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The specification of model parameters in numerical weather prediction (NWP) models has
great influence on model performance. However, how to specify model parameters properly
is not a trivial task because a typical NWP model like the Weather Research and Forecasting
(WRF) model contains many model parameters and many model outputs. This article
presents the results of an investigation into the sensitivities of different WRF model outputs
to the specification of its model parameters. Using a global sensitivity analysis method, the
sensitivities are evaluated for surface meteorological variables such as precipitation, surface
air temperature, humidity and wind speed, as well as for atmospheric variables such as total
precipitable water, cloud cover, boundary-layer height and outgoing long-wave radiation
at the top of the atmosphere, all simulated by the WRF model using different model
parameters. The goal of this study is to identify the parameters that exert most influence on
the skill of short-range meteorological forecasts. The study was performed over the Greater
Beijing Region of China. A total of 23 adjustable parameters from seven different physical
parametrization schemes were considered. The results indicate that parameter sensitivities
vary with different model outputs. However, some of the 23 model parameters considered
are shown to be sensitive to all model outputs evaluated, while other parameters may be
sensitive to a particular output. The sensitivity results from this research are a basis for
further optimizations of the WRF model parameters.
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1. Introduction

The performance of numerical weather prediction (NWP) models
such as the Weather Research and Forecasting (WRF) model is
affected by three sources of uncertainties: (i) the representation of
model physics, (ii) the specification of initial and lateral boundary
conditions, and (iii) the specification of model parameters (i.e.
the coefficients and exponents in model equations). In order to
improve model performance, all three sources of uncertainty must
be quantified and reduced. In literature, there is a lot of attention
devoted to creating the most physically realistic model possible
(Stensrud, 2007). A good example is the creation of the WRF
model, which can be looked at as millions of different individual
models on a single platform (Skamarock et al., 2008). For each
physical process (related to land surface, planetary boundary
and surface layers, microphysics, radiation, and cumulus clouds),
the WRF model has many different parametrization schemes
to choose from and any feasible combination of those schemes
renders a specific version of the WRF model. Several carefully

chosen combinations of the WRF model parametrization schemes
can be used to generate perturbed-physics ensemble forecasts
(Bellprat et al., 2012; Tapiador et al., 2012). Data assimilation
techniques are regarded as one of the most effective ways to
improve NWP forecasting performance in recent years. It works
through mathematical operations that merge model simulations
and observations to create the initial model states most consistent
with the observations (Evensen, 1997; Kalnay, 2003). There exist
many data assimilation methods (e.g. 3D-Var, 4D-Var, Ensemble
Kalman Filter, etc.) that have been adopted in operational
NWP forecasting systems and have been shown to play a
critical role in improving model performance (Wang et al., 2008;
Huang et al., 2009). However, better physical representation and
data assimilation alone are not sufficient to generate accurate
and reliable meteorological forecasts (Gao and Chou, 1994).
Parameter estimation is another important avenue for improving
NWP model performance.

Researchers have been aware of the importance of reducing
model parametric uncertainty in improving model performance
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(Qiu and Chou, 1987). There are several ways to estimate model
parameters. Parameters with clear physical meanings can be
determined using observations or by theoretical calculation.
Parameter values may also be chosen using a ‘trial and error’
method (Allen, 1999; Knutti et al., 2002), which is subjective
and highly labour intensive, and requires expert knowledge of
the model. A more objective way of parameter estimation is to
use inverse methods which minimize a cost function measuring
the fitness between the model simulations with observations
through parameter tuning. Different inverse methods have been
used to estimate parameters of NWP models, including the
variational methods (Guo et al., 1997; Lea et al., 2000, 2002; Köhl
and Willebrand, 2002, 2003) and ensemble Kalman filter (Annan
and Hargreaves, 2004; Annan et al., 2005a, 2005b; Schirber et al.,
2013). Other inverse methods, such as Markov Chain Monte
Carlo (MCMC), Genetic Algorithm (GA), Very Fast Simulated
Annealing (VFSA), among others, have also been used to estimate
the parameters of NWP and climate models (Jackson et al., 2004;
Severijns and Hazeleger, 2005; Villagran et al., 2008; Medvigy
et al., 2010; Gregoire et al., 2011; Jarvinen et al., 2012; Solonen
et al., 2012; Ollinaho et al., 2013). Those methods generally
require a large number of model experiments to identify the
optimal parameter sets and thus make their use for optimizing
parameters of full-scale NWP models very difficult.

There are several difficulties in estimating NWP model
parameters. First, the number of tunable parameters in NWP
models is typically large (from tens to >100), and the required
number of model experiments for parameter optimization
using conventional optimization methods increases exponentially
with the growth of parameter dimension, up to 104 or more
(i.e. the ‘curse of dimensionality’ problem). Second, NWP
models simulate many different meteorological variables such
as precipitation, temperature, humidity, atmospheric pressure,
wind, among others. Parameter estimation must consider several
variables of interest simultaneously (Randall and Wielicki, 1997;
Bellprat et al., 2012). Third, NWP models are very expensive
to run. Even with today’s supercomputers, it is still not
computationally affordable to run long periods of NWP model
simulations for thousands of times. To address those difficulties,
more effective inverse methods must be developed.

There is noteworthy development in new parameter estimation
methods for large complex system models like the NWP models.
Those methods typically involve two key measures. One measure
is to reduce the parameter dimensionality using sensitivity analysis
to screen out the insensitive parameters from the sensitive ones so
one can focus on estimating parameters that exert great influence
on model outputs of interest. Global sensitivity analysis (GSA)
methods have been shown to be very effective for this purpose
(Saltelli et al., 2004). GSA methods use a design-of-experiment
(DoE) approach to sample model parameters judiciously within
the feasible parameter space with a limited number of model
runs and employ various sensitivity measures to screen model
parameters. There are numerous studies which use GSA methods
to examine the parametric sensitivity of land surface models,
NWP models, as well as climate models (Liu et al., 2004; Bastidas
et al., 2006; Xiong et al., 2010; Santanello et al., 2011; Hou et al.,
2012; Johannesson et al., 2014). Several studies have examined
the parametric sensitivities of the WRF model with respect to
different physical processes (Ruiz et al., 2007; Loridan et al., 2009;
Kim and Wang, 2011; Yang et al., 2012; Di et al., 2015). Another
key measure used in parameter estimation of NWP models is the
use of surrogate models to emulate the response surface of NWP
models to reduce the computational demand (O’Hagan et al.,
2006; Neelin et al., 2010). Once the surrogate model is established,
any follow-up parameter estimation studies can be carried out
on the surrogate model instead of the original dynamical model
(Wang et al., 2014).

In our previous work, we have investigated the parameter
sensitivities of the WRF model with respect to precipitation
forecasting skill (Di et al., 2015). Of 23 parameters examined, we

found that less than ten of them are very sensitive in influencing
precipitation forecasting. Since the WRF model involves more
than just precipitation forecasting, other meteorological variables
are also of great interest, such as surface air temperature and
pressure, wind speed, humidity, and long-wave and short-wave
radiation. In addition, it is very important to know how some
atmospheric variables, such as total precipitable water in the
atmosphere, boundary-layer height, cloud cover and the outgoing
radiation at the top of the atmosphere, respond to different
parameter specifications. In this article, the sensitivities of the
WRF model parameters for those meteorological variables are
analysed. The goal is to identify which model parameters exert
the most influence on model outputs of different meteorological
variables. The results will form the basis for multi-objective
parameter optimization in the follow-up studies.

The article is organized as follows: section 2 describes the
sensitivity analysis method used in this study. Section 3 presents
the experimental design and the data. Section 4 discusses and
analyses the experimental results. Section 5 provides summary
and conclusions.

2. Methodology

The purpose of sensitivity analysis (SA) is to apportion the
influence of different model inputs (i.e. parameters) on model
outputs of interest. The SA process works as follows: (i) select
the right model to be used and identify its tunable parameters,
(ii) define the feasible ranges and distributions of the tunable
parameters using prior knowledge, (iii) choose an appropriate
SA method and objective functions to quantify the parameter
sensitivity, (iv) conduct design of experiment (DoE) to sample
the parameter space and run the model with those parameter
samples, and (v) analyse the model outputs generated by different
inputs and obtain the SA results.

For this study, we investigate the sensitivities of different
WRF model outputs to the specification of its model parameters.
The selection of the parameters and the feasible ranges and
distributions of those parameters are presented in section 3.1.
The Morris one-at-a-time (MOAT) is chosen as the SA method
in this study for its efficiency (Morris, 1991). The specific
MOAT steps are as follows: considering a model with m
parameters, let X = (x1, x2, x3, · · · , xm) be the parameter vector,
with the range of each parameter normalized to [0, 1] and
divided into p equally spaced intervals. An initial parameter set,
X0 = (x0

1
, x0

2, x0
3
, · · · , x0

m
), is sampled in the feasible space, with

each element of X0 taking on a value randomly selected out of
the set {0, 1/(p - 1), 2/(p - 1), · · · , (p - 2)/(p - 1), 1}. Run the model
with X0 and then compute its objective function value f (X0).
Then perturb a single parameter from X0 (say x0

j ) by �j to obtain

X1 = (x0
1
, x0

2, x0
3, · · · , x0

j + �j, · · · , x0
m

) and then compute f (X1),
where �j is a pre-selected multiple of 1/(p - 1) with a positive

or a negative sign. Compute the gradient dj = f (X1)- f (X0)
�j

. Repeat

this process for all j ∈ {1, 2, . . . , m} to complete a MOAT path
and record D1 = {d1, d2, . . . , dm}. For robust results, r random
replicates of several complete MOAT paths are required, i.e.
D = {D1, D2, . . . , Dr}.

There are two sensitivity indices for the MOAT method:

μj =
r∑

i=1

|dj(i)|/r, (1)

σj =
√√√√

r∑
i=1

(dj(i) − μj)
2/r, (2)

where μj, the average of absolute gradients associated with
parameter j, represents the parameter’s overall effect; σ j, the
standard deviation of the gradients associated with parameter
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Table 1. Specific parametrization schemes used for the WRF model set-up.

Physical process Specific scheme

Surface layer MM5 Monin–Obukhov scheme (Dudhia et al.,
2005)

Cumulus Kain–Fritsch Eta scheme (Kain, 2004)
Microphysics WSM 6 single-class scheme (Hong and Lim, 2006)
Short-wave radiation Dudhia scheme (Stephens et al., 1984; Dudhia,

1989)
Long-wave radiation RRTM scheme (Mlawer et al., 1997)
Land surface Noah land surface model scheme (Chen and

Dudhia, 2001)
Planetary boundary layer Yonsei University (YSU) scheme (Hong et al., 2006)

j, describes the covariant effect of this parameter with other
parameters, also known as the interactive effect. The larger the μj

value, the more sensitive the parameter is. When σ j is large, it
means the combined effect of parameter j with other parameters
on model outputs is not simply additive, but compensatory.

3. Numerical experimental design

3.1. WRF model set-up and selection of tunable parameters

Advanced Research WRF (ARW) version 3.3.1 was used to analyse
the model parameter sensitivity. The WRF model represents seven
different physical processes: microphysics, cumulus convection,
near-surface physics, land-surface physics, planetary boundary-
layer physics, and atmospheric long-wave and short-wave
radiative transfer. For each physical process, there are numerous
alternative parametrization schemes to choose from. In this study
we choose a specific combination of parametrization schemes that
is used by the Beijing Institute of Urban Meteorology (Table 1).

For the study area, we used a two-grid horizontally nested
simulation area encompassing the Greater Beijing Area (Figure 1).
For the outer layer (i.e. d01 area in Figure 1), the horizontal
resolution was 27 km with a total of 88 points in the east–west
direction and 56 points in the north–south direction. For the
inner layer (i.e. d02 area in Figure 1), the horizontal resolution
was 9 km, with a total of 61 points in the east–west direction and
49 points in the north–south direction. In the vertical direction,
there are 38 layers partitioned based on the air pressure. The NCEP
1◦ × 1◦ gridded reanalysis dataset provided the initial and lateral
boundary conditions for the WRF model (http://rda.ucar.edu/
datasets/ds083.2/index.html#!description). Note that we used the
3 km land use data in which there were 33 categories of land
use to describe the underlying surface conditions (Zhang et al.,
2013). Since we are interested in the forecast of high intensity
precipitation events over the summer, nine 5-day rainfall events
from June, July and August between 2008 and 2010 were selected
for the sensitivity analysis of model parameters (Figure 2).

Based on our prior knowledge, the reading of related
literature and the communications with WRF experts and WRF
parametrization scheme developers, we identified 23 parameters
as important to forecasting of summer storms (Xiong et al., 2010;
Hou et al., 2012; Yang et al., 2012; Li et al., 2013). This list of
parameters and their variation ranges are shown in Table 2. We
must note that this list does not include all possible important
parameters. However, the methodology we presented here can be
generalized in other NWP model parameter sensitivity analyses.

3.2. Sensitivity analysis toolbox used

The Uncertainty Quantification Python Laboratory (UQ-PyL)
software platform developed at Beijing Normal University was
used for the sensitivity analysis. UQ-PyL is an uncertainty analysis
and optimization tool for highly complex dynamic system models
(Wang et al., 2016). It provides a large number of functions,
including experimental design, sensitivity analysis, statistical
analysis, surrogate modelling, and numerical optimization. In

Figure 1. Two layers nested simulation area. The horizontal resolution of the
outer layer is 27 km and there are in total 88 points in the west–east direction and
56 points in the south–north direction. The horizontal resolution of the inner
layer (d02) is 9 km and there are in total 61 points in the west–east direction and
49 points in the north–south direction.

this study, we used the MOAT method from UQ-PyL for the SA
study.

Based on our previous studies, the MOAT method requires
about ten replications to obtain reliable SA results (Li et al., 2013;
Gan et al., 2014; Di et al., 2015). Therefore, for this study, we
generated the MOAT design with ten replications of random
MOAT paths (i.e. r = 10). Since 23 parameters are considered, a
total of (23 + 1) × 10 = 240 parameter samples were generated for
the SA study based on the MOAT design. In terms of algorithmic
parameters, the MOAT method used four levels to sample model
parameters (i.e. p = 4), and the perturbation for parameter j is
set to �j = 2/p, where j = 1, 2, . . . , m and m is the parameter
dimension.

3.3. The WRF model outputs and the cost function used for the SA
study

We conducted SA study of WRF model outputs to different model
parameter values for many meteorological variables, including
precipitation (PR), surface air temperature (SAT), wind speed
(WS), surface atmospheric pressure (SAP), relative humidity
(RH), downward short-wave radiative flux (DSWRF) and long-
wave radiative flux (DLWRF). We also examined the parameter
sensitivities of atmospheric variables such as cloud fraction (CF)
and planetary boundary-layer height (PBLH), total precipitable
water (TPW) and outgoing long-wave radiation flux at the top of
the atmosphere (OLR). The sensitivities are evaluated based on
the discrepancies of model simulations using different parameter
values and the model simulations using the default parameter
values (i.e. the simulations from a control run).

The discrepancy between the model simulation and the
reference target (i.e. observation or control simulation) is also
known as the cost function or the objective function. There are
many different types of objective functions. One commonly used
objective function is the root-mean-squared error (RMSE) or
the mean absolute error (MAE); both represent the aggregate
difference between model simulation and reference target. In
operational forecasting, there are many other cost functions or
performance metrics such as Bias Score, Threat Score, Equitable
Threat Score, and Proportion of Correct Forecast, among others.

In this study, RMSE was used as the cost function for all
variables. The RMSE is calculated as follows:

RMSE =
√√√√ 1

n

n∑
i=1

(Si-Ti)2, (3)

where Si represents the 3-hourly simulations at point i (time or
space) and Ti represents simulation targets at point i, which can
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http://rda.ucar.edu/datasets/ds083.2/index.html#!description
http://rda.ucar.edu/datasets/ds083.2/index.html#!description


J. Quan et al.

0 10 20 30 10 20 31 10 20 31
0

10

20

30

40

50
2008

June July August

(a)

(b )

(c)

A
cc

um
ul

at
ed

 P
re

ci
pi

ta
tio

n 
(m

m
)

June July August
0 10 20 30 10 20 31 10 20 31

0

10

20

30

40
2009

(d ) (e )

(f)

A
cc

um
ul

at
ed

 P
re

ci
pi

ta
tio

n 
(m

m
)

0 10 20 30 10 20 31 10 20 31
0

10

20

30

40
2010

June July August

(g )

(h ) (i)

A
cc

um
ul

at
ed

 P
re

ci
pi

ta
tio

n 
(m

m
)

Figure 2. Daily regional average of rainfall in the D02 area. Black boxes are used to mark the events that will be simulated. For (a), the simulation date is from 26 to
30 June 2008. For (b), the simulation date is from 10 to 14 July 2008. For (c), the simulation date is from 7 to 11 August 2008. For (d), the simulation date is from 5 to
9 June 2009. For (e), the simulation date is from 20 to 24 July 2009. For (f), the simulation date is from 14 to 18 August 2009. For (g), the simulation date is from 13 to
17 June 2010. For (h), the simulation date is from 16 to 20 July 2010. For (i), the simulation date is from 17 to 21 August 2010.

Table 2. List of tunable parameters for the WRF model.

Index Scheme Parameter Default Range Description

P1 Surface layer (module_sf_sfclay.F) xka 2.4e−5 [1.2e−5 5e−5] The parameter for heat/moisture exchange
coefficient (s m−2)

P2 czo 0.0185 [0.01 0.037] The coefficient for converting wind speed to
roughness length over water

P3 Cumulus (module_cu_kfeta.F) pd 1 [0.5 2] The multiplier for downdraught mass flux rate
P4 pe 1 [0.5 2] The multiplier for entrainment mass flux rate
P5 ph 150 [50 350] Starting height of downdraught above USL

(hPa)
P6 timec 2 700 [1 800 3 600] Average consumption time of CAPE(s)
P7 tkemax 5 [3 12] The maximum turbulent kinetic energy (TKE)

value in sub-cloud layer (m2 s−2)
P8 Microphysics (module_mp_wsm6.F) ice_stokes_fac 14 900 [8 000 30 000] Scaling factor applied to ice fall velocity (s−1)
P9 n0r 8e+6 [5e+6 1.2e+7] Intercept parameter of rain (m−4)
P10 dimax 5e−4 [3e−4 8e−4] The limited maximum value for the cloud-ice

diameter(m)
P11 peaut 0.55 [0.35 0.85] Collection efficiency from cloud to rain auto

conversion
P12 Short-wave radiation (module_ra_sw.F) cssca 1e−5 [5e−6 2e−5] Scattering tuning parameter (m2 kg−1)
P13 Beta_p 0.4 [0.2 0.8] Aerosol scattering tuning parameter (m2 kg−1)
P14 Long-wave (module_ra_rrtm.F) Secang 1.66 [1.55 1.75] Diffusivity angle for cloud optical depth

computation
P15 Land surface (module_sf_noahlsm.F) hksati 1 [0.5 2] The multiplier for hydraulic conductivity at

saturation
P16 porsl 1 [0.5 2] The multiplier for the saturated soil water

content
P17 phi0 1 [0.5 2] The multiplier for minimum soil suction
P18 bsw 1 [0.5 2] The multiplier for Clapp and Hornbereger ‘b’

parameter
P19 Planetary boundary layer (module_bl_ysu.F) Brcr_sbrob 0.3 [0.15 0.6] Critical Richardson number for boundary layer

of water
P20 Brcr_sb 0.25 [0.125 0.5] Critical Richardson number for boundary layer

of land
P21 pfac 2 [1 3] Profile shape exponent for calculating the

momentum diffusivity coefficient
P22 bfac 6.8 [3.4 13.6] Coefficient for Prandtl number at the top of the

surface layer
P23 sm 15.9 [12 20] Countergradient proportional coefficient of

non-local flux of momentum

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)



Evaluating Parametric Sensitivities of WRF Model

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

1
2

3

4
5

6
7

8

9
1011

12

13

1415

16

17

18

19

20

21

2223

0 0.05 0.1 0.15 0.2 0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

12

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17 18

19

20

21

22

23

(b)

(e)

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

12

3

4

5

67

8

9
10

11

12

13

14
15

16

17

18

19
20

21

22
23

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

1
2

3
45

67
8

9

10

11

12

13

14

15

16

17

18

19
20

21

22
23

(c)

(f)

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

12

3 4
5

6
7

8
9

1011

12

13
14

15

16

17

18

19 20

21

2223

M
O

A
T

−
st

an
da

rd
 d

ev
ia

tio
n

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

12

3
45

6 7
8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23M
O

A
T

−
st

an
da

rd
 d

ev
ia

tio
n

0 5 10 15 20 25

0

5

10

15

20

25

30

1
2

3
4 5

6 7

8

9

10

11

12

13 14
15

16

17 18
19

20

21

22

23

MOAT−Mean

M
O

A
T

−
st

an
da

rd
 d

ev
ia

tio
n

(a)

(d)

(g)

Figure 3. The MOAT parameter sensitivity plots for conventional observational variables. (a) PR, (b) SAT, (c) SAP, (d) RH, (e) WS, (f) DLWRF, and (g) DSWRF.

be the corresponding observations or the simulations of a control
run. In this study, RMSE is computed using the simulations from
a control run that uses default model parameters as the targets.

4. Results and analysis

4.1. Parameter sensitivity of different meteorological variables
simulated by the WRF model

The WRF model was run 240 times using the parameter samples
generated according to the MOAT design described in section 3.2.
We evaluated the RMSE values of the simulations for different
meteorological variables from the 240 model runs and computed
the MOAT sensitivity indices according to Eqs (1) and (2).

Figure 3 shows the MOAT SA results for the surface
meteorological variables. For each subplot, the horizontal axis
and the vertical axis represent the values of the MOAT mean
and MOAT standard deviation, respectively. In those plots, the
larger the value of the MOAT mean is, the more sensitive the
parameter is. Meanwhile a large value for the MOAT standard
deviation indicates high interaction of the parameter with other
parameters. Parameters P12, P16, P21, P3 and P5 appear as very
sensitive parameters, while parameters P13, P19 and P17 are not
sensitive parameters for all of those variables considered. P4 is
considered one of the sensitive parameters for all of the variables
except for DSWRF. P8 and P10 appear as the most sensitive
parameters for DSWRF and DLWRF. P14 is one of the most
sensitive parameters for DLWRF. P20 and P22 are among the
most sensitive parameters for RH.

The parameter sensitivities for atmospheric variables such as
CF, PBLH, OLR and TPW were also evaluated. Figure 4 shows
the MOAT SA results for those variables. The results show that

P12, P16 and P21 rank at or near the top of the most sensitive
parameters for all four variables and P13, P19 and P17 are the least
sensitive. In addition, P8 and P10, the two microphysics-related
parameters, are the most sensitive parameters for CF. They also
exert great influence on OLR. P4 is considered very sensitive for
TPW, and P22 and P20 are among the most sensitive for PBLH.

We normalized the MOAT mean values of all meteorological
variables to [0 1] and plot them in Figure 5. The vertical axis
denotes the normalized MOAT means and the horizontal axis
denotes the different parameters. The darkest colour corresponds
to 1 (i.e. the most sensitive), while blank colour denotes 0 (i.e. the
least sensitive). From the figure, it can be observed that P12, P16
and P21 are the most sensitive parameters for all of the variables.
P3, P4 and P5 appear as very sensitive parameters for many of
the variables, except one or two variables. It is apparent that P8
and P10 are the most sensitive parameters for CF and OLR. They
also show significant sensitivity for DSWRF and DLWRF. Some
parameters are only sensitive with respect to a few meteorological
variables (e.g. P14 for DLWRF, and P20 and P22 for RH and
PBLH). Twelve of the considered parameters are not sensitive to
any variables (i.e. P1, P2, P6, P7, P9, P11, P13, P15, P17, P18, P19
and P23).

4.2. Effect of different model parameters on the errors of PR and
SAT forecasts

The MOAT SA results presented above inform us which
WRF model parameters exert the most influence on different
meteorological variables. They can be used as a basis for
parameter optimization of the WRF model to improve its forecasts
of meteorological variables of interest such as PR and SAT.
Conducting a proper parameter optimization study for the WRF

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2016)
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Figure 4. The MOAT parameter sensitivity plots for nonconventional observational variables. (a) CF, (b) OLR, (c) TPW, and (d) PBLH.
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Figure 5. The normalized MOAT means of different parameters for meteoro-
logical variables considered, with 1 implying the most sensitive and 0 the least
sensitive parameter.

model is, however, an enormous task that exceeds the scope
of this article. Still, we can use the simulation results from the
SA study to gain insight into how forecast errors of variables
such as PR and SAT can be reduced by using a different model
parameter set from the default one. To do this, we computed the
RMSE values of PR and SAT simulations for all 240 parameter
samples obtained from the SA study and selected the parameter
sets corresponding to the lowest RMSE values for PR and SAT,
respectively. Those values are then compared to the RMSE values
for PR and SAT simulations using the default model parameter
set (Table 3). It is clear that the RMSE values can be improved by
at least 22 and 11% for PR and SAT, respectively, when model
parameters are changed from the default parameters. Figures 6
and 7 show the observed and two sets of forecasted daily average
PR and SAT values of all nine storm events over the forecast
domain. Also shown in those figures are the spatial patterns
of the residuals between observed and forecasted daily averages

Table 3. Root-mean-square error (RMSE) of PR and SAT simulations using
default and optimized parameter sets.

Name Default Optimized Improvement (%)

PR 3.332 2.584 22.45
SAT 2.504 2.206 11.90

for PR and SAT. Those results confirmed the improvement
in PR and SAT simulations. The spatial patterns of the daily
average of the PR and SAT simulations generated using the
parameters corresponding to the lowest RMSE are much closer
to the observed patterns compared to that using the default
parameters (Figures 6(b,c) and 7(b,c). The residuals between
observed and forecasted daily averages for PR and SAT are also
reduced dramatically. Note that the improvement is achieved
with model parameters sampled using the MOAT design at very
coarse grids. If more powerful optimization methods are used,
more improvement can be achieved.

4.3. Discussion of the SA results of all meteorological variables

It is reasonable that parameter P12, P16 and P21 are the most
sensitive for all of the variables. For P12 (scattering tuning
parameter in the clear sky), it directly affects the solar radiation
reaching to the ground (DSWRF). With a larger P12, DSWRF
will decrease, leading to less evaporation and lower land-surface
heating rate, so surface atmospheric temperature (SAT) will
be lower, specific humidity and total precipitable water (TPW)
will go down. For P16 (the multiplier for the saturated soil
water content), this parameter affects the saturated soil water
content. Because saturated soil water content is an important
factor for heat and moisture transportation in the soil, it will
affect the evaporation and heat exchange between the land and
atmosphere. Consequently, this parameter affects the surface
atmospheric temperature (SAT), specific humidity and total
precipitable water (TPW). For P21 (profile shape exponent for
calculating the turbulent momentum diffusivity coefficient), this
parameter affects the intensity of turbulence by controlling the
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Average Daily Precipitation over 45 days

(a)

(b)
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Figure 6. Comparison of daily average simulated precipitation (PR) for the nine 5-day events using default and optimized parameters. In (d) and (e), solid and dotted
contour lines represent positive and negative, respectively. (a) Obs, (b) Default, (c) Opt, (d) Default−Obs, and (e) Opt−Obs.

turbulent momentum diffusivity coefficient in the PBL, so the
wind speed (WS) and planetary boundary-layer height (PBLH)
will be affected. Because momentum exchange coefficient is one
determining factor for the exchange coefficients for heat and
moisture, this parameter also affects the upward transportation
of heat and moisture near the surface. As a result, the surface
temperature (SAT) and specific humidity will also be influenced
by this parameter.

The sensitivity of P12, P16 and P21 on other meteorological
variables can be explained based on their effect on surface
temperature (SAT) and specific humidity. As the SAT and specific
humidity are changed, the relative humidity (RH) and surface
atmospheric pressure (SAP) will also be changed. Because SAT
influences the strength of turbulence, the change of SAT will lead
to the change of the planetary boundary-layer height (PBLH).
Due to the different heat capacity of different land use types, the
change of SAT is not uniform in space, so the change of SAP is not
uniform, and then the wind speed (WS) will be affected. SAT and
specific humidity also affect the stability of the atmosphere, and
then affect the convection. With larger SAT and specific humidity,
the triggering of convection is easier, leading to more precipitation
(PR) and cloud cover (CF). Because of the radiation effect of cloud,
downward short-wave radiation (DSWRF), downward long-wave
radiation (DLWRF) and outgoing long-wave radiation (OLR) will
be changed.

The other three sensitive parameters for many of the variables,
except one or two, are P3, P4 and P5. Their sensitivity also can

be interpreted by physics. For parameter P3 (the multiplier for
downdraught mass flux rate), P4 (the multiplier for entrainment
mass flux rate) and P5 (starting height of downdraught above
updraught source layer (USL)), they all control the intensity of
convection. The perturbation of these parameters will change the
intensity of convection, and then the formation of cloud (cloud
fraction (CF), cloud height, etc.), the occurrence of precipitation
and precipitation amount (PR). Variables related to cloud such
as outgoing long-wave radiation (OLR), downward short-wave
radiation flux (DSWRF), and downward long-wave radiation
flux (DLWRF) will also be affected. With the occurrence of
precipitation, the surface atmospheric temperature (SAT) will
be lower and relative humidity (RH) will increase, so the
surface atmospheric pressure (SAP) will also change. When
the precipitation decreases, total precipitable water (TPW) will
increase. Because the convection will affect the atmospheric
circulation, these parameters are also sensitive to wind speed
(WS).

Another noticeable result is that parameter P8 and P10 appear
to be very sensitive for CF, OLR, DSWRF and DLWRF. P8 (scaling
factor applied to ice fall velocity) and P10 (the limited maximum
value for the cloud-ice diameter) both modulate the terminal
velocities of falling ice crystals in the microphysics scheme. Any
change of their value will significantly influence the attributes
of cloud (e.g. cloud water and cloud ice) by controlling the
sedimentation of ice crystals. Because the cloud fraction (CF) in
WRF is estimated based on the cloud attributes (cloud water,
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Average Temperature over 45 days
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Figure 7. Comparison of daily average simulated surface air temperature (SAT) at 2 m for the nine 5-day events using default and optimized parameters. In (d) and
(e), solid and dotted contour lines represent positive and negative, respectively. (a) Obs, (b) Default, (c) Opt, (d) Default−Obs, and (e) Opt−Obs.

ice and snow) (Zheng, 2013), CF will be affected. Since cloud
efficiently affects the amount of DSWRF by reflecting the solar
radiation, and the amount of DLWRF and OLR by absorbing
and emitting long-wave radiation, parameters P8 and P10 are
sensitive for DSWRF, DLWRF and OLR.

The SA results from this study are all obtained for rainy events
as our original motivation was to improve forecasting of summer
monsoon storms in the Greater Beijing Area. It is not certain that
the results for wet events remain valid for dry events. To answer
this question, we performed the SA analysis for three dry events.
We found that the sensitivity of some parameters remain the same
during both the wet and dry events. But some parameters that
are sensitive for wet events become non-sensitive for dry events.
For example, P16, the soil porosity parameter, is one of the most
sensitive parameters for rainy events, but it is totally non-sensitive
for the dry events. This is because soil porosity does not affect
thermal and water exchange during dry periods. There are similar
reversals in the sensitivities of parameters P3, P4 and P5, as those
parameters are related to the convection process. During the dry
events, convection is not active and, thus, those parameters show
no impact on the meteorological variables we considered.

5. Conclusions

In this study, we identified the most sensitive parameters of the
WRF model for 11 variables. Twenty-three tunable parameters
from seven fixed physical process parametrization schemes were
considered. Their sensitivities were evaluated based on forecast

errors that were calculated over nine 5-day forecasts during the
summer monsoon from 2008 to 2010 in the Greater Beijing Area
in north China. Based on the MOAT global sensitivity analysis
method, 240 sets of parameters were generated to estimate the
sensitivity of the parameters.

We found that certain parameters are very sensitive with
respect to all of the meteorological variables considered, while
12 out of 23 adjustable parameters are shown to be not sensitive
at all to any of the meteorological variables. This result is very
significant as it tells us that if we would like to tune some of the
adjustable parameters, we need to focus on only a few of them,
not all.

We would like to caution readers that parameter sensitivity is
generally dependent on local conditions. Our results are obtained
for rainy events. We found some sensitive parameters become
insensitive for dry events. Therefore, the SA results from this
study may not be directly indicative of other conditions or other
areas. If the study condition or area is changed, it is preferable
to re-evaluate the sensitivity of the adjustable parameters
using the strategy presented in this study or other similar
strategy.

We would like to emphasize that the 23 parameters considered
here are not all of the tunable parameters in the WRF
model. However, the results obtained still can provide a strong
reference for anyone who would like to try a similar strategy.
Furthermore, the results of this study form a strong basis for
our further research on optimization of the most sensitive
parameters.
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