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Abstract Parameter specification is an important source of uncertainty in large, complex geophysical
models. These models generally have multiple model outputs that require multiobjective optimization algo-
rithms. Although such algorithms have long been available, they usually require a large number of model
runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multi-
objective adaptive surrogate modeling-based optimization (MO-ASMO) algorithm is introduced that aims to
reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usu-
ally have a prior parameterization scheme derived from the physical processes involved, and our goal is to
improve all of the objectives by parameter calibration. In this study, we developed a method for directing
the search processes toward the region that can improve all of the objectives simultaneously. We tested the
MO-ASMO algorithm against NSGA-II and SUMO with 13 test functions and a land surface model - the
Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO-ASMO.

1. Introduction

Specification of model parameters can significantly affect the simulation ability of large, complex geophysi-
cal models such as rainfall-runoff models [Duan et al., 1992], land surface hydrological models [Gong et al.,
2015a; Li et al., 2013], and numerical weather and climate prediction models [Di et al., 2015; Neelin et al.,
2010]. Parameter specification is complicated by the fact that today’s geophysical models consider an
increasing number of physical processes (e.g., water and energy cycles, biogeochemical processes, etc.),
and a multiobjective optimization approach is required to estimate model parameters such that all major
physical processes of interest are well simulated. This approach, however, might be too computationally
expensive because of two reasons: (1) A typical geophysical model may require several hours or even days
to run a multiyear simulation over a large region. (2)The multiobjective optimization problem is much more
difficult than single-objective optimization, thus requiring larger number of model runs to find the global
Pareto optimal solutions. Although many multiobjective optimization algorithms have long been available,
such as MOGA [Fonseca and Fleming, 1993], NPGA [Horn et al., 1994], SPEA [Zitzler and Thiele, 1998], PAES
[Knowles and Corne, 1999], NSGA-II [Deb et al., 2002], MOSCEM [Vrugt et al., 2003b], and SMS-EMOA
[Emmerich et al., 2005], nearly all of them require a large number of model runs (typically as many as
1052106 or even more) to identify the Pareto optimal sets [Li et al., 2012; Liu et al., 2004, 2005; Vrugt et al.,
2003a, 2003b]. This high computational cost makes the parameter estimation for large, complex geophysi-
cal models very difficult, if not impossible.

Surrogate modeling-based optimization is an efficient way to reduce the computational burden of parame-
ter optimization. As summarized in the review paper by Razavi et al. [2012], surrogate-based optimization,
which replaces the original expensive modes with inexpensive statistical surrogates in the optimization pro-
cess, has been widely used in hydrological modeling and water resource management. In recent years,
many multiobjective surrogate-based optimization approaches have emerged. Some of them are based on
the classical nondominated sorting of multiple objectives, simply replacing expensive dynamic models with
inexpensive surrogates. For example, Nain and Deb [2005] integrated an artificial neural network (ANN) with
NSGA-II (Non-dominated Sorting Genetic Algorithm II). This method is called NSGA-II-ANN. For a total of m
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generations of NSGA-II-ANN, the first n generations use the original simulation model, whereas the remain-
ing m-n generations use the surrogate model. Jourdan et al. [2006] proposed LEMMO, which uses a Learn-
able Evolution Model [Michalski, 2000], the C4.5 machine learning method, as a surrogate to replace the
original model in NSGA-II. Syberfeldt et al. [2008] proposed the Multi-Objective Parallel Surrogate-Assisted
Evolution Algorithm (MOPSA-EA), which uses an ANN as a surrogate and considers surrogate imprecision
and parallel computing. Kourakos and Mantoglou [2013] developed a multiobjective optimization algorithm
named MOSA (Multi-Objective Surrogate Assisted method) based on a modular neural network (MNN) sur-
rogate and applied it to solve the aquifer management problem in Santorini, Greece. They improved the
pool of offspring technique proposed by Syberfeldt et al. [2008] by using three criteria to select the most
promising offspring and evaluated it using the original model. This is actually an adaptive sampling tech-
nique. In this constrained multiobjective case study, MOSA (MNN) can yield better optimization results than
NSGA-II with fewer model runs (MOSA (MNN) used 3100, whereas NSGA-II used 40000).

Instead of nondominated sorting, some researchers have tried to transform the multiobjective problem into
a single-objective problem and use existing single-objective surrogate-based optimization methods.
Knowles [2006] proposed the ParEGO algorithm, a multiobjective version of EGO (Efficient Global Optimiza-
tion [Jones, 2001; Jones et al., 1998]). EGO uses DoE-inspired initial sampling and a Gaussian processes surro-
gate model to accelerate single-objective optimization, and ParEGO uses an augmented Tchebycheff
function to transform multiobjective optimization problems into multiple single-objective problems.
Emmerich et al. [2006] proposed the Meta-model Assisted Evolution Strategy (MAES), an integrated frame-
work for comparing prescreening strategies for both single- and multiobjective optimization. Prescreening
is a strategy that generates candidate points from a surrogate model to allow for simulation with the origi-
nal complex model; the surrogate model can thus be adjusted with the newly simulated points. MAES
implemented four types of prescreening strategies for single-objective optimization: mean value (MI), prob-
ability of improvement (PoI), expected improvement (ExI), lower confidence bound (LCB), and the S hyper-
volume metric, which was used to transform multiobjective problems into single-objective problems. The S
hypervolume metric proposed by Fleischer [2003] represents the volume of hyperspace dominated by the
Pareto frontier. The unique significance of Fleischer’s research lies in the formal proof that the maximization
of the hypervolume covered by a point set is the necessary and sufficient condition of the multiobjective
Pareto optimal. However, although the S metric is theoretically elegant and very intuitive for simple two-
objective problems, its application to large problems is very limited because the computational cost grows
rapidly if the number of points is large for higher dimensions. Furthermore, Couckuyt et al. [2012, 2013]
developed the hypervolume-based PoI strategy, which has been implemented in the SUMO toolbox
[Gorissen, 2010].

Many comparisons of different surrogate-based multiobjective algorithms have been carried out. Syberfeldt
et al. [2008] compared MOPSA-EA with MAES, SMS-EMOA and NSGA-II-ANN and found that MOPSA-EA is
the most effective and efficient method. Over a total of 3000 original model runs, MOPSA-EA fit the Pareto
frontier best. di Pierro et al. [2009] compared LEMMO and ParEGO (as well as an evolutionary algorithm,
PESA-II [Corne et al., 2001]) in addressing two water distribution network design problems. LEMMO was able
to find the same solutions using only 10% of the simulations required by PESA-II, whereas ParEGO, which
could complete the optimization using only 1% of the simulations, did not fit the Pareto frontier as well as
LEMMO and PESA-II did. Tsoukalas and Makropoulos [2015] compared the surrogate-based ParEGO, SUMO
with hypervolume-based PoI strategy, and SMS-EGO (another modified EGO based on hypervolume, pro-
posed by Ponweiser et al. [2008]), as well as the classical nonsurrogate algorithm NSGA-II and SMS-EMOA.
The results indicated that the surrogate-based algorithms could archive similar Pareto optimals with much
fewer model runs, and SUMO outperformed the ParEGO and SMS-EGO methods. As summarized by Maier
et al. [2014], despite the report of comparative studies, evaluations of effectiveness and efficiency are still
limited to testing several selected algorithms with simple test functions or with respect to one or two spe-
cial problems; furthermore, there are too many statistically indistinguishable algorithms that can be decom-
posed into common components. To evaluate algorithm performance comprehensively, therefore,
comparisons should be based on an online optimization service featuring various components instead of a
large number of different types of algorithms.

In this study, we developed a multiobjective adaptive surrogate modeling-based optimization (MO-ASMO)
algorithm to meet the special requirements of large, complex geophysical models. The novel contributions
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of this study are (1) the selection of the most suitable initial sampling and surrogate modeling method. As
shown by Gong et al. [2015b], the Good Lattice Points (GLP) method [Fang, 1980; Korobov, 1959a, 1959b;
Wang and Fang, 1981] with ranked Gram-Schmidt (RGS) de-correlation [Owen, 1994] is one of the most effec-
tive and efficient sampling methods. In Gong et al. [2015a], among five surrogate models that were com-
pared, the Gaussian processes regression (GPR) outperformed others with respect to the Common Land
Model [Dai et al., 2003]. However, GPR may not serve as the all-purpose surrogate for any problem, and the
best surrogate can be problem dependent (as shown in Gong et al. [2015b]) such that surrogate model
selection is necessary for each problem [Pil�at and Neruda, 2013]. Consequently, in this study, we used GLP
with RGS de-correlation as the initial sampling method and used GPR as a surrogate model. (2) The develop-
ment of an adaptive sampling strategy to save computational resources. Nondominated sorting-based algo-
rithms usually use all Pareto optimal points given by surrogate models for the original dynamic model to
simulate, whereas the hypervolume-based or Tchebycheff function-based algorithms usually simulate a sin-
gle point. The former can better maintain the diversity of a population but require more computational
resources, whereas the later can archive the Pareto frontier more quickly but suffer from premature conver-
gence. In this study, we only used the most representative subsets of the Pareto optimal points for simula-
tion. This adaptive sampling strategy is simple but effective in balancing convergence and diversity. (3) Use
of the default parameterization scheme to constrain the optimization result. Typical dynamic geophysical
models, such as land surface models, weather and climate models, have default parameterization schemes
that depend on model physics. With parameter optimization, our goal is to improve the performance of all
model objectives, and of course, the solutions dominated by the default scheme are not useful in this case.
In this study, we developed a mechanism that can make the optimization focus on the region that can
improve all of the objectives relative to what can be achieved with the default scheme. This paper is organ-
ized as follows: Section 2 details the four components of the MO-ASMO algorithm; section 3 evaluates the
effectiveness and efficiency of the algorithm using 13 test functions and a case study of a land surface
model; and section 4 provides concluding remarks and discusses plans for future work.

2. Methodology

2.1. Elitist Strategy
As mentioned in the introduction, the goal of multiobjective optimization is to find the Pareto frontier, a sur-
face in the output space on which the solution cannot be improved in one objective without doing harm to
another. An effective multiobjective optimization method should be able to find the optimal parameter set
that uniformly populates the entire Pareto frontier. The effectiveness of a multiobjective optimization algo-
rithm can be evaluated in two respects: convergence and diversity. Convergence refers to minimizing the
average distance between the achieved Pareto optimal points and the true Pareto frontier, whereas diversity
refers to the uniformity of distribution matching the true Pareto frontier. The convergence and diversity repre-
sent two goals of multiobjective optimization. For all objectives, our goal is to find the optimal solutions that
can exhaust the possibility of improving every objective simultaneously while maintaining diversity such that
if some objectives can be sacrificed we can achieve the optimal for each of the remaining objectives.

As described by Deb et al. [2002], the convergence metric c measures the fitness between the Pareto
optimal points obtained by an optimization procedure and the true Pareto frontier (as the distance ci in
Figure 1a). The average value of the distance ci between the optimized and true Pareto set is defined as the
convergence metric c:

c5
1
n

Xn

i51

ci (1)

where n is the number of Pareto optimal points. The best value of c is 0. The diversity metric D measures the
span of solutions that can effectively cover the entire Pareto frontier. The diversity metric D is defined as

D5
df 1dl1

Xn21

i51
jdi2d j

df 1dl1 n21ð Þd
(2)

where df and dl are the distances between the extreme true solutions and the extreme obtained solutions
((as shown in Figure 1b). di are the distances between consecutive solutions, and their average is d . The
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best value of D is 0 when di5d (uniformly distributed) and df 5dl50 (extending to extreme Pareto solu-
tions). Note that the convergence metric c can be applied to any multiobjective problem, whereas the diver-
sity metric D can only be applied to two-objective problems.

In evolution algorithms, the fittest individuals are able to survive and breed, whereas the least fit individuals
are eliminated. The elitist strategy is one way to determine the fitness of each individual. In the NSGA-II
algorithm [Deb et al., 2002], the elitist strategy comprises two components: the fast-nondominated-sorting
method and the crowding distance. (1) The fast-nondominated-sorting method can compute the Pareto
rank of each individual. As shown in Figure 2a, the points with a small Pareto rank dominate those with
larger Pareto ranks. For each point with a large rank, we can find at least one point with a smaller rank that
surpasses it in every objective. The nondominated-sorting can direct the evolution of a population toward
the true Pareto surface, i.e., improve the convergence metric. (2) The crowding distance is defined as the
sum of the edge length of the cuboid, as shown in Figure 2b. A large crowding distance indicates that a
point is far from its neighbors; thus, the point might be more representative and require further exploration
around it. The crowding distance directs the population toward unexplored regions, and this mechanism
can effectively improve the diversity of the population. In NSGA-II, the individuals are first sorted using a
nondominated-sorting method in ascending order, and within each Pareto rank the points are sorted using
crowding distance in descending order (Figure 2c). The individuals near the tail are eliminated, and the sur-
vivors have the opportunity to generate offspring.

The goal of parameter calibration of dynamic geophysical models is to improve the models’ simulation abil-
ity. Consequently, if we already have a parameterization scheme, ideally the optimization can improve all of
the objectives. Those Pareto optimal points that improve some objectives but make others worse than the
default parameterization are meaningless in this framework. As shown in Figure 2d, the reference point of
objectives is given by the default parameter scheme, and the plane is divided into four regions: region 1,
the nondominated region of the reference point; regions 2 and 3, dominated by f1 and f2, respectively; and
region 4, the dominated region of the reference point. According to the goal of multiobjective optimization
of dynamic models, the aim is to improve all of the objectives. Therefore, we are most interested in the Par-
eto optimal points located in region 1. The points in regions 2 and 3, although possibly ‘‘optimal’’ according
to the Pareto rank, are useless because they degrade at least one objective relative to the default parame-
terization scheme.

To direct the evolution procedure toward the nondominated region (region 1 as in Figure 2d), we define a
weighted crowding distance, which replaces the classical crowding distance that maintains the diversity of
Pareto optimal points. The weighted crowding distance multiplies the classical crowding distance by a very
small weight factor if one of the objectives is worse than the reference point, while the crowding distances
in the nondominated region remain unchanged. This mechanism changes the order within each Pareto
rank, making the individual that degrades some objectives more likely to be eliminated. The classical crowd-
ing distance forces the Pareto optimal points to be uniformly distributed along the Pareto frontier, whereas

Figure 1. The definition of the convergence metric and the diversity metric.
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the weighted crowding distance forces the search to focus on the nondominated region of the reference
point and also maintains the uniform distribution along the Pareto frontier within this region. The weighing
factor d is a small positive value less than 1. Setting d50 indicates that the optimization is rigorously con-
strained to the nondominated region of the reference point, whereas d51 indicates that there is no con-
straint from the reference point and the full Pareto frontier can be explored. In this paper, we set d50:001.
This value can help us search not only the nondominated region 1 but also the half-dominated regions
(regions 2 and 3 in Figure 2d), which might provide useful information about the region that we are inter-
ested in, i.e., region 1.

2.2. Main Program of MO-ASMO
The MO-ASMO algorithm, as shown in the pseudo code, involves the following steps:

Step 1: Problem definition. First, we must specify the original dynamic model’s adjustable parameters
(inputs) and objective functions (outputs). If the model has too many adjustable parameters, sensitivity anal-
ysis must be used to screen out the most important parameters to reduce the complexity of multiobjective
optimization.

Figure 2. The definition of the crowding distance and the weighted crowding distance.
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Step 2: Initial sampling. A uniformly distributed sample set is generated using a specific sampling method.
Based on the study of Gong et al. [2015b], we use the GLP with RGS de-correlation to generate initial sam-
ples. As suggested by Wang et al. [2014], a proper initial sample size should be 15–20 times the number of
parameters. Other initial sampling methods that can generate a uniformly distributed point set, such as
Latin Hypercube [McKay et al., 1979], Symmetric Latin Hypercube [Ye et al., 2000], Halton sequence [Halton,
1964], and Sobol’ sequence [Sobol’, 1967], are also applicable in this step. The details of initial sampling are
presented in section 2.3.

After generating a uniformly distributed sample set, the original dynamic model simulation is run with the
generated parameters and objective functions are calculated from the raw outputs of the model.

Step 3: Main loop of MO-ASMO. First, build or update surrogate models for each objective function.
Gaussian Processes Regression (GPR) has been demonstrated to outperform other methods [Gong et al.,
2015a; Wang et al., 2014]. Moreover, GPR can easily integrate reinforcement learning, which can update the
trained surrogate model with an additional sample set as reinforcement. GPR has several hyper-parameters
that control the behavior of the Gaussian processes. To obtain a better-suited surrogate model, the hyper-
parameters can be optimized using the SCE-UA method. Other surrogate modeling methods, such as MARS
[Friedman, 1991], SVM [Vapnik, 2002], random forests [Breiman, 2001], ANN [Cybenko, 1989], are also applica-
ble in this step. The details of surrogate modeling are presented in section 2.4.

Then run a multiobjective optimization algorithm on the surrogate models built in the previous step, and Par-
eto optimal solutions are obtained. In this study, we use NSGA-II [Deb et al., 2002]. If the dynamic model has a
default parameterization scheme, use weighted crowding distance to replace the crowding distance in NSGA-II.
After running multiobjective optimization on the surrogate models, parts of the Pareto optimal solutions are
selected for evaluation using the original dynamic model. To save on the number of original model runs, we do
not evaluate all of the Pareto optimal solutions given by NSGA-II optimization, but only those (in this study,
20%) with the largest crowding distances, which can mostly represent the diversity of the Pareto optimal sets.

Finally, we can update the training data set with the dynamic model simulation results obtained by adapt-
ive sampling. Repeat the main loop until the termination conditions are satisfied (iteration limit, total origi-
nal model evaluation limit, etc.).

The pseudo code of MO-ASMO:

1. Problem definition:

y5f xð Þ

where f :ð Þ is the dynamic model, which has N adjustable parameters and M objective functions, x is
the N dimensional parameter vector and y is the M dimensional objective vector.

2. Initial sampling:
Generate a T3N matrix X using the Good Lattice Points method with RGS de-correlation, where T is the
number of sample points.
Run the dynamic model for T times and obtain the multiobjective results Y.

Y5f Xð Þ

where Y is a T3M matrix containing the objective functions.

3. Main loop of MO-ASMO:
a. Surrogate model training:

y5f � xð Þ

where f � :ð Þ is the surrogate model. The surrogate model is trained with the parameter matrix X as input
and objective matrix Y as output. Currently, we use Gaussian Processes Regression (GPR) as the
surrogate.

b. Run NSGA-II multiobjective optimization on the surrogate model f � :ð Þ, and obtain the Pareto optimal
points X� . X� is a Tpop3N matrix, and Tpop is the population size.

c. From the matrix X� given by NSGA-II, select a portion of the solutions (typically 20%) that have the
largest crowding distances (or the largest weighted crowding distance, if the reference point is pro-
vided). Run the dynamic model with the selected optimal points X0, and obtain the simulation results:
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Y05f X0ð Þ

d. Append X0 and Y0 to the input-output pool: X5 X; X0½ �; Y5 Y; Y0½ �.
e. Return to step a) if termination conditions are not satisfied.

4. End of MO-ASMO

The pseudo code for determining the crowding distance:

D5crowding distance (Y):

(Y is the T3M matrix containing the objectives functions.)

1. Initialize the crowding distance of each point Y ið Þ:distance50.
For each objective m51 to M,
a. ymax

m 5max Ymð Þ, ymin
m 5min Ymð Þ

(Ym5Y :;mð Þ is the m-th objective.)
b. Y5sort Y;mð Þ.

(Sort the matrix Y with the m-th objective.)
c. Y 1ð Þ:distance 5 inf, Y Tð Þ:distance 5 inf.

(Set the crowding distance of boundary points to infinity.)
d. For each point i52 to T21,

Y ið Þ:distance 5 Y ið Þ:distance 1 Y i11;mð Þ2Y i21;mð Þð Þ= ymax
m 2ymin

m

� �
3. Return the distance vector D5Y:distance.

The pseudo code for determining the weighted crowding distance:

W5Weighted crowding distance (Y; Yref )

1. D5crowding distance (Y):
2. W5D

(Initialize W , the weighted crowding distance, a T -dimensional vector.)
3. For each point i51 to T ,

If Y i;mð Þ � Yref mð Þ:
W ið Þ5W ið Þ � d

(d is a very small number; in this study, we set d50:001)

4. Return the weighted crowding distance W .

2.3. Initial Sampling
Based on the findings of Gong et al. [2015b], Good Lattice Points (GLP) [Fang, 1980] with ranked Gram-
Schmidt (RGS) de-correlation [Owen, 1994] was demonstrated to be the most uniform method among sev-
eral uniform sampling methods evaluated. Therefore, the initial sampling method used in MO-ASMO is GLP
with de-correlation. For n points s factors initial sampling, we can define a U-array: Un nsð Þ5 uij

� �
n3s, each col-

umn of which is a permutation of 1,. . .,n. For each element of the U-array, uij is the j-th factor of the i-th
sample. The U-array can be normalized to [0,1] using the following transformation:

xij5
uij20:5

n
(3)

The U-array is generated as uij5i � hj mod nð Þ (and assign i � n mod nð Þ5n), where hj is the j-th element of the
powered generating vector Ha. Let integers a and t satisfy the following: (1) a < n; t � s21, (2)
at1151 mod nð Þ, (3) a and n are relatively prime, and (4) the elements of sequence a; a2; . . .; at mod nð Þ are
different from each other; thus, the subsequence Ha5 a0; a1; . . .; as21 mod nð Þf g is defined as the powered
generating vector.

In addition to generating a proper sampling design, de-correlation is another way to improve uniformity.
De-correlation algorithms include Ranked Cholesky (RC) proposed by Iman and Conover [1982] and Ranked
Gram-Schmidt (RGS) proposed by Owen [1994]. These algorithms can remove the correlation between
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factors while maintaining the spatial structure of samples. In this study, we use GLP sampling with RGS de-
correlation. A more detailed description is provided by Gong et al. [2015b].

2.4. Surrogate Model
Based on our previous study and work by other researchers, GPR is one of the effective multidimensional
nonlinear regression algorithms [Gong et al., 2015a; Rasmussen and Williams, 2006]. In this paper, we build
multiple GPRs for each objective function. A brief introduction is provided below.

Suppose there is a regression model

y5f xð Þ1e (4)

where f xð Þ is the regression function, x5 x1; x2; . . .; xnð Þ is the input vector, y is the output variable, and e
� N 0; r2

n

� �
is i.i.d. Gaussian noise. Suppose there is an ensemble of functions satisfying equation (2); their

mean and covariance satisfy

m xð Þ5E f xð Þ½ �

k x; x0ð Þ5E f xð Þ2m xð Þð Þ f x0ð Þ2m x0ð Þð Þ½ �

(
(5)

where m xð Þ is called the mean function and k x; x0ð Þ is called the covariance function, and the GPR model
can be expressed as f xð Þ � GP m xð Þ; k x; x0ð Þð Þ.

The training procedure of GPR (building the GPR surrogate model from the samples) is as follows: Suppose
X is the input matrix, where each column is an input vector x; y is the output vector, where each element is
the original dynamic model’s objective function; X� is the predicting input matrix, namely, the samples that
we want to evaluate using the GPR surrogate model; and f� is the predicting output. Therefore, the joint dis-
tribution of training and predicting inputs and outputs is a joint Gaussian distribution as follows:

y

f�

" #
� N 0;

K X; Xð Þ1r2
nI K X; X�ð Þ

K X�; Xð Þ K X�; X�ð Þ

" # !
(6)

where K X1; X2ð Þ is the covariance matrix of two input matrices, which can be calculated from the covariance
function:

km55=2 rð Þ5 11

ffiffiffi
5
p

r
l

1
5r2

3l2

� �
exp 2

ffiffiffi
5
p

r
l

� �
(7)

where r5jx12x2j is the Euclidian distance between each sample point (i.e., each column) in X1 and X2.
This covariance function is the Mart�ern covariance function with the parameter m55=2. The Mart�ern covari-
ance function is an isotopic function in which the covariance between function values at different points,
i.e., f x1ð Þ and f x2ð Þ, only depends on the distance between x1 and x2 and the covariance decreases with
increasing distance. The predicted mean and variance of f xð Þ are expressed as follows:

E f�ð Þ5K X�; Xð Þ K X; Xð Þ1r2
nI

� �21
y

V f�ð Þ5K X�; X�ð Þ2K X�; Xð Þ K X; Xð Þ1r2
nI

� �21
K X; X�ð Þ

8<
: (8)

Training GPR is time consuming because it requires the Cholesky decomposition of a large matrix,
K X; Xð Þ1r2

nI. A positive-definite real matrix A can be decomposed into the product of a lower triangular
matrix and its transpose: A5LLT . Cholesky decomposition is formulated as follows:

Ljj5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ajj2

Xj21

k51
L2

jk

q

Lij5
1
Ljj

Aij2
Xj21

k51
Lik Ljk

	 
 ; for i > j

8>><
>>: (9)

Cholesky decomposition is numerically very stable and simple to implement. The decomposition starts
from the left upper corner and proceeds row by row; thus, if there are any additional samples, the L matrix
can be easily updated by adding new rows behind. This procedure is also called ‘‘reinforcement learning’’.
The computational burden of surrogate modeling can be significantly reduced by reinforcement learning.
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GPR is a highly flexible regression method that has various types of covariance functions. GPR can become
Kriging interpolation, Radial Basis Function (RBF) interpolation, Infinite node single layer feed-forward ANN,
if proper covariance function is adopt. Furthermore, the hyper-parameter values can also control the behav-
ior of GPR. For instance, if the noise term r2

n is set to 0, GPR will serve as a multidimensional interpolation
method. If the characteristic length l is large, GPR will be smooth, but if l is small, GPR will be sensitive to
small changes of the outputs. To choose appropriate hyper-parameter values, we maximize the marginal
likelihood function

log p yjXð Þ½ �52
1
2

yT K X; Xð Þ1r2
nI

� �21
y2

1
2

log jK X; Xð Þ1r2
nIj2 n

2
log 2p (10)

using the SCE-UA optimization algorithm [Duan et al., 1993].

3. Case Study

3.1. Synthetic Studies to Evaluate the Effectiveness and Efficiency of MO-ASMO
We conducted a total of 13 synthetic case studies, including five simple math functions with no more than
three inputs and two objectives, five ZDT test problems with two objectives [Zitzler et al., 2000], and three
DTLZ test problems with three objectives [Deb et al., 2005]. The math functions’ names, abbreviations, refer-
ences, equations, and true Pareto frontiers are presented below.

The five simple test functions are shown in Table 1. The first two functions SCH1 and SCH2 were proposed
by Schaffer [1987]. Both have only one input variable and two outputs. SCH1 is the simplest convex test
function, and SCH2 is a convex discontinuous test function. The details of SCH1 and SCH2 can be found in
the book by Deb [2001]. The BIN function is test case 2 originally proposed by Binh and Korn [1997] and also
used by Binh [1999]. The KIT function was originally proposed by Kita et al. [1996] and used by Binh [1999]
as test case 4. Both the BIN and KIT functions have a constrained version, but in this paper, we use the
unconstrained versions. The FON function was originally proposed by Fonseca and Fleming [1998a, 1998b].
The function has two or more inputs and two outputs. In this paper, we use the three-input version. The
FON function has a nonconvex Pareto frontier.

Moreover, we want to test the algorithm with more complex problems. Zitzler et al. [2000] proposed a
method for conveniently constructing test problems for multiobjective optimization and constructed six
test functions. In this paper, we only use functions 1 2 4 and 6 (ZDT5 is a Boolean function for bit strings),
as shown in Table 2. The ZDT functions are two-objective problems defined within the following common
framework:

f1 xð Þ

f2 xð Þ5g xð Þh xð Þ

(
(11)

where f1 xð Þ controls the difficulty along the Pareto frontier, g xð Þ controls the difficulty lateral to the Pareto
frontier and h xð Þ controls the miscellaneous properties of the Pareto frontier, such as convex/nonconvex,
continuous/discontinuous, and oscillations. The Pareto optimal is achieved if g xð Þ51. The ZDT function fam-
ily not only offers a common framework that can develop multiobjective test problems from single-
objective test problems but also helps diagnose the issues with a multiobjective optimization method. For
more details about the ZDT test functions, please refer to the book written by Deb [2001] and the PhD thesis
by Van Veldhuizen [1999].

The ZDT test problems have multiple input parameters and miscellaneous properties but only have two
objectives. Deb et al. [2005] proposed DTLZ test problems that have multiple objective functions. The DTLZ
test problems have two outstanding advantages: (1) they are scalable and (2) they yield the theoretical true
value of the Pareto frontier. With respect to (1), the DTLZ test problems can be easily extended to multiple
adjustable parameters and objective functions and have similar expressions. With respect to (2), the DTLZ
test problems are built by a bottom-up approach; therefore, the true Pareto frontier can be a hyper-plane,
unit sphere, curve, or comet. Among many combinations in the DTLZ family, we adopt three, as shown in
Table 3, where n is the number of adjustable parameters, M is the number of objectives, and xM is a k-
dimensional vector that can compute the theoretical true Pareto frontier (n5M1k21). All of the adopted
problems have 6 adjustable parameters and 3 objective functions. The DTLZ1 is the simplest one that has a
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hyper-plane Pareto frontier. The DTLZ1 has a global Pareto optimal hyper-plane with 11k21 local Pareto opti-
mal fronts. The DTLZ2 problem has a unit sphere Pareto frontier, which is convex and nonlinear. The DTLZ3
problem, which is the most difficult one, also features a unit sphere Pareto frontier but has 3k21 local Pareto
optimal fronts. More details about the DTLZ test problems can be found in the study by Deb et al. [2005].

To evaluate the effectiveness and efficiency of MO-ASMO, we compared it with the classical NSGA-II algo-
rithm [Deb et al., 2002] as well as the surrogate toolbox SUMO [Couckuyt et al., 2012, 2013; Gorissen, 2010],
which uses hypervolume-based PoI and outperforms other surrogate-based algorithms, according to the

Table 1. Simple Multiobjective Optimization Test Functions

Problem and
Reference

No. of
Inputs

Bounds of
Inputs

Objective
Functions

Optimal
Solutions Comments

SCH1 [Schaffer, 1987] 1 [210,10] f15x2

f25 x22ð Þ2

(
x 2 0; 2½ � convex

SCH2 [Schaffer, 1987] 1 [25,10]

f15

2x; if x � 1

x22; if 1 < x � 3

42x; if 3 < x � 4

x24; if x > 4

8>>>>>>>><
>>>>>>>>:

f25 x25ð Þ2

8>>>>>>>>>>><
>>>>>>>>>>>:

x 2 0; 2½ � convex
discontinuous

BIN [Binh and Korn, 1997;
Binh, 1999]

2 [215,30] f154x2
1 14x2

2

f25 x125ð Þ21 x225ð Þ2

(
x1; x2 2 0; 5½ �

x15x2

convex

KIT [Kita et al., 1996;
Binh, 1999]

2 [0,7] f15x2
1 2x2

f2520:5x12x221

(
x1 2 0; 7½ �

x257

convex

FON [Fonseca and
Fleming, 1998a, 1998b]

3 [24,4]
f1512exp 2

X3

i51
xi2

1ffiffiffi
3
p

� �2
 !

f2512exp 2
X3

i51
xi1

1ffiffiffi
3
p

� �2
 !

8>>>>><
>>>>>:

xi 2 2
1ffiffiffi
3
p ;

1ffiffiffi
3
p

� �
; i51; 2; 3

x15x25x3

nonconvex

Table 2. The Family of ZDT Multiobjective Optimization Test Functions Proposed in Zitzler et al. [2000]

Problem and
Reference

No. of
Inputs

Bounds of
Inputs Objective Functions

Optimal
solutions Comments

ZDT1 30 [0,1] f1 xð Þ5x1

f2 xð Þ5g xð Þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þ

p� �
g xð Þ5119

Xn

i52
xi

	 

= n21ð Þ

8>>><
>>>:

x1 2 0; 1½ �

xi50; i52; . . .; n

convex

ZDT2 30 [0,1] f1 xð Þ5x1

f2 xð Þ5g xð Þ 12 x1=g xð Þð Þ2
h i

g xð Þ5119
Xn

i52
xi

	 

= n21ð Þ

8>>>><
>>>>:

x1 2 0; 1½ �

xi50; i52; . . .; n
nonconvex

ZDT3 30 [0,1] f1 xð Þ5x1

f2 xð Þ5g xð Þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þ

p� �
2

x1

g xð Þ sin 10px1ð Þ

g xð Þ5119
Xn

i52
xi

	 

= n21ð Þ

8>>>><
>>>>:

x1 2 0; 1½ �

xi50; i52; . . .; n
convex,

discontinuous

ZDT4 10 x1 2 0; 1½ �,
xi 2 -5; 5½ �;
i52; . . . ; 10

f1 xð Þ5x1

f2 xð Þ5g xð Þ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þ

p� �
g xð Þ51110 n21ð Þ1

Xn

i52
x2

i 210cos 4pxið Þ
� �

8>><
>>:

x1 2 0; 1½ �

xi50; i52; . . .; n
nonconvex

ZDT6 10 [0,1] f1 xð Þ512exp 24x1ð Þsin6 6px1ð Þ

f2 xð Þ5g xð Þ 12 f1 xð Þ=g xð Þð Þ2
h i

g xð Þ5119
Xn

i52
xi

	 

= n21ð Þ

h i0:25

8>>>><
>>>>:

x1 2 0; 1½ �

xi50; i52; . . .; n
nonconvex
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comparison performed by Tsoukalas and Makropoulos [2015]. The algorithm setups are shown in Table 4. To
provide a fair comparison of efficiency between the three algorithms, we used exactly the same number of
original model runs. With the same limited number of original model runs, the effectiveness of the com-
pared algorithms could be evaluated based on the convergence and diversity of the archived Pareto opti-
mal points relative to the theoretical true Pareto frontier. To evaluate the efficiency, we added an additional
NSGA-II setup in which the population size (pop) and number of generations (gen) were both set to 100. A
surrogate-based algorithm is most efficient when its convergence and diversity is close to, or even better,
than the results of large-population NSGA-II. For MO-ASMO, the population size (pop) and number of

Table 3. The Family of DTLZ Multiobjective Optimization Test Functions Proposed in Deb et al. [2005]

Problem and
Reference

No. of Inputs/
Outputs

Bounds of
Inputs Objective Functions

Optimal
Solutions Comments

DTLZ1 6/3 [0,1]
f1 xð Þ5 1

2
x1x2. . .xM21 11g xMð Þð Þ

f2 xð Þ5 1
2

x1x2. . . 12xM21ð Þ 11g xMð Þð Þ

� �

fM21 xð Þ5 1
2

x1 12x2ð Þ 11g xMð Þð Þ

fM xð Þ5 1
2

12x1ð Þ 11g xMð Þð Þ

g xMð Þ5100 n2M11ð Þ1
X

xi2xM

xi20:5ð Þ22cos 20p xi20:5ð Þð Þ
h i" #

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

xM50:5XM

m51
fm50:5

Pareto frontier is a
linear hyperplane

DTLZ2 6/3 [0,1] f1 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .cos xM22p=2ð Þcos xM21p=2ð Þ

f2 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .cos xM22p=2ð Þsin xM21p=2ð Þ

f3 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .sin xM22p=2ð Þ

� �

fM21 xð Þ5 11g xMð Þð Þcos x1p=2ð Þsin x2p=2ð Þ

fM xð Þ5 11g xMð Þð Þsin x1p=2ð Þ

g xMð Þ5
X

xi2xM

xi20:5ð Þ2

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

xM50:5XM

m51
f 2

m51
Pareto frontier is the

unit sphere

DTLZ3 6/3 [0,1] f1 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .cos xM22p=2ð Þcos xM21p=2ð Þ

f2 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .cos xM22p=2ð Þsin xM21p=2ð Þ

f3 xð Þ5 11g xMð Þð Þcos x1p=2ð Þcos x2p=2ð Þ. . .sin xM22p=2ð Þ

� �

fM21 xð Þ5 11g xMð Þð Þcos x1p=2ð Þsin x2p=2ð Þ

fM xð Þ5 11g xMð Þð Þsin x1p=2ð Þ

g xMð Þ5100 n2M11ð Þ1
X

xi2xM

xi20:5ð Þ22cos 20p xi20:5ð Þð Þ
h i" #

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

xM50:5XM

m51
f 2

m51
Pareto frontier is the

unit sphere, has
many local optimals

Table 4. Optimization Algorithm Setup for the Case Studies in This Papera

Test Problem Name NSGA-II NSGA-II (Large) MO-ASMO SUMO

Simple test problems SCH1 11 pop 3 10 gen 5 110 total 100 pop 3 100 gen 5 10,000 total 10 init 1 20 apt 3 5 iter 5 110 total 10 init 1 100 iter 5 110 total
SCH2 11 pop 3 10 gen 5 110 total 100 pop 3 100 gen 5 10,000 total 10 init 1 20 apt 3 5 iter 5 110 total 10 init 1 100 iter 5 110 total
BIN 12 pop 3 10 gen 5 120 total 100 pop 3 100 gen 5 10,000 total 20 init 1 20 apt 3 5 iter 5 120 total 20 init 1 100 iter 5 120 total
KIT 12 pop 3 10 gen 5 120 total 100 pop 3 100 gen 5 10,000 total 20 init 1 20 apt 3 5 iter 5 120 total 20 init 1 100 iter 5 120 total
FON 13 pop 3 10 gen 5 130 total 100 pop 3 100 gen 5 10,000 total 30 init 1 20 apt 3 5 iter 5 130 total 30 init 1 100 iter 5 130 total

ZDT test problems ZDT1 40 pop 3 10 gen 5 400 total 100 pop 3 100 gen 5 10,000 total 300 init 1 20 apt 3 5 iter 5 300 total 300 init 1 100 iter 5 400 total
ZDT2 40 pop 3 10 gen 5 400 total 100 pop 3 100 gen 5 10,000 total 300 init 1 20 apt 3 5 iter 5 300 total 300 init 1 100 iter 5 400 total
ZDT3 40 pop 3 10 gen 5 400 total 100 pop 3 100 gen 5 10,000 total 300 init 1 20 apt 3 5 iter 5 300 total 300 init 1 100 iter 5 400 total
ZDT4 20 pop 3 10 gen 5 200 total 100 pop 3 100 gen 5 10,000 total 100 init 1 20 apt 3 5 iter 5 200 total 100 init 1 100 iter 5 200 total
ZDT6 20 pop 3 10 gen 5 200 total 100 pop 3 100 gen 5 10,000 total 100 init 1 20 apt 3 5 iter 5 200 total 100 init 1 100 iter 5 200 total

DTLZ test problems DTLZ1 26 pop 3 10 gen 5 260 total 100 pop 3 100 gen 5 10,000 total 60 init 1 20 apt 3 10 iter 5 260 total
DTLZ2 26 pop 3 10 gen 5 260 total 100 pop 3 100 gen 5 10,000 total 60 init 1 20 apt 3 10 iter 5 260 total
DTLZ3 26 pop 3 10 gen 5 260 total 100 pop 3 100 gen 5 10,000 total 60 init 1 20 apt 3 10 iter 5 260 total

aAbbreviations: pop: number of population, gen: number of generation, init: number of initial sampling, apt: number of adaptive sampling in each iteration, iter: number of
iteration.
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generations (gen) of the embedded NSGA-II were also set to 100, and the resampling percentage (pct)was
set to 20%, so that the adaptive sampling size in each iteration was 100*20%520. . The maximum number
of iterations (iter) for simple and ZDT test problems was set to 5. For DTLZ test problems, iter was extended
to 10 in order to give a fare comparison with SUMO. The total number of model runs of DTLZ problems was
set to 260, which is close to 250 in Couckuyt et al. [2013]. Because in SUMO the comparison of
hypervolume-based PoI is very time consuming, we did not run SUMO in the DTLZ case but compare with
the results given by Couckuyt et al. [2013]. For other cases, SUMO was run only once, whereas other algo-
rithms were replicated 100 times.

The optimization results of the test problems are shown in Table 5 and Figures 3 and 4. Table 5 presents
the mean and standard deviation of the convergence and diversity metrics computed from 100 replications
of NSGA-II and MO-ASMO with exactly the same number of original model runs (labeled NSGA-II and MO-
ASMO, respectively) and computed with NSGA-II for a very large number of original model runs (labeled as
NSGA-II (large)). As indicated in equations (1) and (2) in section 2.1, for both metrics, the smaller the bet-
ter. The results of SUMO are not shown in this table because doing so would be too time consuming and
we executed the algorithm only once for each test problem. The diversity metrics of DTLZ problems are
also not shown because the adopted diversity metric currently supports only two-objective problems. As
shown in Figures 3 and 4, we randomly selected one of the replications and plotted the objective functions

Table 5. Mean and Standard Deviation of the Convergence and Diversity Metrics of the Pareto Optimal Solutions Given by NSGA-II and
MO-ASMOa

Test Problem Name
Optimization

Algorithm
Mean of

Convergence
Standard of

Convergence
Mean of
Diversity

Standard of
Diversity

Simple test problems SCH1 NSGA-II 0.0062 2.0279E-03 0.8279 0.2189
NSGA-II(large) 0.0056 3.5517E-04 0.4280 0.0331

MO-ASMO 0.0056 3.1988E-04 0.6717 0.0487
SCH2 NSGA-II 0.0122 8.2872E-03 1.0901 0.1635

NSGA-II(large) 0.0085 6.1820E-04 1.0181 0.0228
MO-ASMO 0.0088 7.5874E-04 1.1170 0.0429

BIN NSGA-II 38.2874 5.0316E101 1.1511 0.1567
NSGA-II(large) 0.0923 6.8615E-03 0.5566 0.0413

MO-ASMO 0.0890 6.2079E-03 0.7301 0.0495
KIT NSGA-II 0.5227 2.1924E-01 0.9752 0.1684

NSGA-II(large) 0.0143 9.6561E-04 0.5158 0.0428
MO-ASMO 0.0137 1.1487E-03 0.7416 0.0503

FON NSGA-II 0.0151 1.0126E-02 0.9718 0.1022
NSGA-II(large) 0.0011 1.5653E-04 0.4109 0.0326

MO-ASMO 0.0017 2.8113E-04 0.5602 0.0480
ZDT test problems ZDT1 NSGA-II 1.8454 1.2354E-01 0.9235 0.0429

NSGA-II(large) 0.7619 7.7708E-02 0.8655 0.0547
MO-ASMO 0.7453 6.6852E-02 0.8096 0.0398

ZDT2 NSGA-II 2.4971 1.3606E-01 1.0241 0.0411
NSGA-II(large) 0.9967 1.2450E-01 1.0122 0.0399

MO-ASMO 1.1087 8.2943E-02 0.9717 (14) 0.0358
ZDT3 NSGA-II 1.7332 1.4593E-01 0.8776 0.0579

NSGA-II(large) 0.6738 1.0195E-01 0.8843 0.0672
MO-ASMO 0.8896 1.2905E-01 0.7926 0.0589

ZDT4 NSGA-II 78.2058 9.7432E100 0.9654 0.0611
NSGA-II(large) 25.2251 5.9909E100 1.0490 0.0748

MO-ASMO 38.5784 7.5076E100 0.9204 (86) 0.0697
ZDT6 NSGA-II 4.9350 1.3718E-01 1.0093 0.0185

NSGA-II(large) 3.2077 3.5467E-01 1.0914 0.0566
MO-ASMO 3.5064 5.7325E-01 0.9531 0.0598

DTLZ test problems DTLZ1 NSGA-II 43.6747 15.0801
NSGA-II(large) 7.1320 2.4005

MO-ASMO 36.7536 11.0271
DTLZ2 NSGA-II 0.1487 0.0224

NSGA-II(large) 0.0304 0.0054
MO-ASMO 0.0272 0.0027

DTLZ3 NSGA-II 107.4802 32.5433
NSGA-II(large) 16.3201 6.2372

MO-ASMO 85.6173 21.6109

aFor each cases, the optimization was replicated for 100 times. For both of the convergence and diversity metrics, the smaller the bet-
ter and the best values are both 0.
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evaluated in the optimization procedure and the Pareto optimal obtained after the optimization was
terminated.

As indicated in Table 5, for all of the test problems, the convergence metrics of MO-ASMO are significantly
better than those of NSGA-II and very similar to those obtained by NSGA-II (large) except DTLZ1 and DTLZ3,
indicating that for most evaluated cases the MO-ASMO algorithm is as effective but more efficient than the
classical NSGA-II. For DTLZ1 and DTLZ3, which have many local Pareto-optimal fronts, MO-ASMO falls

Figure 3. Multiobjective optimization results of simple test problems.

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6
NSGA-II optimization result of ZDT1

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8
SUMO optimization result of ZDT1

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8
MO-ASMO optimization result of ZDT1

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6
Inter-Comparison of ZDT1

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8
NSGA-II optimization result of ZDT2

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8
SUMO optimization result of ZDT2

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8
MO-ASMO optimization result of ZDT2

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

Inter-Comparison of ZDT2

f
1

0 0.2 0.4 0.6 0.8 1

f 2

-2

0

2

4

6
NSGA-II optimization result of ZDT3

f
1

0 0.2 0.4 0.6 0.8 1

f 2

-2

0

2

4

6

8
SUMO optimization result of ZDT3

f
1

0 0.2 0.4 0.6 0.8 1

f 2

-2

0

2

4

6

8
MO-ASMO optimization result of ZDT3

f
1

0 0.2 0.4 0.6 0.8 1

f 2

-2

0

2

4

6
Inter-Comparison of ZDT3

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

100

200

300
NSGA-II optimization result of ZDT4

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

50

100

150

200

250
SUMO optimization result of ZDT4

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

100

200

300
MO-ASMO optimization result of ZDT4

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

50

100

150
Inter-Comparison of ZDT4

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

5

10

15
NSGA-II optimization result of ZDT6

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

5

10

15
SUMO optimization result of ZDT6

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

2

4

6

8

10
MO-ASMO optimization result of ZDT6

f
1

0 0.2 0.4 0.6 0.8 1

f 2

0

5

10

15
Inter-Comparison of ZDT6

Evaluated point
NSGA-II optimal
SUMO optimal
MO-ASMO optimal
True Pareto frontie

Figure 4. Multiobjective optimization results of ZDT test problems.
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behind NSGA-II (large) but still significantly better than NSGA-II. The diversity metrics of MO-ASMO are
slightly worse but still acceptable compared with those of NSGA-II (large). As shown in Figure 3, for simple
test problems with exactly the same number of original model runs, NSGA-II fails to reach the true Pareto
frontier, whereas both SUMO and MO-ASMO can almost perfectly find the true optimal with good conver-
gence and diversity. MO-ASMO is as good as SUMO in these simple test cases.

For more complex ZDT test problems, the convergence metrics of MO-ASMO are slightly larger than but still
similar to those of NSGA-II (large) and still much better than those of NSGA-II with a small sample size,
except for the ZDT4 problem involving many local optimal Pareto frontiers; these results indicate that MO-
ASMO can be as effective as NSGA-II with far fewer original model evaluations. For ZDT1, ZDT3, and ZDT6,
the diversity metrics of MO-ASMO are better than those of NSGA-II and NSGA-II (larger), indicating that MO-
ASMO can maintain diversity as effectively as but more efficiently than NSGA-II. The diversity metrics of
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Figure 5. Multiobjective optimization procedure of KIT test problem using WMO-ASMO (with weighted crowding distance).
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Figure 6. Multiobjective optimization procedure of FON test problem using WMO-ASMO (with weighted crowding distance).
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ZDT2 and ZDT4 were sometimes NaN because only one Pareto optimal solution was found for some replica-
tions. The number of replications that yielded only one Pareto optimal solution is shown in brackets in the
‘‘mean of diversity’’ column of Table 5, after the mean value of the diversity metrics of other replications.
Interestingly, the mean diversity of MO-ASMO is even better than that of NSGA-II and that of NSGA-II (large).
This result may have been obtained because the individuals involved in NSGA-II become similar to each
other during the evolution procedure, whereas MO-ASMO adaptively selects one point among very similar
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Figure 7. Multiobjective optimization procedure of ZDT1 test problem using WMO-ASMO (with weighted crowding distance).

Figure 8. The influence of MO-ASMO’s resampling percentage (pct) on the convergence and diversity metrics of test problems.
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candidates. As shown in Figure 4, the SUMO toolbox could obtain optimal points that were very close to
the true Pareto frontier, except for the toughest ZDT4 problem. However, the algorithm provided only one
(ZDT2 and ZDT6), two (ZDT1 and ZDT4) or three (ZDT3) optimal points, which cannot represent the diversity
of the Pareto frontier. The results indicated that SUMO is more aggressive in exploiting the global optimal
and achieves better convergence metrics but fails to explore the space near the optimal to maintain diver-
sity. The MO-ASMO algorithm can achieve better convergence than NSGA-II and better diversity than
SUMO.

For the multiobjective DTLZ test problems, we only evaluated the convergence metric of NSGA-II, NSGA-II
(large) and MO-ASMO because the diversity metric defined in equation (2) is not currently applicable to
more than two objectives and the hypervolume-based PoI used in SUMO is very time consuming for more
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Figure 9. The influence of WMO-ASMO’s weight factor d on the optimal solutions of KIT, FON and ZDT1 test problems.

Table 6. Screened Parameters for Multiobjective Optimization and Their Categories, Meanings and Ranges

No. Parameter Units Category Physical Meaning Feasible Range

P2 hksati mm/s soil maximum hydraulic conductivity [0.001, 1]
P3 porsl soil porosity [0.25, 0.75]
P4 phi0 mm soil minimum soil suction [50, 500]
P6 bsw soil Clapp and Hornberger ‘‘b’’ parameter [2.5, 7.5]
P17 sqrtdi m20.5 canopy the inverse of square root of leaf dimension [2.5, 7.5]
P18 effcon mol CO2/mol quanta canopy quantum efficiency of vegetation photosynthesis [0.035, 0.35]
P19 vmax25 mol CO2/m2s canopy maximum carboxylation rate at 258C [1026, 20026]
P23 trop canopy temperature coefficient of conductance-photosynthesis model [250, 300]
P25 binter canopy intercept of conductance-photosynthesis model [0.01, 0.04]
P30 ref(2,1) canopy NIR reflectance of living leaf [0.35, 0.58]
P34 tran(2,1) canopy NIR transmittance of living leaf [0.1, 0.3]
P36 z0m m canopy aerodynamic roughness length [0.05, 0.3]
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than two objectives. Although a fast calculation method for hypervolume-based PoI developed by Couckuyt
et al. [2013] has been tested with DTLZ problems, computing the hypervolume-based PoI of a three-
objective problems with 100 Pareto points will cost approximately 0.03 s, which is still too long because the
computation must be repeated thousands to millions of times during the optimization procedure. As shown
in Table 5, MO-ASMO could yield better convergence metrics than NSGA-II. Moreover, the convergence
metrics of DTLZ1 and DTLZ2 given by MO-ASMO are also close to the results given by SUMO in Couckuyt
et al. [2013], indicating that MO-ASMO is as effective as SUMO, and both of them are more efficient than
NSGA-II.

For parameter optimization problems of large, complex geophysical models, we are more interested in find-
ing the parameter sets that can improve all of the objectives than in those that can only improve some but
degrade others. Consequently, we developed the ‘‘weighted crowding distance’’ to replace the ‘‘crowding
distance’’ in NSGA-II and MO-ASMO. The MO-ASMO algorithm using the weighted crowding distance is
referred to as WMO-ASMO. To evaluate the optimization procedure of WMO-ASMO, we selected three cases
from previous test problems—KIT, FON, and ZDT1—and the reference points were set to [20,210], [0.8 0.8],
and [0.5, 2], respectively. The optimization procedures are shown in Figures 5–7, respectively. For the KIT
problem, the true Pareto frontier located in the nondominated region of the reference point could be found
during the first iteration, and in the following iterations, the algorithm continued to search within this
region. For the more complex FON problem, the Pareto frontier could be reached in the fourth iteration. For
the challenging ZDT1 problem, the Pareto frontier could not be reached over the limited number of itera-
tions, but the obtained Pareto optimal points were located in the nondominated region of the reference
point, indicating that the weighted crowding distance can steer the evolution procedure toward the right
direction.

3.2. Optimal Use of (W)MO-ASMO
The (W)MO-ASMO algorithm has the following tunable meta-parameters: the population size (pop) and
number of generations (gen) of the embedded NSGA-II, the resampling percentage (pct) and the weight
factor d in the weighted crowding distance. Pop and gen should be large enough to make sure the embed-
ded NSGA-II can find the global Pareto optimal frontier. The total number of model runs (maxn) is limited
by the available computational resources, and the maximum number of iterations (iter) is then determined
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Figure 10. Multiobjective optimization results of CoLM: optimal parameter values given by NSGA-II, MO-ASMO and WMO-ASMO.
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as: iter 5 (maxn - initial sample size)/(pop * pct). Consequently, for MO-ASMO the user only needs to assign
the value of pct, and for WMO-ASMO the weight factor d as well. In this section we will show the results of
test problems obtained with different meta-parameters pct and d, and discuss how to determine their
values.

First we evaluated the influence of pct. The convergence and diversity metrics of simple, ZDT and DTLZ test
problems obtained by MO-ASMO with different pct values are presented in Figure 8. The value of pct was
assigned to 0.1, 0.2, 0.5 and 1.0, and to give a fair comparison the total number of model runs was remain
unchanged. Obviously the influence of pct is problem dependent. For most cases, the convergence metric
increases with the growth of pct, except BIN, ZDT1 and ZDT3. For BIN and ZDT1, the convergence metric
decreases first and then increases, whereas for ZDT3, increases first and then decreases. The influence to
diversity metric is more complicated. For ZDT1, ZDT2, ZDT3 and ZDT6, the diversity metric is proportional

Figure 11. Multiobjective optimization results of CoLM: optimal objectives given by NSGA-II.

Figure 12. Multiobjective optimization results of CoLM: optimal objectives given by MO-ASMO.
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to pct, whereas for SCH1 and SCH2, inversely proportional to pct. For BIN, KIT, FON and ZDT4, the diversity
metric decreases first and then increases with the growth of pct. Generally speaking, a smaller pct leads to
better convergence, but for some problems there is a risk of losing diversity. Consequently, the users are
suggested to begin with a small to medium value of pct, such as 0.1 or 0.2, to balance the performance of
convergence and diversity, and increase pct if losing diversity.

To discuss the influence of weight factor, the optimal solutions of KIT, FON and ZDT1 obtained by WMO-
ASMO with d 5 0.1, 0.01, 0.001 are presented in Figure 9. A smaller weight factor means the search proce-
dure is strongly driven toward the reference point, whereas larger weight factor allows searching other
regions, such as the extreme optimal values of each objective. If the computational resources are very lim-
ited, a small value of weight factor is preferred in order to focus on the nondominated region of the refer-
ence point.

3.3. Evaluation of MO-ASMO on the CoLM Land Surface Model
To evaluate the effectiveness and efficiency of MO-ASMO for practical dynamic geophysical models, we
used the Common Land Model (CoLM) developed by Dai et al. [2003, 2004] and Ji and Dai [2010], which
can simulate biophysical, biochemical, ecological and hydrological dynamic processes and output energy-
water transmission fluxes among soil, snow, vegetation and the atmosphere. We obtained freeze-thaw

Figure 13. Multiobjective optimization results of CoLM: optimal objectives given by WMO-ASMO.

Figure 14. Taylor diagram of the Pareto optimal solution: sensible heat.
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observations from the A’rou station located in the Heihe River basin in northwest China (1008280E, 388030N,
altitude 3032.8 m above sea level). Seven forcing data sets of land surface modeling, namely, data pertain-
ing to downward shortwave and longwave radiation, precipitation, air temperature, relative humidity, air
pressure and wind speed [Hu et al., 2003], were provided by the Environmental & Ecological Science Data
Center for West China (http://westdc.westgis.ac.cn), and six output data sets pertaining to sensible heat,
latent heat, upward longwave radiation, net radiation, soil temperature and soil moisture were provided by
Prof. Shaomin Liu at Beijing Normal University. In a previous study, we selected 40 adjustable parameters,
defined six objective functions as the normalized root mean squared error (RMSE normalized by the means
of data), screened the most sensitive parameters [Li et al., 2013] and performed parameter calibration [Gong
et al., 2015a].

In the study by Gong et al. [2015a], multiobjective optimization was transformed into a single objective opti-
mization with a weighting function. In this study, we conducted multiobjective optimization that could
obtain the Pareto frontier in three different ways: NSGA-II, MO-ASMO and WMO-ASMO. The CoLM model
setup was exactly the same as that reported by Gong et al. [2015a]. The 12 screened parameters and their
units, meanings and ranges are shown in Table 6. For NSGA-II, both the population size and the number of
generations were set to 100. For MO-ASMO and WMO-ASMO, 400 initial samples were used in the optimiza-
tion, the maximum iteration number was set to 5, and the resample proportion was set to 0.2. The inte-
grated NSGA-II featured 100 individuals evolved over 100 generations. Thus, the maximum numbers of
CoLM evaluations of MO-ASMO and WMO-ASMO were 400 1 1003 0.23 5 5 500, whereas the maximum
number of evaluations for NSGA-II was 100 3 100510,000. The reference point of WMO-ASMO was set to
the NRMSEs obtained by the default parameterization scheme [Gong et al., 2015a].

The Pareto optimal parameter values found by NSGA-II, MO-ASMO and WMO-ASMO are presented in Figure
10. The optimal parameter sets obtained by SCE-UA, ASMO and the default parameters are also plotted in
the same figure. The optimal objective values provided by NSGA-II, MO-ASMO and WMO-ASMO are shown

Figure 15. Taylor diagram of the Pareto optimal solution: latent heat.

Figure 16. Taylor diagram of the Pareto optimal solution: upward longwave radiation.
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in Figures 11–13 (red points), together with the points evaluated during optimization (blue points). Clearly,
the distributions of the objective values and parameters given by the three methods are significantly differ-
ent. The optimal objectives obtained by NSGA-II shows many detail structures of the Pareto frontier, and
these details are provided by the very large number of evaluated points. For MO-ASMO, however, the distri-
butions of objectives are similar but many details were lost, and the parameter distributions are also
smoother than those of NSGA-II because NSGA-II used 10,000 original model runs to explore the details,
whereas MO-ASMO only used 500 original model runs and used GPR surrogate model to predict the objec-
tives in other regions. The surrogate model can mimic the behavior of the original model with only a few
sample points, but it inevitably lost some details because of the limited number of samples. In the CoLM cal-
ibration case, many Pareto optimal solutions could improve one or two objectives but degraded others.
These half-dominated solutions spread across the objective space, and describing their distribution would
require a large number of original model runs. For WMO-ASMO, the search region was concentrated in the
nondominated region of the reference point such that the limited number of original model runs per-
formed could be concentrated to the region in which all of the objectives could be improved. The optimal
parameters given by WMO-ASMO are also concentrated in a relatively small region compared with the dis-
tributions observed for the other two methods.

Furthermore, as shown in the Taylor diagrams [Taylor, 2001] in Figures 14–19, the optimal objectives yielded
by MO-ASMO and NSGA-II are quite similar. The results indicate that MO-ASMO is as effective as NSGA-II
and is much more efficient because it is rendered less computationally expensive by using fewer CoLM eval-
uations. Because the Pareto frontier of CoLM includes a vast half-dominated region in which only some of
the objectives are improved, leaving others deteriorated, we must use WMO-ASMO, which uses weighted
crowding distance to concentrate the search direction toward a small region that can simultaneously
improve all of the objectives. As shown in the Taylor diagram, the vast half-dominated region was trimmed,
leaving only the elite nondominated region. For all six evaluated fluxes, the variation, correlation coefficient,
and RMSE could be more or less improved by the optimal solutions provided by the WMO-ASMO.

Figure 17. Taylor diagram of the Pareto optimal solution: net radiation.

Figure 18. Taylor diagram of the Pareto optimal solution: soil temperature.
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It is also worth noting the limitation of parameter optimization. As shown in Figure 19, the soil moisture
simulation results yielded by CoLM with the original parameterization scheme are not satisfactory, and both
the multiobjective optimization (NSGA-II, MO-ASMO and WMO-ASMO) and single-objective optimization
(SCE-UA and ASMO) algorithms could not significantly improve the results. As discussed by Gong et al.
[2015a], simulating freezing/thawing processes is one of the most challenging tasks in land surface model-
ing, especially for the A’rou station, where the freezing and thawing cycles are very fast in the top layer. To
date, we still lack knowledge of the details of the freezing/thawing processes. To substantially improve the
soil moisture simulation, it is necessary to thoroughly understand the physical processes of frozen soil,
revise the program of land surface model and validate it in different areas. Parameter optimization is effec-
tive only if the model structure is consistent with the physical processes involved and the initial/boundary
condition data set and surface data sets are of good quality. Optimization can help improve model perform-
ance and determine the most suitable parameter values, but it cannot compensate for the effects of model
structure and data quality.

4. Discussion and Conclusions

In this study, we proposed a multiobjective optimization algorithm for expensive large, complex dynamic
geophysical models, MO-ASMO, and a variation thereof, WMO-ASMO, which uses weighted crowding dis-
tance. In comparing 13 test problems, MO-ASMO showed similar effectiveness but was much more efficient
than the classical evolution method NSGA-II. For most test problems, MO-ASMO yielded similar results with
no more than 10% of the original model runs compared with NSGA-II. For the land surface model CoLM,
MO-ASMO yielded a similar Pareto optimal with only 5% of the original model runs used by NSGA-II. We
also incorporated the surrogate-based multiobjective optimization toolbox SUMO, which uses
hypervolume-based PoI to transform multiobjective problems into single-objective problems. In our com-
parison, SUMO was more aggressive in finding the Pareto optimal and obtaining better convergence met-
rics but failed to maintain the diversity of optimal solutions, whereas MO-ASMO was more balanced in
maintaining both convergence and diversity. In the comparison reported by Tsoukalas and Makropoulos
[2015], SUMO outperformed SmsEGO and ParEGO, but the authors’ test problem involved only four parame-
ters and two objectives, which is too small a system to provide a more general conclusion. In this study, we
found that for ZDT problems featuring more than 10 adjustable parameters, SUMO could only find 1, 2, or 3
Pareto optimals, implying that the algorithm does not have a robust mechanism for maintaining diversity,
such as the crowding distance used in NSGA-II and MO-ASMO. Despite having used 13 various test prob-
lems, we admit that this comparative study was still very limited because only three algorithms were
involved, and the algorithm setups were also not sufficiently diverse. In performing comprehensive compar-
isons of various types of optimization methods, the community should develop a common framework
online that includes many components of the existing optimization algorithms and use various canonical
real-world applications to test these algorithms [Maier et al., 2014]. Toward this long-term target, we have
developed an open-source software framework called UQ-PyL that can be deployed on both personal com-
puters and super-computers and allows users to test their own problem with various types of optimization
algorithms.

Figure 19. Taylor diagram of the Pareto optimal solution: soil moisture.
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To sum up, compared with other similar methods, the novel contribution of (W)MO-ASMO lies in the follow-
ing aspects:

1. Initial sampling: A uniform sampling design is applied for initial sampling. In the study by Gong et al.
[2015b], the Good Lattice Points method with RGS de-correlation was shown to be one of the most uni-
form sampling methods. A more uniform initial sampling can potentially improve the convergence
speed of optimization.

2. Surrogate modeling: The Gaussian Processes Regression method is adopted as the surrogate model. In
various previous studies, similar methods such as Kriging interpolation and Radial Basis Functions have
been successfully used in surrogate-based optimization. GPR is a flexible nonlinear regression method
that can mimic their behavior by selecting a corresponding covariance function. In this study, we used
the general-purpose Mart�ern covariance function. The hyper-parameters of the covariance function sig-
nificantly affect the performance of GPR. To adaptively choose the hyper-parameters, we used the SCE-
UA optimization method to adaptively maximize the marginal likelihood function. We also applied rein-
forcement learning technologies to save time when training the GPR.

3. Adaptive sampling: To effectively use the information in the surrogate model, we applied NSGA-II optimi-
zation to the GPR surrogate model for 100 generations to sufficiently explore the Pareto frontier and
select a portion of (i.e., 20% in this paper) most representative subsets of the Pareto optimal solutions to
run the original dynamic model. Crowding distance was adopted as a metric of the representativeness of
optimal points [Deb et al., 2002]. A large distance indicates that a point is far from other optimal solutions
and thus more representative of its local region. In this manner, we could reduce the total number of
dynamic model runs while maintaining the diversity of the population.

4. Weighted crowding distance: The goal of multiobjective optimization is to find a sufficiently large point set
to represent the entire nondominating Pareto frontier. However, for certain real-world applications, such as
the use of geophysical dynamic models, e.g., land surface models, weather and climate models, the goal is
to find parameter sets that can improve all objectives relative to the default parameterization scheme, and
other half-dominated solutions should be trimmed from the optimal solution set. The weighted crowding
distance, which can replace the crowding distance in NSGA-II, assigns a small positive weight factor to the
points in the half-dominated region to make them more likely to be eliminated by fast nondominated sort-
ing. By using the weighted crowding distance, the WMO-ASMO can focus on the nondominated region of
the reference point without wasting valuable computational resources on the half-dominated region, in
which we have no interest. In the case study of CoLM, WMO-ASMO was able to find the Pareto optimal
under the limit of 500 original model runs. Compared with the single-objective ASMO, WMO-ASMO can
produce an ensemble parameter set in which all of the members are better than those under the default
parameterization with respect to all objectives. Such an ensemble set will be very useful in producing
ensemble hydro-meteorology forecasts because each member of the ensemble is better than in the default
parameterization, and the members can also represent the diversity of possible future scenarios.
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