Hansen, S. D.: an open soil-crop-atmosphere

system model, Environ. Model. Softw., 15, 313–330, 2000.

Arheimer, B. and Brandt, M.: Modelling nitrogen transport and re-

tention in the catchments of southern Sweden, Ambio, 27, 471–

480, 1998.

Arheimer, B. and Brandt, M.: Watershed modelling of non-point

nitrogen pollution from arable land to the Swedish coast in 1985

and 1994, Ecol. Engin., 14, 389–404, 2000.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.:

Large-area hydrologic modeling and assessment: Part I. Model

development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.

Beven, K. J.: A manifesto for the equifinality thesis, J. Hydrol., 320,

18–36, 2006.

Beven, K. J. and Kirkby, M. J.: A physically based variable con-

tributing area model of basin hydrology, Hydrol. Sci. Bull., 24,

43–69, 1979.

Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Donigian, A. S., and

Johanson, R. C.: Hydrologic Simulation Program – FORTRAN

(HSPF): User’s Manual for Release 10, Report No. EPA/600/R–

93/174, US EPA Environmental Research Lab, Athens, Ga, 1993.

Borah, D. K. and Bera, M.: Watershed-scale hydrologic and

nonpoint-source pollution models: Review of application, Trans.

ASAE, 47, 789–803, 2004.

Bouraoui, F. and Dillaha, T. A.: ANSWERS – 2000: Runoff and

sediment transport model, J. Environ. Eng., 122, 493–502, 1996.

Brown, L. C. and Barnwell, T. O.: The enhanced stream water qual-

ity models QUAL2E and QUAL2E-UNCAS: documentation and

user manual, Tufts University and Env. Res. Laboratory, US EPA,

Athens, Georgia, 1987.

Burt, T. P. and Pinay, G.: Linking hydrology and biogeochemistry

in complex landscapes, Prog. Phys. Geog., 29, 297–316, 2005.

China’s national standard (CNS): Current land use condition clas-

sification (GB/T21010–2007), General administration of quality

supervision, inspection and quarantine of China and Standard-

ization administration of China, Beijing, China, 2007.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and eli-

tist multiobjective genetic algorithm: NSGA–II, IEEE T. Evolut.

Comput., 6, 182–197, 2002.

Deng, J., Zhu, B., Zhou, Z. X., Zheng, X. H., Li, C. S., Wang, T., and

Tang, J. L.: Modeling nitrogen loadings from agricultural soils in

southwest China with modified DNDC, J. Geophys. Res., 116,

G02020, doi:10.1029/2010JG001609, 2011.

Di Toro, D. M., Fitzpatrick, J. J., and Thomann, R. V.: Water qual-

ity analysis simulation program (WASP) and model verification

program (MVP)-Documentation, Hydroscience, Inc., Westwood,

NY, for US EPA, Duluth, MN, Contract No. 68–01–3872, 1983.

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-

UA global optimization method for calibrating watershed mod-

els, J. Hydrol., 158, 265–284, 1994.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-

objective calibration approaches in hydrological modelling: a re-

view, Hydrol. Sci. J., 55, 58–78, 2010.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlen-

brook, S., and Savenije, H. H. G.: A framework to assess the

realism of model structures using hydrological signatures, Hy-

drol. Earth Syst. Sci., 17, 1893–1912, doi:10.5194/hess-17-1893-

2013, 2013.

Fovet, O., Ruiz, L., Hrachowitz, M., Faucheux, M., and Gascuel-

Odoux, C.: Hydrological hysteresis and its value for assessing

process consistency in catchment conceptual models, Hydrol.

Earth Syst. Sci., 19, 105–123, doi:10.5194/hess-19-105-2015,

2015.

Gassman, P. W., Reyes, M. R., Green, C. H., and Arnold, A. G.: The

soil and water assessment tool: historical development, applica-

tions, and future research directions, T. ASABE, 50, 1211–1250,

2007.

Goldberg, D. E.: Genetic algorithms in search, optimization, and

machine learning, Reading Menlo Park: Addison-Wesley, Mas-

sachusetts, USA, 1989.

Hamrick, J. M.: A three-dimensional environmental fluid dynamics

computer code: theoretical and computational aspects, Special

Report, The College of William and Mary, Virginia Institute of

Marine Science, Virginia, USA, 317, 1992.

Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapo-

transpiration, J. Irrigat. Drain. Div., 108, 225–230, 1982.

Henan Statistical Yearbook in 2003, 2004 and 2005: China Statistics

Press, Beijing, 2003, 2004, 2005.

Her, Y. and Chaubey, I.: Impact of the numbers of observations and

calibration parameters on equifinality, model performance, and

output and parameter uncertainty, Hydrol. Process., 29, 4220–

4237, 2015.

Horst, W. J., Kamh, M., Jibrin, J. M., and Chude, V. O.: Agronomic

measures for increasing P availability to crops, Plant. Soil., 237,

211–223, 2001.

Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink,

R., Freer, J., Savenije, H. H. G., and GascuelOdoux, C.: Process

consistency in models: The importance of system signatures, ex-

pert knowledge, and process complexity, Water Resour. Res., 50,

7445–7469, 2014.

www.hydrol-earth-syst-sci.net/20/529/2016/ Hydrol. Earth Syst. Sci., 20, 529–553, 2016

http://dx.doi.org/10.5194/hess-20-529-2016-supplement
http://dx.doi.org/10.1029/2010JG001609
http://dx.doi.org/10.5194/hess-17-1893-2013
http://dx.doi.org/10.5194/hess-17-1893-2013
http://dx.doi.org/10.5194/hess-19-105-2015


552 Y. Y. Zhang et al.: Integrated water system simulation

Johnes, P. J.: Evaluation and management of the impact of land use

change on the nitrogen and phosphorus load delivered to surface

waters: the export coefficient modelling approach, J. Hydrol.,

183, 323–349, 1996.

Johnsson, H., Bergstrom, L., Jansson, P. E., and Paustian, K.: Simu-

lated nitrogen dynamics and losses in a layered agricultural soil,

Agr. Ecosyst. Environ., 18, 333–356, 1987.

Kennedy, J.: Particle swarm optimization, Encyclopedia of Machine

Learning, Springer USA, 760–766, 2010.

Kindler, J.: Integrated water resources management: the meanders,

Water Int., 25, 312–319, 2000.

King, K. W., Arnold, J. G., and Bingner, R. L.: Comparison of

Green-Ampt and curve number methods on Goodwin Creek wa-

tershed using SWAT, T. ASABE, 42, 919–925, 1999.

Kirchner, J. W.: Getting the right answers for the right rea-

sons: Linking measurements, analyses, and models to advance

the science of hydrology, Water Resour. Res., 42, W03S04,

doi:10.1029/2005WR004362, 2006.

Krysanova, V., Mueller-Wohlfeil, D. I., and Becker, A.: Develop-

ment and test of a spatially distributed hydrological/water qual-

ity model for mesoscale watersheds, Ecol. Model., 106, 261–289,

1998.

Li, C., Frolking, S., and Frolking, T. A.: A model of nitrous oxide

evolution from soil driven by rainfall events: 1. Model structure

and sensitivity, J. Geophys. Res., 97, 9759–9776, 1992.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A Sim-

ple hydrologically based model of land surface water and energy

fluxes for GSMs, J. Geophys. Res., 99, 14415–14428, 1994.

Lindström, G., Pers, C. P., Rosberg, R., Strömqvist, J., and

Arheimer, B.: Development and test of the HYPE (Hydrological

Predictions for the Environment) model – A water quality model

for different spatial scales, Hydrol. Res., 41, 295–319, 2010.

Ma, F., Ye, A., Gong, W., Mao, Y., Miao, C., and Di, Z.: An estimate

of human and natural contributions to flood changes of the Huai

River, Global Planet Change, 119, 39–50, 2014.

Mantovan, P. and Todini, E.: Hydrological forecasting uncertainty

assessment: Incoherence of the GLUE methodology, J. Hydrol.,

330, 368–381, 2006.

Mantovan, P., Todini, E., and Martina, M. L. V.: Reply to comment

by Keith Beven, Paul Smith, and Jim Freer on “Hydrological

forecasting uncertainty assessment: Incoherence of the GLUE

methodology”, J. Hydrol., 338, 319–324, 2007.

McDonnell, J. J., Sivapalan, M., Vache, K., Dunn, S., Grant, G.,

Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L.,

Selker, J., and Weiler, M.: Moving beyond heterogeneity and pro-

cess complexity: A new vision for watershed hydrology, Water

Resour. Res., 43, W07301, doi:10.1029/2006WR005467, 2007.

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L.,

Harmel, R. D., and Veith, T.: Model evaluation guidelines for

systematic quantification of accuracy in watershed simulations,

T. ASABE, 50, 885–900, 2007.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-

ceptual models. Part I – A discussion of principles, J. Hydrol.,

27, 282–290, 1970.

Neitsch, S., Arnold, J., Kiniry, J., and Williams, J. R.: SWAT2009

Theoretical Documentation, Texas Water Resources Institute,

Temple, Texas, 2011.

Onstad, C. A. and Foster, G. R.: Erosion modeling on a watershed,

T. ASAE, 18, 288–292, 1975.

Paola, C., Foufoula-Georgiou, E., Dietrich, W. E., Hondzo, M.,

Mohrig, D., Parker, G., Power, M. E., Rodriguez-Iturbe, I.,

Voller, V., and Wilcock, P.: Toward a unified science of the

Earth’s surface: opportunities for synthesis among hydrology, ge-

omorphology, geochemistry, and ecology, Water Resour. Res.,

42, W03S10, doi:10.1029/2005WR004336, 2006.

Pohlert, T., Breuer, L., Huisman, J. A., and Frede, H.-G.: Integra-

tion of a detailed biogeochemical model into SWAT for improved

nitrogen predictions-model development, sensitivity and uncer-

tainty analysis, Ecol. Model., 203, 215–228, 2006.

Pokhrel, P., Gupta, H. V., and Wagener, T.: A spatial reg-

ularization approach to parameter estimation for a dis-

tributed watershed model, Water Resour. Res., 44, W12419,

doi:10.1029/2007WR006615, 2008.

Pushpalatha, R., Perrin, C., Le Moine, N., and Andréassian, V.: A

review of efficiency criteria suitable for evaluating low-?ow sim-

ulations, J. Hydrol., 420–421, 171–182, 2012.

Rallison, R. E. and Miller, N.: Past, present and future SCS runoff

procedure, in: Rainfall runoff relationship, edited by: Singh, V.

P., Water Resources Publication, Littleton, CO, 353–364, 1981.

Ritchie, J. T.: A model for predicting evaporation from a row crop

with incomplete cover, Water Resour. Res., 8, 1205–1213, 1972.

Ritter, A. and Muñoz-Carpena, R.: Performance evaluation of hy-

drological models: Statistical significance for reducing subjectiv-

ity in goodness-of-fit assessments, J. Hydrol., 480, 33–45, 2013.

Sharpley, A. N. and Williams, J. R.: EPIC-erosion/productivity im-

pact calculator: 1. Model documentation. Technical Bulletin-

United States Department of Agriculture, Agric. Res. Service,

Washington D.C., USA, 1990.

Shi, P., Chen, C., Srinivasan, R., Zhang, X., Cai, T., Fang, X., Qu,

S., Chen, X., and Li, Q.: Evaluating the SWAT model for hydro-

logical modeling in the Xixian watershed and a comparison with

the XAJ model, Water Resour. Manag., 25, 2595–2612, 2011.

Singh, V. P. and Woolhiser, D. A.: Mathematical modeling of wa-

tershed hydrology, J. Hydrol. Eng., 7, 270–292, 2002.

Sivapalan, M. and Kalma, J. D.: Scale problems in hydrology: con-

tributions of the Robertson Workshop, Hydrol. Process., 9, 243–

250, 1995.

Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C., and Lind-

ström, G.: Water and nutrient predictions in ungauged basins:

set-up and evaluation of a model at the national scale, Hydrol.

Sci. J., 57, 229–247, 2012.

Tattari, S., Bärlund, I., Rekolainen, S., Posch, M., Siimes, K.,

Tuhkanen, H. R., and Yli-Halla, M.: Modeling sediment yield

and phosphorus transport in Finnish clayey soils, T. ASABE, 44,

297–307, 2001.

Tonkin, M. J. and Doherty, J.: A hybrid regularized inversion

methodology for highly parameterized environmental models,

Water Resour. Res., 41, W10412, doi:10.1029/2005WR003995,

2005.

van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio,

M., and Srinivasan, R.: A global sensitivity analysis tool for the

parameters of multi-variable catchment models, J. Hydrol., 324,

10–23, 2006.

Vinogradov, Y. B., Semenova, O. M., and Vinogradova, T. A.: An

approach to the scaling problem in hydrological modelling: the

deterministic modelling hydrological system, Hydrol. Process.,

25, 1055–1073, 2011.

Hydrol. Earth Syst. Sci., 20, 529–553, 2016 www.hydrol-earth-syst-sci.net/20/529/2016/

http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.1029/2006WR005467
http://dx.doi.org/10.1029/2005WR004336
http://dx.doi.org/10.1029/2007WR006615
http://dx.doi.org/10.1029/2005WR003995


Y. Y. Zhang et al.: Integrated water system simulation 553

Wang, G. S., Xia, J., Tan, G., and Lu, A. F.: A research on distributed

time variant gain model: A case study on Chao River basin, Prog.

Geogr., 21, 573–582, 2002 (in Chinese).

Wang, G., Xia, J., and Chen, J.: Quantification of effects of cli-

mate variations and human activities on runoff by a monthly

water balance model: A case study of the Chaobai River

basin in northern China, Water Resour. Res., 45, W00A11,

doi:10.1029/2007WR006768, 2009.

Wang, J. Q., Ma, W. Q., Jiang, R. F., and Zhang, F. S.: Analysis

about amount and ratio of basal fertilizer and topdressing fertil-

izer on rice, wheat, maize in China, Chin. J. Soil Sci., 39, 329–

333, 2008 (in Chinese).

Wang, X.: Summary of Huaihe River Basin and Shandong Penin-

sula Integrated Water Resources Plan, China Water Resour., 23,

112–114, 2011.

Williams, J. R., Jones, C. A., and Dyke, P. T.: Modeling approach

to determining the relationship between erosion and soil produc-

tivity, Trans. ASAE, 27, 129–144, 1984.

Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The

EPIC crop growth model, Trans. ASAE, 32, 497–511, 1989.

Xia, J.: Identification of a constrained nonlinear hydrological sys-

tem described by Volterra Functional Series, Water Resour. Res.,

27, 2415–2420, 1991.

Xia, J., Wang, G. S., Tan, G., Ye, A. Z., and Huang, G. H.: De-

velopment of distributed time-variant gain model for nonlinear

hydrological systems, Sci. China: Earth Sci., 48, 713–723, 2005.

Xing, G. X. and Zhu, Z. L.: An assessment of N loss from agricul-

tural fields to the environment in China, Nutr. Cycl. Agroecosys.,

57, 67–73, 2000.

Zhai, X. Y., Zhang, Y. Y., Wang, X. L., Xia, J., and Liang, T.: Non-

point source pollution modeling using Soil and Water Assess-

ment Tool and its parameter sensitivity analysis in Xin’anjiang

Catchment, China, Hydrol. Process., 28, 1627–1640, 2014.

Zhang, Y. Y., Xia, J., Liang, T., and Shao, Q. X.: Impact of water

projects on River Flow Regimes and Water Quality in Huai River

Basin, Water Resour. Manag., 24, 889–908, 2010.

Zhang, Y. Y., Xia, J., Shao, Q. X., and Zhai, X. Y.: Water quantity

and quality simulation by improved SWAT in highly regulated

Huai River Basin of China, Stoch. Env. Res. Risk A., 27, 11–27,

2013.

Zhu, Z. L.: Loss of fertilizer N from plants-soil system and the

strategies and techniques for its reduction, Soil Environ. Sci., 9,

1–6, 2000 (in Chinese).

www.hydrol-earth-syst-sci.net/20/529/2016/ Hydrol. Earth Syst. Sci., 20, 529–553, 2016

http://dx.doi.org/10.1029/2007WR006768

	Abstract
	Introduction
	Methods and material
	Model framework
	Hydrological cycle module (HCM)
	Modules for ecological processes
	Modules for water quality processes
	Dam regulation module (DRM)
	Parameter analysis tool (PAT)

	Model operation
	Multi-scale solution
	Basic data sets and spatial delineation

	Study area and model testing
	Study area
	Model setup
	Model evaluation


	Results
	Parameter sensitivity analysis
	Hydrological simulation
	Water quality simulation
	Crop yield simulation

	Discussion
	Comparison with other models
	Equifinality
	Model limitations

	Conclusions
	Appendix A: Hydrological cycle module
	Appendix B: Soil biochemical module
	Appendix B1: Soil temperature (Williams et al., 1984)
	Appendix B2: C and N cycle (Li et al., 1992)
	Appendix B3: P cycle

	Appendix C: Dam regulation module (Zhang et al., 2013)
	Appendix D: Evaluation indices of model performance
	Acknowledgements
	References

