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a b s t r a c t

Ensemble forecasting is becoming increasingly popular as a hydrological forecasting tool because of its
advantages of not only predicting the most likely outcome of a hydrological event, but also providing
related uncertainty information. Rank histogram is one of the most widely used metrics for verifying the
reliability of ensemble forecasts. This study proposed an improved rank histogram method, the Rank
Polar Diagram (Rpolar diagram), for evaluating the reliability of ensemble forecasts of extreme events.
The conventional rank histogram provided a simple evaluation of the reliability of an ensemble forecast,
which could not differentiate the reliability of the forecasts of extreme events such as heavy storms, high
flows and low flows. Rpolar diagrams were able to verify not only the overall reliability but also the
partial reliability over different flow intervals, including extremes. In Rpolar diagram, forecast intervals
could be set according to user preference or uniform intervals automatically. This study evaluated the
effectiveness of the Rpolar diagram using two typical sets of simulation ensembles and actual stream-
flow/precipitation ensembles. Both streamflow and precipitation application results exhibited the suit-
ability of the Rpolar diagrams for verifying the reliability of extreme events.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate and reliable forecasting of hydrological events, espe-
cially extreme events such as heavy storms, droughts, and floods,
was imperative for the protection of socio-economy and human
lives. Ensemble forecasting (Van Steenbergen et al., 2012; Gal et al.,
2014) has become an increasingly popular tool for the forecasting of
hydrological extremes. However, how can one verify the quality of
an ensemble forecast properly? Generally speaking, a good
ensemble forecast was supposed to have following: 1) equal like-
lihood: each ensemble member having an equal likelihood of
occurrence, 2) superiority: the ensemble mean being superior to
any single forecast when evaluated over a long verification period,
3) high spread-skill relation: the ensemble spread being proper and
distribution being sharp, and 4) high reliability: forecast probability
matching observed frequency.

Various verification metrics have been proposed over the years
Earth Surface and Ecological
Normal University, Beijing
to evaluate the performance of an ensemble forecast (Murphy and
Winkler, 1987; Nash and Sutcliffe, 1970; Jolliffe and Stephenson,
2008) and single-valued forecasts (Dawson et al., 2007), with
aforementioned properties measured separately by different veri-
fication metrics (Potts et al., 1996; Pushpalatha et al., 2012). Table 1
listed how those properties were measured by various verification
metrics.

The large numbers of verification metrics listed above indicated
that the goodness of ensemble forecasts could not be evaluated
straightforwardly with a single measure. In other words, users
would need to verify the ensemble forecasts with different metrics
to obtain a complete picture of its performance. For example, we
could use a number of verification metrics that measure reliability,
such as the rank histograms (Talagrand et al., 1997), predictive
quantile-to-quantile plots (Laio and Tamea, 2007; Biondi and De
Luca, 2013), reliability diagrams (Hamill, 1997), among others. For
other properties such as resolution, sharpness, discrimination, one
needed to use other metrics, e.g., the relative operating character-
istic (ROC) (Swets, 1973), the decomposition of the brier score (BS)
into the resolution term (Murphy, 1973), or mean continuous rank
probability scores. This paper focused on one of these metrics, the
rank histogram, and discussed how rank histograms could be
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Table 1
Studies with the certain criteria to evaluate different attributes of forecast quality (Brown et al., 2010).

Aspects Property Definition Verification metrics & Efficiency
criteria

References

Ensemble
mean

Bias Measure the difference between the forecast and the observed values
on average.

Mean Error (ME) Willmott and Matsuura,
2005;
Singh et al., 2014.

Mean Absolute Error (MAE)
Root Mean Square Error (RMSE)
Mean Continuous Rank Probability
Score

Accuracy The correlation between the forecast and the observations on average. Brier Score (BS) Brier, 1950;
Stephenson et al., 2008.

Correlation Degree of the linear relationship between the forecast and the
observations on average.

Pearson Correlation Coefficient (PCC) Benesty et al., 2009; Zar,
1998;
Abdi, 2007.

Spearman Rank Correlation (SRC)
Kendall Correlation Coefficient

Skill Extent degree of whether the forecast system is better or worse than
the benchmark (e.g., climatology).

Mean Continuous Rank Probability
Skill Score (MCRPSS)

Hersbach, 2000;
Weigel et al., 2007

Brier Skill Score
Equitable Threat Score

Probability Reliability Degree of correlation between the forecast probability and the observed
frequency.

Reliability Diagram Hamill, 1997; Hamill, 2001;
Maraun, 2013.Rank Histogram

Predictive Quantile-Quantile Plot
Resolution An attribute that measures how well the observations are sorted under

different frequency distributions.
Mean CRPS Resolution Beck et al., 1986;

Jolliffe and Stephenson,
2008.

Brier Score Resolution
Relative Operating Characteristic

Discrimination Degree of forecast ability to discriminate between events and non-
events.

Relative Operating Characteristic
Score

Mason and Graham, 1999.

Spread-skill
relation

Sharpness An attribute that measures the tendency to predict with zero and one. Forecast Frequency Histogram Hoffmann et al., 1990;
Sircombe, 2004.
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improved so it could be used to verify the reliability of ensemble
forecasting of extreme events.

Wilks (2011) explained how an ensemble forecast was used to
generate a probabilistic forecast through the following example: if
20 of 50 ensemble members forecasted rain, then the probability of
rain would be 40%. The premise of this example was that the
ensemble was reliable, which implied that both the ensemble
forecast and the observation were sampled randomly from the
same probability distribution.

It was common to diagnose the reliability of ensemble forecasts
from the shape of rank histograms, predictive QQ plots or reliability
diagrams. Rank histogram is also known as the “Talagrand dia-
gram” (Talagrand et al., 1997). Wilks (2011) suggested using the
rank histogram to evaluate the ensemble spread of the forecast
value. It checks whether the observed probability distribution is
well represented by the ensembles. Arrange the N ensemble
members in an increasing order from lowest to highest and wewill
obtain (N þ 1) bins that the verifying observation could fit into,
including the two extremes. Ideally speaking, each ensemble
member represents an equally likely scenario to contain the
observed value in the corresponding bin. A flat rank histogram
manifests ensemble spread about right to represent forecast un-
certainty. Some other situations may occur as well, such as a U-
shaped rank histogram represents the distribution of ensemble
members is too small that many observations falling outside the
extremes; A dome-shaped rank histogram shows the distribution
of ensemble members is too large that most observations falling
near the center of the ensemble; An asymmetric rank histogram
denotes the bias in the ensemble. However, Hamill (2001) indicated
that uncritical use of these tools might lead to an inaccurate eval-
uation of the reliability of ensemble forecasts. An important theory
claimed that a uniform rank histogram was a necessary but insuf-
ficient criterion for determining whether an ensemble was reliable.
A uniform rank histogram provided no guarantee that the
ensemble was reliable at each point used to populate the histo-
gram. On the other hand, the forecast reliability of extreme events
was crucial, such as the evaluation of the partial reliability of flood,
low-flow, heavy precipitation and others.
This study proposed an improved verification method called the
Rank Polar Diagram (Rpolar diagram) for evaluating the reliability
of ensemble forecasts of extreme events. Section 2 introduced the
rank polar diagram and illustrated its effectiveness through several
typical examples. Section 3 presented the results of Rpolar dia-
grams from actual forecasting applications in different hydro-
climate regimes. Section 4 provided concluding remarks.
2. Rank polar diagram (Rpolar Diagram)

2.1. Introduction of rank polar diagram

Wilks (2011) suggested that rank histogram could be used to
evaluate the reliability of ensemble forecasts. The rank histogram
verified whether the observed probability distribution was repre-
sented well by the ensembles and diagnoses errors within its mean
and spread (Talagrand et al., 1997; Hersbach, 2000; Yuan et al.,
2013). However, an approximately uniform rank histogram was a
necessary, rather than sufficient, condition for a reliable forecast or
a perfect-model context. In other words, the ensemble forecast that
was reliable at each point would generate a uniform rank histo-
gram; however, a flat rank histogram nevertheless could be
generated from unreliable ensembles (Hamill, 2001).

The concernwhen verifying the reliability of ensemble forecasts
is higher for extreme events, such as heavy storms, floods, droughts
and low-flow discharge (Dong et al., 2013), extreme heat, etc.
Therefore, it is important to ensure ensemble reliability at each
point. An improved verification method utilizing a Rank Polar
(Rpolar) Diagram was suggested in this paper. The Rpolar Diagram
could be a useful tool for evaluating the partial reliability of
extreme events in ensemble forecasts. The Rpolar Diagram was
constructed as follows: 1) given the number of observations n, and
the number of ensemble members m, sort the observed data in
descending order, and divide the data into 10 quantiles; 2) for each
quantile, obtain the rank histogram of the corresponding ensemble
forecasts; 3) compute the root-mean-squares error (RMSEi) of the
rank values versus the perfect rank (in a perfect-model context)
value of 1/(mþ1) for quantile i, i ¼ 1,2, …, 10, and then compute
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mRMSE, which is the weighted average of RMSEi (i ¼ 1, 2 …, 10),
noted that equal weights of 1/10 are used here; 4) draw a red circle
representing the perfect rank (with a radius value of 1/(mþ1)), and
then draw the dashed radial lines separating the 10 quantiles; 5) for
each quantile, plot the portion of the rank histogramwhose values
are larger than 1/(mþ1) in red and the portion whose values are
less than 1/(mþ1) in cyan; 6) draw the dased circles with per-
centages (2%, 4%, 6%, 8%) that represent the observed frequencies;
7) draw the RMSEi divided by 100 values for each quantile, (marked
by “x”) in order to match the polar axis. Noted that the root mean
square error (RMSEi, i ¼ 1, 2, …, 10) is computed as follows:

RMSEi ¼ 100,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mþ 1

Xmþ1

k¼1

�
Rk �

1
mþ 1

�2
vuut (1)

where i represents the sequence number of the observational fre-
quency interval, m is the number of ensemble members, and k
represents the sequence number of each ensemble member. Rk
represents the rank values of each ensemble member in the cor-
responding intervals. RMSEi varies between 0 (perfect reliability)
and þ∞ (worst reliability).

We created a synthetic case to illustrate the Rpolar Diagram. In
this case, we assumed that there are 100,000 observations, which
were divided into 10 quantiles, with each quantile containing
10,000 observations. Further, we assumed that all observations are
drawn from Gaussian distributions, N(mi,si), i ¼ 1, …, 10, where mi
and si are the mean and standard deviation of the ith quantile.
Synthetic ensemble forecasts for the ith quantile were generated as
follows. Assumed that the ensemble size was 25. For each obser-
vation in the ith quantile, 25 random values were sampled from
N(miþDmi,siþDsi), where Dmi and Dsi were perturbations to mi and
si. Thus, for 10,000 observations in the ith quantile, 10,000 � 25
random values were sampled from N(miþDmi,siþDsi). By changing
the values of Dmi and Dsi, we created various kinds of unreliable
ensemble forecasts for different quantiles (Table 2). Fig. 1a also
provided a schematic diagram of ensemble forecasts with a
particular set of {Dmi andDsi, i¼ 1, 2,…, 10}, with the resulting rank
histogram shown in Fig. 1b. The overall rank histogram seemed to
be quite uniform except in the 1st to 26th quantiles.

Fig. 1c shows the Rpolar Diagram for the above ensemble fore-
casts. If both observations and ensemble forecasts are sampled
from the same distribution (both Dmi and Dsi are equal to 0), the
ensemble forecasts should be perfectly reliable according to the
definition of perfect reliability. This shows up in the 90% and 100%
quantiles in Fig. 1c, where the rank histograms lie close to the red
line (i.e., perfect rank). If either or both Dmi and Dsi are not equal to
0, then the ensemble forecasts are going to be unreliable, as shown
in the other 8 quantiles. A U-shaped rank histogram is showed in
the 1st and 2nd quantiles in Fig. 1c, the ensemble samples are from
a distribution with a lack of variability when Dsi is less than 0 and
Dmi is equal to zero. An excess of variability in the ensemble would
overpopulate the middle ranks and result in a dome-shaped Rpolar
diagram in the 3rd and 4th quantiles in Fig. 1c (Dsi >0 and Dmi ¼ 0).
Table 2
Corresponding perturbations to sample mean and standard deviation and type of
error for each frequency intervals.

Sample No. of quantiles Dmi Dsi Type of error

1 10-20% ¼0 <0 Lack of variability
2 30-40% ¼0 >0 Excess of variability
3 50-60% >0 ¼0 Under-forecasting
4 70-80% <0 ¼0 Over-forecasting
5 90-100% ¼0 ¼0 No error
If Dmi is greater than 0, the rank histograms demonstrate under-
forecasting in the 5th and 6th quantiles in Fig. 1c. If Dmi is less
than 0, the rank histograms demonstrate over-forecasting in the
7th and 8th quantiles in Fig. 1c.

Note that a perfectly reliable ensemble forecast is a special case
inwhich the rank histograms for all quantiles coincide with the red
circle (i.e., perfect rank) and the RMSEi values are all zeros at the
circle center.

The choice of quantile number should be dependent on sample
size and user demand. If the sample size is large enough (e.g.,
>10000), the quantile number might be greater than 10. If the
sample size is very small (e.g., <100), the quantile number would be
less than 10. The Rpolar diagram would be a rank histogram if the
quantile number equals 1. The choice of 10 quantiles is optimum
scheme in order to be used easily. Besides, the sample size in each
quantile may be different (e.g., 1st: 0e5%, 2nd:5e20%,… …) .

2.2. Comparison between rank polar diagram and conventional
rank histogram

Rpolar Diagram is also well suited to illustrate the unsettled
issues given by Hamill (2001), which showed that an ensemble
forecast could only have whole reliability, but partial unreliability.

Truth was drawn randomly from a standard normal distribution
N (0, 1), and a 25-member ensemble was sampled with equal
likelihood from one of three probability distributions: N (�0.5, 1), N
(0.5, 1) and N (0, 1.3) (Fig. 2a). A relatively flat rank histogram was
generated (Fig. 2b) despite none of the ensembles sampled from
the same probability distribution representing truth. The ensemble
was clearly unreliable in this example because of the positive/
negative conditional biases and an excessive variability, so the
resulting rank histogram is a misinterpretation.

Fig. 2a shows the observation and 3 ensemble forecasts which
are sampled from three slightly different distributions. If one ver-
ifies the 3 ensemble forecasts together, the ensemble looks
perfectly reliable, as shown by the rank histogram (Fig. 2b). Hamill
(2001) argued that a uniform rank histogram does not necessarily
indicate the reliability of the ensemble by drawing conclusions
from a flat rank histogram populated with ensembles from three
different probability distributions than that from which the
observation is drawn. Here, the Rpolar diagram (Fig. 2c) can eval-
uate the forecast quality (or partial reliability) at each sample point
more clearly than the rank histogram.

Fig. 2c indicates that the Rpolar diagram can reveal the unreli-
ability of the ensemble. The partial reliability at each frequency
range in the ensemble can be evaluated. For example, the proba-
bility distribution of N (0.5, 1) with a relatively large mean of 0.5
(Fig. 2a, green line) results in asymmetrically shaped ranks with
smaller ranks close to member 25 at 8th to 10th quantiles. This
result indicates over-forecasting in a low-frequency interval and
corresponds to an N (�0.5, 1) distribution (Fig. 2a, blue line). The
relative ensemble mean of �0.5 results in excessively populated
ranks close to member 25 and indicates under-reliability in high-
frequency intervals (1st to 3rd quantiles). Dome-shaped Rpolar
diagrams (Fig. 2c) with excess variability are generated in middle
frequency intervals (4th to 7th quantiles) when the ensemble is
sampled from a distribution of N (0, 1.3) with a relatively large
standard deviation of 1.3 (Fig. 2a, orange line).

The resulting RMSEi values are 8.04, 4.50, 3.64, 3.10, 2.79, 2.84,
3.11, 3.56, 4.58 and 8.02 (Fig. 2c) corresponding to 1st to 10th
quantiles, respectively. The mRMSE value of 4.42 is much higher
than the original RMSE value of 0.77 (Fig. 2b), indicating unreli-
ability in the ensemble. Therefore, the Rpolar diagram can interpret
the qualities of the ensemble properly.

Forecast performance typically was evaluated separately for



Fig. 1. (a) Schematic diagrams of five different ensemble samples. The observation is sampled randomly with a standard normal distribution N (6(10-i), 1) (i ¼ 1 to 10), and five 25-
member ensemble samples are drawn from N (6(10-i), 0.7) (i ¼ 1 and 2), N (6(10-i), 1.5) (i ¼ 3 and 4), N (6(10-i)þ0.5, 1) (i ¼ 5 and 6), N (6(10-i)-0.5, 1) (i ¼ 7 and 8) and N (6(10-i), 1)
(i ¼ 9 and 10), where i represents the sequence number of the frequency intervals. Note that the same amounts are increased in each 10000 times. (b) The corresponding rank
histogram, where x-axis denotes the ensemble members, y-axis denotes the frequency of observation in corresponding ensemble forecast. (c) The Rpolar diagram. The dashed radial
lines separate the 10 quantiles (10%e100%, in descending order) that the observed data were divided into. The red circle shows the perfect rank. The dashed circles different
percentages (2%, 4%, 6%, 8%) represent the frequencies. The root-mean-squares error (RMSEi) vales for each quantile are marked by blue “x”. Furthermore, for each quantile, the red
portions represent the values are larger than 1/(mþ1), while the cyan portions are for the values are less than 1/(mþ1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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each regime (i.e., different areas, seasons, models, etc). However,
Hamill (2001) suggested an indistinguishable problem within the
rank histogram and argued that a rank histogram of any shape may
be generated in a variety of ways. Hamill (2001) discussed that two
types of unreliability (conditional bias and under variability) might
lead to similar U-shaped rank histograms. The Rpolar diagram can
solve this problem and distinguish among different types of unre-
liability or errors in the ensemble.

The truth is sampled randomly from a standard normal distri-
bution N (0, 1). Two pairs of 25-member ensembles are selected as
follows (Fig. 3a and b): one is sampled with equal likelihood from
one of two different probability distributions other than the truth.
The two distributions include N (�1, 1) and N (1, 1); another
ensemble is sampled from an under-variable population via a dis-
tribution of N (0, 0.42). The first pair of ensembles in this example
contains a combination of conditional biases, while the second pair
is sampled with a lack of variability. However, the rank histograms
shown in Fig. 3c and d are too similar for diagnosing different types
of mean and spread errors in the ensemble.

The Rpolar diagrams in Fig. 3e and f are completely different,
implying two types of unreliability in the corresponding ensemble.
The asymmetrically shaped ranks with smaller extreme ranks
indicate a positive bias in the 100% high-frequency interval (10th
quantile). The overpopulation of large ranks implies a negative bias



Fig. 2. (a) Probability distributions fromwhich verification and ensemble are sampled. The observation is sampled randomly with a standard normal distribution N (0, 1), and three
25-member ensemble samples are drawn from N (�0.5, 1), N (0.5, 1) and N (0, 1.3). (b) Resulting rank histogram corresponding to (a). (c) Rpolar diagram corresponding to (a). The
rank of the verification and ensemble are tallied 30000 times total.
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in the ensemble in the 10% low-frequency interval (1st quantile).
The unreliability is also displayed at 2nd to 9th quantile. However, a
positive bias excessively populates the small extreme ranks in high-
frequency intervals from 80% to 100% (Fig. 3f). A negative bias
overpopulates the large extreme ranks in low-frequency intervals
from 10% to 30%. Dome-shaped ranks (Fig. 3f) indicate over-
variability in the second ensemble for the middle frequency in-
tervals from 40% to 70%.

The RMSE values (2.17 and 2.41) in the rank histograms in Fig. 3c
and d, are indistinguishable. Table 3 shows that the values of
mRMSE are 5.55 and 8.42, respectively. The different RMSEi in
Rpolar diagrams can distinguish different types of unreliability in
the different quantiles.
3. Applications in ensemble forecast verification

Ensemble forecasts generally are considered to perform differ-
ently under different weather regimes. Simulated and observed
daily streamflow/precipitation data indicate that these ensemble
forecasts encompass divergent regimes. Extreme events (such as
flood, drought or low-flow, heavy precipitation and extreme heat,
etc.) within a real hydrological ensemble forecast are important
integral components of any weather regime.
3.1. Streamflow cases

The simulated daily streamflow data and corresponding obser-
vation used in this study were obtained from the database of the
Second Workshop on Model Parameter Estimation Experiment
(MOPEX) (Duan et al., 2006), which involved 12 basins from the
Southeastern United States and covered the period from 1962 to
1997. The simulated streamflow predictions by seven hydrological
models from 3 of the 12 basins have been post-processed to
generate ensemble streamflow predictions (Ye et al., 2014). Those
models are the Gr4j (gr4j), Isba (isba), Noah (noa), Sacramento
(sac), SWAP (swap), Simple Water Balance (swb) and VIC models
(vic). Some basic information of the three river basins is shown in
Table 4. Here, we choose three typical streamflow examples to
demonstrate how Rpolar diagrams can evaluate partial reliability of
different frequency intervals in the ensemble, especially extreme
events (i.e., floods).
3.1.1. ExampleⅠ: partial reliability of different frequency intervals
accurately of ensemble streamflow simulations

Both the resulting rank histogram (Fig. 4a) and Rpolar diagram
(Fig. 4b) are displayed for comparison. Note that the entire period is
from 1987 to 1997 for the two figures. Fig. 4c shows a hydrograph of



Fig. 3. (a)(b) Probability distributions fromwhich verification and ensemble are sampled. The observation is sampled randomly with a standard normal distribution N (0, 1), and the
first 25-member ensemble samples are drawn from N (�1, 1) and N (1, 1). The second ensemble is sampled with N (0, 0.49). (c)(d) Rank histograms corresponding to (a) and (b),
respectively. (e)(f) Rpolar diagram corresponding to (a) and (b), respectively. The rank of the verification and ensemble are tallied 20000 times in each ensemble sample.
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post-processed ensemble streamflow simulations for B1 basins
(Table 4) with relatively low latitude for the Gr4j model. The chosen
period in Fig. 4c is from January 1, 1992, to December 31, 1992, to
illustrate a schematic hydrograph. The post-processed ensemble
streamflow simulation data we used have lead time of 14 days,
while, in this study, we only chose the 1st lead time.



Table 3
The values of RMSE for two different ensembles.

Criteria 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% mRMSE

RMSEi 1# 8.78 6.15 4.81 4.21 3.83 3.78 4.20 4.77 6.09 8.92 5.55
2# 16.06 8.81 6.43 5.56 5.00 5.08 5.52 6.39 8.97 16.39 8.42

Table 4
River basin information.

Basin
ID

USGS ID Lon. Lat. Area(km2) Station name

B1 08172000 �97.6506 29.6661 2170 San Marcos River at Luling, TX
B2 01608500 �94.5661 37.2456 3810 S Branch Potomac River near Springfield, WV
B3 01668000 �77.5181 37.2456 4134 Rappahannock River near Fredericksbrug, VA

Fig. 4. (a) Rank histogram from 1987 to 1997. The horizontal red dashed lines indicate perfect uniformity. (b) Corresponding Rpolar diagram. The perfect uniformity is shown as a
red circle, while the blue crosses in each sector domain represent the RMSEi. (c) Hydrograph for post-processed ensemble streamflow simulations on lead day 1 from January 1,
1992, to December 31, 1992, for the B1 river basin using the Gr4j model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Two major features can be summarized according to the
resulting rank histogram (Fig. 4a): (1) the dome-shaped rank his-
togram with peaks located in the center indicates an excess of
variability in the ensemble and (2) the excessive population of the
right extreme ranks reveal a negative bias in the ensemble. The
results for whether the biases occurred within the high discharge
cannot be acquired through a rank histogram alone.
A corresponding Rpolar diagram is plotted in Fig. 4b. Note that
the yellow fan areas represent the high discharge interval. We
found that (1) the smallest and largest ranks are high indicate both
positive (over-forecasting) and negative biases exist in the flood
high ensemble simulations in the low-frequency interval (10e20%);
the polar ranks appear U-shaped at 1st and 2nd quantiles. There-
fore, the verification result reflects under-forecasting and excessive
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variability marked with the red/yellow band in Fig. 4c. (2) the
overpopulation of the middle ranks (over-variability) appear in
middle-frequency intervals from 30 to 60%; and (3) a negative bias
(under-forecasting) excessively populates the large extreme ranks
in high-frequency intervals from 80 to 100%. A significant number
of ensemble members exceed the ensemble upper uncertainty
range in the high discharge interval, which indicates huge risk.
Therefore, this streamflow example can be considered an unreli-
able ensemble based on the above analysis. The Rpolar diagram can
interpret the forecast performance visualized by the hydrograph
better than the rank histogram. The values of RMSEi are 1.87, 1.02,
1.01, 1.53, 1.49, 1.30, 0.93, 1.39, 2.46 and 2.99 (Fig. 4b) for the period
from 1987 to 1997 for the B1 river basin according to the Gr4j
model. The mRMSE value of 1.60 is much larger than the original
RMSE value of 0.75, indicating unreliability in the ensemble.
Therefore, the Rpolar diagram can interpret partial reliability of
different frequency intervals accurately.

The overall impression given by the hydrograph (Fig. 4c) is that
there is an under-confidence in the ensemble simulations. The
ensemble generates a “band” (Fig. 4c, pink area), the size of which is
too small to contain the truth (black line). Conditional biases exist
within the high flood intervals. For example, under-forecasting is
visualized, indicating that the observed streamflow rises higher
than the ensemble flood peak prediction. Similarly, over-
forecasting and excessive variability (yellow area) are demon-
strated. Note that 10 different frequency quantiles based on ob-
servations are plotted as black dashed lines (Fig. 4b).

3.1.2. ExampleⅡ: distinguish the forecast performance of different
ensemble streamflow simulations

Fig. 5 provides another example in which the Rpolar diagram is
used to distinguish the forecast performance of different ensemble
streamflow simulations. We chose the Sacramento model data in
the B2 and B3 river basins as the streamflow data used in this
example. The hydro-climate regimes are clearly different in the
view of the complementary information of the B2 and B3 basins
(Table 4). Fig. 5a and b indicate that the shapes of the two rank
histograms are the same with RMSE values of 0.56. The rank his-
tograms are indistinguishable and useless for verifying different
reliabilities in eachweather regime in this case. The RMSEi (mRMSE)
values with a weight of one-tenth are also demonstrated in Table 5.

The Rpolar diagrams (Fig. 5c and d) demonstrate explicit results.
We found that the dome-shaped polar ranks appear in almost all of
the domain sectors of the two Rpolar diagrams. However, the 10%
red rank indicates an under-forecasting in the ensemble for the
high discharge (yellow fan area) in the prior Rpolar diagram
(Fig. 5c). In contrast, the red ranks of closing member 1 in the
yellow fan area of Fig. 5d reveal over-forecasting in the 10% interval.
Although the sharpness is relatively low, few ensemble members
exceed the ensemble upper uncertainty range in the high discharge
interval.

3.1.3. Example Ⅲ:perfect ensemble streamflow forecast with high
reliability

The merit of Rpolar diagram is which can show more uncer-
tainly information of ensemble forecast than rank histogram. The
Rpolar diagram can check not only whole reliability but also partial
reliability. Fig. 6 shows the rank histogram and Rpolar diagram in
allusion to a perfect reliable ensemble streamflow simulation. The
perfect reliable ensemble streamflow simulation was produced
randomly with uniform distribution on each observed daily
streamflow among 1961 to 1998 in the B3 basin. There are four
steps to generate the perfect reliable ensemble daily streamflow
simulation in each day: 1) Produce 25 uniform distributed random
numbers a(1 … 25), 2) Sort the 25 random numbers in descending
order, 3) Produce one random integer number k among 1 to 26, 4)
the observed streamflowminus a(1,…, k-1) and add a(k,…, 25) if k
is not equal to 1 and 26, the observed streamflowadd a(1,…, 25) if k
is equal to 1, the observed streamflowminus a(1,…, 25) if k is equal
to 26.

Fig. 6a is a uniform rank reveals the ensemble simulation is
reliable. The resulting RMSEi values are 0.5789, 0.3812, 0.5725,
0.5974, 0.4705, 0.5180, 0.5417, 0.5021, 0.6105, and 0.5053 (Fig. 6b)
corresponding to at 1st to 10th quantiles, respectively. The uniform
rank values and small RMSEi show the ensemble forecast is partial
reliable (Fig. 6a). The Rpolar diagram can show a reliable forecast to
be reliable on ensemble streamflow simulation.

3.2. Precipitation case

In terms of precipitation, the daily precipitation ensemble
forecast data used in this study were generated through post-
processing of the single-value Global Forecast System (GFS) pre-
cipitation forecasts over the Huai River basin in China over 28 years
from 1981 to 2008. The post-processing method used in this study
was the revised Ensemble Predicted Preprocessor (EPP), originally
developed at the Hydrology Laboratory of the National Weather
Service (Schaake et al., 2007; Liu et al., 2013). The daily precipita-
tion ensemble forecasts contained 28 members with a lead-time of
14 days. The corresponding observed daily precipitation observa-
tions were collected from 187 weather stations located in and near
the river basin. The annual precipitation amount ranging from 634
to 1130 mm/yr, decreased from the Southwest to the Northeast.

Fig. 7a shows the precipitation chart of the ensemble precipi-
tation simulation in day 1 for the period (1981e2008). The result-
ing rank histogram (Fig. 7b) and Rpolar diagram (Fig. 7c) are
demonstrated for comparison. It is worth noting that there may be
no precipitation in the arid season from October to March when
verifying the reliability of the ensemble precipitation forecasts. The
verification observation including the two extremes will fit into
obtained (Nþ 1) bins when arranging N ensemble members into an
increasing order. For example, if the observation and M (M < N)
ensemble members are equal to zero, the ranks will be over-
populated in the (Mþ 1)th bin. However, the prior (Mþ 1) bins have
equally likely scenario to contain the observed value. Therefore,
special rules are needed for assigning ranks when a large number of
ensemble members have the same value (i.e., zero). The cumulative
amounts in the (M þ 1)th bin are supposed to be divided into the
former M bins uniformly.

Fig. 7a indicates that the size of the “band” (light blue area) that
is comprised of the ensemble is relatively suitable for the truth
(grey line) and will give users more confidence in decision making
the ensembles with a larger spread. However, conditional biases
also exist in low-frequency intervals (i.e., heavy precipitation). For
instance, the observation exceeds the ensemble upper uncertainty
range (Fig. 7a, above the red line), reveals under-forecasting.

The resulting rank histogram is shown in Fig. 7b. We found that
(1) the ranks are nearly uniform and (2) the right-most ranks are
relatively high, suggesting that there is a negative bias (under-
forecasting) in the ensemble. The rank histogram generally sug-
gests that the ensemble precipitation simulation is reliable.

Nevertheless, opposite conclusions can be obtained by the
Rpolar diagram (Fig. 7c). Two major results are found: (1) the
precipitation probability is approximately 30%, indicating an
approximately 70% probability of no rain. Most ensemble members
are equal to or greater than zero in the low-frequency intervals
(from 40% to 100%), as with the corresponding observation. The
ranks of prior (M þ 1) bins in each interval are distributed uni-
formly determined using the rank assigning method discussed
above. The large extreme ranks, such as the (N-M) bins, are under-



Fig. 5. (a)(b) Rank histograms for post-processed ensemble streamflow simulations on day 1 for the B2 and B3 river basins using the Sacramento model. (c)(d) Corresponding
Rpolar diagrams.

Table 5
The values of RMSE for the B2 and B3 river basins from 1987 to 1997 using the Sacramento model.

Criteria 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% mRMSE

RMSEi 1# 1.89 0.98 1.02 1.02 0.95 1.10 1.12 0.99 1.21 1.69 1.20
2# 2.41 1.14 1.02 0.67 0.99 1.10 0.97 1.03 0.92 0.92 1.12
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populated in these intervals. (2) The overpopulation of large
extreme ranks implies a large under-foresting in the low-frequency
interval, especially in the heavy precipitation interval (yellow fan
area, 10%). This result indicates that the ensemble precipitation
forecast is unreliable. The partial reliability of different precipita-
tion frequency intervals in the ensemble can be verified better
using Rpolar diagram by comparison. The values of RMSEi are 5.62,
3.84, 2.38, 1.37, 1.39, 1.26, 1.23, 1.26, 1.27 and 1.24 for ensemble
precipitation forecasts in day 1. The mRMSE value is 2.09, which is
much larger than 0.70 (Fig. 7b). The larger RMSEi (i ¼ 1, 2, 3) values
at 1st to 3rd quantiles also imply unreliability in the ensemble.
4. Conclusions

The verification of partial reliability of extreme event ensemble
forecasts is more meaningful than the overall reliability. Guaran-
teeing partial reliability in specific intervals has practical signifi-
cance, such as the evaluation of partial reliability in the high flow
situation, low-flow situation, heavy rainfall situation and others.
This paper propose an improved verification method using Rpolar
diagram.

Previously, uncritical use of rank histograms may result in an
illusory understanding of the qualities of the ensemble and is only
capable of evaluating theoverall reliability of a forecast and is unable
to reveal the unreliable forecast performance of extreme events in
the ensemble. Nevertheless, the Rpolar diagrams provide an effec-
tive solution for verifying the partial reliability in certain frequency
intervals, including extremes. Rpolar diagram are useful for deter-
mining both overall and partial reliability of ensemble forecasts.
Especially when verifying the partial reliability, the shape of the



Fig. 6. (a) Rank histogram for perfect reliable ensemble streamflow simulation for the B3 river basin. (b) Corresponding Rpolar diagram.

Fig. 7. (a) Schematic of precipitation for the ensemble precipitation forecasts on day 1 (1981e2008). The simulated precipitation data are generated from GFS single-valued
forecasts using EPP. Observations are from 187 weather stations in the Huai River Basin in China. (b) Corresponding rank histogram. The horizontal red dashed lines indicate
perfect uniformity. (c) Corresponding Rpolar diagram. Perfect uniformity is shown as a red circle. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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polar ranksmayprovide the users about the characteristics (i.e. over
forecasting, under forecasting, no error, ect.) of the ensemble at each
quantile. Further applications of Rpolar diagrams in different hydro-
climate regimes are also constructed. The MOPEX streamflow
simulation daily data and the precipitation daily data preprocessed
using EPP are used. The results in both streamflowand precipitation
applications show that the Rpolar diagram is useful and effective in
verifying the partial reliability of extreme event ensemble forecasts,
such as high discharge and heavy precipitation. Note that a special
ranks assigning method is also introduced when plotting Rpolar
diagrams for the ensemble precipitation forecasts in consideration
of the no-precipitation condition.

There is an assumption of “stationarity” about rank histogram
and Rpolar diagram. That is to say, the perfect ensemble is that the
distribution of the forecast ensemble matches the distribution of
historical observations. However, the climate/hydrology is non-
stationary as a result of both natural variability and anthropo-
genic factors (Razavi et al., 2015). Almost all hydrological models
have the problem. Rpolar diagram can show the different between
ensemble forecast and observations, and then gives somemodeling
advice (such as increasing the runoff if under-forecasting or
decreasing the runoff if over-forecasting). Improved models and
reconstructed observation are commonmethods on non-stationary
problem (Toonen, 2015; Mondal and Mujumdar, 2015). Miao et al.
(2016) developed an updated non-stationary bias-correction
method which combines two widely used quantile mapping
methods to eliminate potential illogical values of the variable. The
nature discharge is equal to the sum of observed discharge and
water use, which is a simple reconstructed observation method.
The matter should be considered in further studies.
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