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Computer simulation models have been widely used to generate hydrometeoro-
logical forecasts. As the raw forecasts contain uncertainties arising from various
sources, including model inputs and outputs, model initial and boundary condi-
tions, model structure, and model parameters, it is necessary to apply statistical
postprocessing methods to quantify and reduce those uncertainties. Different
postprocessing methods have been developed for meteorological forecasts
(e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their
different statistical properties. In this paper, we conduct a comprehensive review
of the commonly used statistical postprocessing methods for both meteorological
and hydrological forecasts. Moreover, methods to generate ensemble members
that maintain the observed spatiotemporal and intervariable dependency are
reviewed. Finally, some perspectives on the further development of statistical
postprocessing methods for hydrometeorological ensemble forecasting are pro-
vided. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Computer-based models have been an indispensa-
ble tool for hydrometeorological forecasting.

However, all models are only abstract representations
of the reality, and model-generated forecasts are pla-
gued by uncertainties from various sources, including
model inputs and outputs, initial and boundary con-
ditions, and model structure and parameters.1 Tradi-
tional hydrometeorological forecasts are generated in
a deterministic manner, i.e., the forecasts of a certain

hydrometeorological event are provided in the form
of a single space–time series. This type of forecasts is
inherently incapable of accounting for forecast uncer-
tainty. To assess forecast uncertainty, the ensemble
forecasting approach has gained popularity.2,3

Ensemble forecasts are generated by running the
model (or models) several times with perturbed fac-
tors such as model initial condition, model forcing, or
model physics. This type of forecasts provides not
only the most likely space–time scenario for a given
event but also associated quantitative uncertainty
information. Studies have shown that ensemble fore-
casts can improve the forecast accuracy and extend
the forecast lead times over deterministic forecasts.2,3

Whether they are deterministic or ensemble
forecasts, the raw forecasts generated by any model
cannot be used directly by the end users because of
various biases in them, which must be treated by sta-
tistical postprocessors, including ‘meteorological
postprocessor’ and ‘hydrological postprocessor’.1 The
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‘meteorological postprocessor’ deals with the uncer-
tainty in meteorological forecasts, which are inputs to
the hydrological processor. The ‘hydrological post-
processor’ deals with the hydrological outputs from a
hydrological processor. As shown in Figure 1, statisti-
cal postprocessors (both meteorological postprocessor
and hydrological postprocessor) compose the hydro-
logical ensemble forecasting system (HEFS) along
with three other parts, namely, the data assimilator
for uncertainty in initial conditions, parametric uncer-
tainty processor for uncertainty in model parameters,
and the hydrological processor.4–7

Statistical postprocessors are basically statistical
models that relate observed variables of interest with
the appropriate predictors derived from the direct
model outputs (DMOs) of a meteorological or a
hydrological model. Figure 2 illustrates how a statisti-
cal postprocessor works. First, the raw forecasts of a
specific event and the corresponding observations col-
lected in the training period are fed into a statistical
model to derive the joint probability distribution
between the raw forecasts and the observations. The
training period can be a rolling period of the recent
past, or a time window around a specific date in multi-
ple years if reforecast datasets are available.8–10 After
the postprocessors for all relevant events are built,
ensemble members are generated from the calibrated
conditional probability distributions of all events. A
well-constructed postprocessor achieves the following

purposes: (1) it corrects the biases and dispersion
errors in raw forecasts; (2) it preserves the predictive
skill of the raw forecasts; (3) it downscales raw fore-
casts to the scale of applications (e.g., basin scale); and
(4) it generates ensemble members of interested vari-
ables, which preserve the spatiotemporal and inter-
variable statistical dependency structure.1,11–13

The importance of statistical postprocessing has
long been recognized in meteorological forecasting.14

Early works included models such as perfect
prognosis,15 model output statistics (MOS),16 and the
analog method (AM).17–19 Over the recent years,
many other postprocessing methods have been pro-
posed, including rank histogram calibration,20,21

quantile mapping (QM),22,23 and ensemble preproces-
sor (EPP).24,25 Several Bayes’ theorem-based models
were developed to combine prior climatology informa-
tion with real-time forecasts, such as the Bayesian
processor of output (BPO), Bayesian processor of fore-
cast (BPF), and Bayesian processor of ensemble
(BPE).26–28 There exists a variety of regression-based
models, including ensemble model output statistics
(EMOS),29–31 logistic regression (LR),32–35 quantile
regression (QR),36,37 and member-by-member
approach.38 Ensemble dressing is another type of
method for ensemble forecasts, which describes pre-
dictand with a mixture distribution.39–41

Postprocessing models for hydrological fore-
casts share similarities with those for meteorological
forecasts, and regression or conditional distribution-
based methods can also be applied for hydrological
forecasts. One difference is that strong temporal
autocorrelation exists in hydrological forecasts, so
past recent observations or forecasts should be
included as predictors in statistical postprocessing
models. There are conditional distribution-based
models for hydrological forecasts, such as hydrologi-
cal uncertainty processor (HUP),42–46 model condi-
tional processor (MCP),47–49 and Bayesian joint
probability (BJP) model.50–52 Regression-based mod-
els, such as general linear model postprocessor
(GLMPP),53–55 Kalman filter,56,57 and autoregressive
(AR) models58–60 with wavelet transform
methods,61–63 are also proposed. Some nonparamet-
ric methods have been developed for hydrological
forecasts to avoid parametric assumptions.64,65

Because all models are imperfect and no single
model is expected to perform well under all circum-
stances, multimodel postprocessing methods have
emerged as a way to achieve better forecast skills.66

Methods such as the ‘poor man’s ensemble’
method,67–69 simple model average (SMA),70,71 mul-
timodel superensemble,72–74 Bayesian model aver-
aging (BMA),75–77 and other heuristic methods78,79
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FIGURE 1 | The components in a hydrological ensemble
forecasting system (HEFS).
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are developed for both meteorological forecasts and
hydrological forecasts.

Most statistical postprocessors are developed for
a given hydrometeorological event at a specific location
and a specific lead time. However, hydrological appli-
cations generally require that the forecast products be
in the form of continuous space–time series that pre-
serve the spatiotemporal and intervariable statistical
dependency structure of the observations.80 Several
methods have been developed to generate ensemble
members that meet those requirements, including para-
metric methods such as spatial EMOS81,82 and spatial
BMA83,84 or nonparametric methods such as Schaake
shuffle80 and ensemble copula coupling (ECC).85

There are already several review papers on hydro-
logical ensemble forecasting2,13 or probabilistic weather
forecasting.12 Wilks provided a comprehensive review
of postprocessing methods for meteorological forecasts
in 2007.86 This paper provides a review of the com-
monly used statistical postprocessing methods for
hydrometeorological forecasts, especially newly devel-
oped methods in recent years. The postprocessing meth-
ods for hydrometeorological forecasts from single
models are reviewed in the second section. In the third
section, multimodel postprocessing methods are dis-
cussed. In the fourth section, postprocessing methods
that preserve spatial, temporal, and intervariable
dependency are examined. Finally, some perspectives
on the further development of statistical postprocessing
methods are presented in the Conclusion section.

STATISTICAL POSTPROCESSING
METHODS FOR
HYDROMETEOROLOGICAL
FORECASTS GENERATED BY A SINGLE
MODEL

In this section, the statistical postprocessing methods
for meteorological forecasts generated from a single

numerical weather prediction (NWP) model, or
hydrological forecasts from a single hydrological
model, are reviewed. For meteorological forecasts
such as surface air temperature and atmospheric
pressure, the forecast errors can be represented by
Gaussian distributions and can be corrected relatively
easily by conventional regression methods. Postpro-
cessing models for precipitation forecasts are more
complicated because (1) the distribution of forecast
or observation of precipitation is a mixed discrete/
continuous distribution; (2) the forecast error is het-
eroscedastic; and (3) the extreme events are hard to
represent because of limited samples.31 The postpro-
cessing model for hydrological forecasts, such as
streamflow forecasts, have to deal with similar diffi-
culties as those for precipitation forecasts. One
unique feature is that due to the strong temporal
autocorrelation of hydrological forecasts, past recent
observations or forecasts should be included as pre-
dictors in the postprocessing models. This
section focuses mostly on methods for postprocessing
precipitation forecasts and hydrological forecasts.
Some of the methods, such as QM and AM, are
regarded as empirical methods, while others are typi-
cal statistical methods, including condition
distribution-based methods, regression-based meth-
ods, and ensemble dressing methods.

Early Ad-hoc Methods
There are several simple ad-hoc methods, such as
DMO and rank histogram recalibration methods.
DMO is used to estimate probability forecasts from
raw ensemble forecasts directly and is not often
viewed as a postprocessing method.86 Here, we
mainly introduce the rank histogram recalibration
method, which is designed to calibrate forecasts
based on the rank histogram of historical ensemble
forecasts.87 Firstly, the constant biases in raw fore-
casts are removed. Then, the rank histogram is
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FIGURE 2 | Statistical postprocessing flow for hydrometeorological ensemble forecasting.
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constructed based on the debiased forecasts and
observations in the training datasets. In the rank his-
togram, the frequency of past observations with rank
i is estimated as wi. Finally, a probability forecast for
an interested event can be obtained given new ensem-
ble forecasts. Specifically, if the interested threshold
value is bounded by the range of ensemble, the prob-
ability of an event less than the threshold can be esti-
mated using the frequency of observations in the
rank histogram as follows:87

P y ≤ qð Þ=
Xi

j = 1

wj +wi + 1
q−ex ið Þex i + 1ð Þ−ex ið Þ

, ex ið Þ ≤ q ≤ ex i + 1ð Þ;

ð1Þ

where y is the predictand, q is the threshold, and ex ið Þ
is the debiased ensemble forecast member in ascend-
ing order. When the interested threshold is outside
the range of all ensemble members, the probability
estimation will be less accurate as extrapolation
needs to be performed. Wilks conducted an experi-
ment using synthetic data and found that the rank
histogram recalibration performs better than other
ad-hoc methods but worse than other advanced
methods, such as EMOS or ensemble dressing.86

Quantile Mapping
Quantile mapping (QM, also called quantile-to-
quantile transform or cumulative distribution func-
tion (CDF) matching) is a simple postprocessing
method that adjusts the CDF of the forecasts accord-
ing to the CDF of the observations. The forecast dis-
tribution is adjusted using the following formula22,23:

exadjusted = F−1
obs Fsim xsimð Þð Þ; ð2Þ

where xsim is the raw forecast, exadjusted is the adjusted
forecast, Fsim is the CDF of raw model simulation,
and F−1

obs is the inverse of the observation CDF. In
performing QM, each forecast value is ‘mapped’ to
the corresponding quantile in the observation CDF.

QM has been applied to the postprocessing of
both precipitation forecasts23 and streamflow fore-
casts.22,88 Zhu et al. applied a method similar to
QM, called the frequency matching method, to post-
process precipitation forecasts from the Global
Ensemble Forecast System (GEFS), which uses the
frequency value of forecasts and observations instead
of their CDF value during the matching process.89

Verkade et al. also applied QM to adjust some
unconditional bias in ECMWF precipitation and
temperature forecasts.90

However, as an unconditional method, QM
does not preserve the connection between each pair
of forecast and observation values. Thus, QM might
sometimes adjust the raw forecasts to the wrong
direction for some forecast values and cannot pro-
vide satisfying results as conditional methods.91

Moreover, Zhao et al. did an in-depth study on
whether QM is suitable for postprocessing GCM pre-
cipitation forecasts.92 They found that although QM
is able to correct the bias, it cannot ensure the relia-
bility and coherence of forecasts (‘coherence’ here
means forecasts are at least as skillful as climatol-
ogy).92 The reason is that QM does not consider the
correlation between raw forecasts and observations.
Therefore, Zhao et al. concluded that QM was not a
satisfactory method for postprocessing forecasts that
suffer from not only bias but also reliability and
coherence problems.92

Analog Method
AM mainly searches reforecast datasets for past fore-
casts that are similar to the current forecasts and
forms calibrated ensemble forecasts from the obser-
vations corresponding to the analog forecasts. The
analogs can be established using distance measure-
ments, such as the root mean square, or correlation
measures.19 Then, the observations in these similar
states are applied to establish a distribution, termed
the calibrated probabilistic forecast, by calculating
the frequency of observations in the similar states.19

Specifically, let yt|r = (yt|r(1) ,…, yt|r(s)) denote
the s past observations on the dates of the analogs.
Here, ‘t’ is shorthand for ‘truth’ and ‘r’ for ‘refore-
cast’. Then, the probabilistic quantitative forecasts
can be obtained using the following formula19:

P yt >Tð Þ = 1
s

Xs

k =1

I ytjr kð Þ,T
� �

; ð3Þ

which means I(yt|r(k), T) = 1 when yt|r(k) > T; other-
wise, I(yt|r(k), T) = 0. Compared to other statistical
processing methods, AM is simple, but a large
archive of observations and reforecasts is needed.19

Besides being suited for the postprocessing of ensem-
ble forecasts, AM can also be applied to generate
ensemble forecasts from deterministic forecasts.93

Conditional Distribution-based Methods
As the aim of a postprocessor is to estimate the condi-
tional distribution of the observation y, given the model
simulation x, we review two such methods for deriving
the conditional distribution for meteorological forecasts:
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the BPO and the EPP. Three other conditional
distribution-based methods originally designed for
hydrological forecasts, namely hydrological uncertainty
processor (HUP), MCP and BJP, are also reviewed.

Bayesian Processor of Output
The BPO model combines the climatic prior informa-
tion and the forecast information from a NWP model
based on Bayes’ theorem. The posterior probability
density function (PDF) of the predictand y, given the
predictor vector x, is as follows26:

h yjxð Þ = f xjyð Þg yð Þ
κ xð Þ ; ð4Þ

where g(y) is the prior density distribution of the pre-
dictand, f(x|y) is the conditional density distribution
of predictor vector x conditioned on the predictand
y (this part is also called likelihood function), and
κ(x) is the expected density function of the predictor
vector x. The prior density distribution of the predic-
tand is estimated from historical observations, which
represents the prior climatological information of the
predictand. The likelihood function represents the
relationship between observations and the corre-
sponding forecasts. In this way, the conditional dis-
tribution of observations, given forecasts, can be
obtained, which combines both the prior climatologi-
cal information and the model forecasts information.

To model the distribution of the intermittent
precipitation amount, the probabilistic quantitative
precipitation forecast (PQPF) is constructed from
two parts, namely, the probability of precipitation
(PoP) occurrence and the distribution of amount
(DoA), as follows94,95:

P yjxð Þ= 1−πð Þ+ π�H yjx,y> 0ð Þ; ð5Þ

where π = P(y > 0|x) represents the conditional PoP
occurrence given forecasts x, and H(y|x, y > 0) is the
posterior distribution of the precipitation amount y,
conditional on forecasts x and occurrence of
precipitation.

To deal with non-Gaussian predictand, such as
precipitation, normal quantile transform (NQT) is
applied to transform the predictors and predictand
into standard Normal distribution before fitting the
statistical model.96–98 NQT is defined as follows26:

u =Φ−1 Fx xð Þð Þ; ð6Þ

where x is the original variable; Fx is the CDF of x;
Φ−1 is the inverse of standard Normal distribution;

and u is the transformed variable, which follows
standard Normal distribution. NQT is always
applied before fitting the statistical model. After
obtaining the coefficients of the conditional
distribution-based models, the inverse of NQT is
then applied to transform data into original space.

Krzysztofowicz found that BPO outperformed
the traditional MOS model because it provided the
full distribution of the predictand with fewer para-
meters.26 Later, Krzysztofowicz and Evans developed
a similar model called the BPF for continuous quanti-
ties such as temperature.27 Hamill et al. tested the
BPF using surface temperature reforecasts and found
that the NQT in BPF still needed improvements and
that whether the verification situation was consistent
with the climate situation affected its accuracy.99

Krzysztofowicz also developed BPE for ensemble
weather forecasts.28 Reggiani and Weerts applied
BPO for precipitation postprocessing as a component
in their Bayesian forecasting system (BFS).95

Ensemble Preprocessor
Besides Bayes’ theorem-based methods, the condi-
tional distribution formula can be directly applied to
postprocess the raw forecasts. Schaake et al. devel-
oped the EPP to generate temperature and precipita-
tion ensemble forecasts from single-value forecasts.24

It is called ‘preprocessor’ because it deals with meteor-
ological forecasts, which are inputs for hydrological
models. The single-value forecasts can be the ensem-
ble mean forecasts from an NWP model.

To model the distribution of precipitation with
an intermittent property, a mixture of discrete and
continuous distribution is applied. The marginal PDF
of forecasts x is as follows24:

fx xð Þ = 1−pxð Þδ xð Þ+ pxfxc xjx > 0ð Þ; ð7Þ

where px is the PoP occurrence, δ(x) is the Dirac delta
function, and fxc is the conditional distribution of
precipitation amount given that precipitation occurs.
The marginal PDF of observations can be modeled
similarly.

The NQT procedure is also employed to con-
vert the observations and raw forecasts into stand-
ard Normal space. Here, the transformed
predictand is noted as u, and the transformed pre-
dictor is noted as v. The joint distribution of
u and v follows a bivariate Normal distribution.
According to the conditional distribution formula
and the property of the Normal distribution, the
conditional distribution of the predictand u, given
the predictors v, namely,
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fvju vjuð Þ = fuv u,vð Þ
fu uð Þ ð8Þ

is also a Normal distribution, with mean and vari-
ance as follows24:

μvju = ρuvu; ð9Þ
σ2vju = 1−ρ

2
uv; ð10Þ

where ρuv is the correlation coefficient between u and
v. Thus, the conditional distribution of the predic-
tand can be obtained. Finally, an inverse of NQT is
applied to transform data to original space.

After the conditional distribution is estimated,
the Schaake shuffle80 is used to obtain ensemble
members that can maintain spatiotemporal and inter-
variable dependency of the observations. A modified
version of EPP, in which the parameters are opti-
mized by minimizing the mean continuous ranked
probability score (CRPS), has been applied success-
fully in the National Weather Service River Forecast
System.25 Its effectiveness was verified using GFS or
GEFS precipitation reforecasts in China.100,101

Conditional Distribution-based Methods for
Hydrological Forecasts
In this subsection, three conditional distribution-
based methods originally designed for hydrological
forecasts, namely, HUP, MCP, and BJP, are reviewed.
Like BPO, Bayes’ theorem is also suited for the post-
processing of hydrological forecasts. Krzysztofowicz
et al. implemented Bayes’ theorem for hydrological
forecasts and named it the HUP.42,43 Due to the
strong autocorrelation property of hydrological time
series, recent past observations are added in prior dis-
tribution and the likelihood function in HUP. After
NQT is applied, a first-order Markov process for
prior distribution is assumed; thus, the observed river
stage yt at time t is determined only by the previous
value yt−1 at time t − 1. Then, the prior distribution is
modeled by linear regression as follows42,43:

yt = ctyt−1 + εt; ð11Þ

where ct is the coefficient. For the likelihood func-
tion, the observed river stage at time t − 1 and t and
the observed river stage at the forecast time t0 are
added to the linear regression as predictors42,43:

xt = atyt + etyt−1 + dty0 + bt + εt; ð12Þ

where at, bt, et, and dt are coefficients.

Then, a posterior distribution of observations,
given corresponding forecasts, can be obtained by
Bayes’ theorem, similar to Eq. (3) for BPO.

Krzysztofowicz implemented HUP combined
with BPO in the BFS to account for input and output
uncertainty together in a formal and consistent statis-
tical framework.102 However, Reggiani et al. found
that HUP with a Markov chain assumption was not
suitable for large basins.44 The original HUP cannot
discern rising and falling limbs, and its forecast skill
decreases rapidly with lead time.44 To adapt HUP for
a large basin, such as the Rhine river basin, the
Bayesian ensemble uncertainty processor (BEUP) was
developed, which takes several observations at
upstream stations as predictors in prior and likeli-
hood functions to include more information.45

There are other conditional distribution-based
models, including MCP and BJP.50 Todini
et al. developed a conditional distribution-based
model, MCP, which is similar to EPP for univariate
situations. Coccia and Todini demonstrated that uni-
variate MCP is an alternative to HUP.49 The advan-
tage of MCP is that the derivation for univariate
situations can be conveniently extended to multivari-
ate situations, making it suitable for multimodel, mul-
tisite, and multilead time problems.48 Moreover, MCP
can deal with the heteroscedasticity of the residuals
through the use of the multivariate truncated Normal
distributions.48 Recently, this model was also applied
to the postprocessing of ensemble forecasts.103

The BJP50 approach is also based on the condi-
tional distribution formula. The advantage of BJP is
that the Bayesian inference technique, Markov chain
Monte Carlo (MCMC), is applied for the estimation
of parameters and the corresponding uncertainty.
The Bayesian inference technique allows the model to
include datasets with nonconcurrent, missing data, or
zero-value occurrences.51 Similar to the other meth-
ods mentioned in this section, data transformations,
such as Yeo–Johnson transformation104 or log-sinh
transformations,105 should also be applied before
parameter fitting. The BJP method has been applied
for the postprocessing of seasonal streamflow,50

precipitation,106,107 and daily streamflow.52

Regression-based Methods
Regression-based methods are convenient tools for
modeling the statistical correlation between the pre-
dictand (i.e., the observation) and the predictors
(i.e., the model forecasts). Here, we review several
regression-based methods for hydrometeorological
forecasts, including the MOS, EMOS, LR, QR, vari-
ance inflation, and member-by-member (MBM)
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regression method. Two other regression methods
specifically designed for hydrological forecasts,
namely, autoregressive models and GLMPP, are also
reviewed.

Model Output Statistics
MOS16 is one of the earliest statistical postprocessing
methods along with perfect prognosis15 (Perfect Prog).
Here, we focus on the MOS method for postprocessing
precipitation forecasts. The MOS is a linear regression
model between the conditional PoP exceeding a thresh-
old Tj and the predictors from NWP forecasts16,108:

P y ≥Tj
� �

= a0j +
XI

i = 1

aijui; ð13Þ

where ui represents the NWP forecasts transformed
by the grid-binary transform,109 aij are the coeffi-
cients, y is the actual precipitation amount, and P(y ≥
Tj) is the conditional exceedance probability of
y exceeding the cutoff amount Tj. The predictors
could be precipitation forecasts and other meteoro-
logical forecasts, such as vorticity or vertical veloc-
ity.109 The grid-binary transform mainly maps each
predictor value in each grid point into ‘1’ or ‘0,’
which indicates the exceedance or nonexceedance of
a specified cutoff level and then interpolates the grid
point value into the value at each station.109

For postprocessing of ensemble forecasts, Erick-
son proposed to apply MOS to each member simply,
but this method leads to results that converge toward
the climatology.86,110 Coelho et al. developed a
Bayesian version of MOS, also called ‘forecast assimi-
lation.’111,112 Wilks showed that the forecast assimila-
tion method performed worse than later methods,
such as EMOS or ensemble dressing.86 Kalman filter
can also be considered a special type of MOS
approach, which includes dynamic regression coeffi-
cients and is suitable for NWP models undergoing fre-
quent upgrading and with a short training dataset.113

Ensemble Model Output Statistics
Classical linear regression-based models, such as
MOS, assume that the predictand follows Gaussian
distribution with static variance, neglecting the rela-
tionship between the predictive error and the ensem-
ble spread. In fact, the variance of postprocessed
forecast error should increase with the increase of
ensemble spread. To make use of the ensemble
spread information, Gneiting et al. proposed the
EMOS, also called nonhomogeneous Gaussian
regression (NGR).12,29 As shown in the following
formula, the mean of the predictand y is a linear

function of the ensemble member xi; moreover, the
variance of the residual is a linear function of the
ensemble spread S26:

y = a +
XI

i =1

bixi + ε; ð14Þ

Var εð Þ= c + dS2: ð15Þ

The coefficients a, bi, c, and d in the regression for-
mula are obtained by minimizing the CRPS, and bi,
c, and d are constrained to be nonnegative. In this
way, the variance of the forecasts maintains the
information of ensemble spread.

To model variables that are truncated and non-
Gaussian, several models were developed in the fol-
lowing years. EMOS models with predictand follow-
ing left-censored generalized extreme value (GEV)
distribution or censored and shifted gamma (CSG)
distribution have been developed for precipitation
postprocessing.31,114,115 EMOS has also been applied
to the postprocessing of hydrological forecasts after
Box–Cox transform.116

Logistic Regression and Extended Logistic
Regression (ExLR)
LR is suitable for predicting the probability of binary
events, such as the probability of precipitation accu-
mulation to exceed or not exceed a given threshold.
The LR formula is as follows76:

P y< qjjx
� �

=
exp xTβ

� �
1 + exp xTβð Þ =Λ xTβ

� �
; ð16Þ

where y is the predictand, qj is the ith threshold, x is
the predictor vector, β is the coefficient vector, and Λ
is the logistic distribution. To obtain the probability
of predictand falling below various thresholds, LRs
can be established separately for each threshold.117

However, this method faces several problems. For
example, the LR lines estimated separately may cross
with each other, leading to unreasonable results.33

To deal with those problems, Wilks et al. developed
ExLR, which adds a function of the exceeding thresh-
olds in the regression formula as follows33:

P y< qjjx
� �

=Λ αg qj
� �

+ xTβ
� �

; ð17Þ

where g(qj) is a monotonic function of the thresholds
qj, and α is a coefficient to be estimated. The regres-
sion coefficient vector β is the same for all thresholds,
resulting in parallel regression lines to avoid the
crossing problem of the original LR method.
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Moreover, the traditional LR only predicts probabil-
ity for exceeding several discrete thresholds, which
limits its performance for extreme events.118 In con-
trast, the ExLR provides predictions of the full distri-
bution and performs well, even for extreme
events.118 Besides, traditional LR includes many
more parameters than ExLR, so traditional LR is
more sensitive to the training window size, while
ExLR is not severely affected by sample size.86

To improve the extended LR for heteroscedas-
tic predictand, such as precipitation, Messner
et al. assumed that the dispersion of the regression is
a linear function of the ensemble spread,34,119 which
is similar to Gneiting’s EMOS. The extended LR has
also been applied to hydrological postprocessing.120

Quantile Regression
Classical linear regression predicts the mean value of
y conditional on x; similarly, the QR model predicts the
quantile values of y conditional on x.121 The following
is the formula of the QR for a specific quantile p:121

Q pð Þ yjxð Þ= a pð Þ
0 +

XI

i = 1

a pð Þ
i xi, 0 < p < 1: ð18Þ

The coefficients a = a0, a1…, aI are obtained by mini-
mizing the least absolute deviation (LAD)
function.121

For precipitation, Bremnes developed a two-
step method to estimate the probability by probit
regression and to predict the amount of precipitation
by QR.36 Friederichs and Hense applied a censored
QR for precipitation downscaling.37 There are also
several applications of QR in hydrological fore-
casts.63,122,123 The advantage of QR is that it directly
estimates the quantiles of the predictand and is suita-
ble for heteroscedastic quantities such as precipita-
tion.36 However, Coccia and Todini found that the
QR method does not work well when the error vari-
ance increases nonlinearly with the magnitude of the
predictand.49 Besides, the QR method also suffers
from the ‘quantile crossing’ problem, which means
that the estimated lower quantile is higher than the
estimated higher quantiles.63,122 Another problem is
the extrapolation of the model to extremes not
included in the training sample.63 To solve these pro-
blems, López et al. developed several alternative con-
figurations of QR.122 Bogner et al. applied the QR
combined with a neural network (QRNN), which
includes quantile rearranging and log-normal distri-
bution fitting to eliminate the problems in tradi-
tional QR.63

Autoregression-based Methods
To postprocess a streamflow or river stage with
strong autocorrelation, autoregressive models that
include time-lagged predictors are often applied.
Here, we present a parsimonious method based on a
autoregressive model described by Seo et al. as an
example.58 The NQT was first applied to transform
the predictors and the predictand into a Gaussian
distribution before fitting the statistical model. The
main part of Seo’s model is an autoregressive exoge-
nous model, or ARX (1, 1), which is as follows58:

yt + 1 = 1−bð Þyt + bxt + 1 + εt + 1; ð19Þ

where yt and yt+1 are the NQT-transformed stream-
flow observations at time step t and t + 1, respec-
tively; xt+1 is the NQT-transformed streamflow
predicted by a hydrological model at time step t + 1;
εt+1 is the aggregate hydrological uncertainty at time
step t + 1; and parameter b is the weight of the
model forecast. As a result, the postprocessed stream-
flow is the weighted combination of the model fore-
casts at time step t + 1 and the observation at time
step t. The parameter is estimated by minimizing the
forecast mean square error and the difference
between the CDF of forecast and that of the observa-
tion at the same time.58 This ARX model was
adopted as the hydrological ensemble postprocessor
(EnsPost) in the HEFS of the U.S. National Weather
Service.4

To consider the dependency at different time
scales, Bogner et al. applied wavelet transform to
decompose the original time series into different time
scales and then fitted a vector autoregressive model
with exogenous input (VARX).62 Then, HUP was
combined with VARX to estimate the predictive con-
ditional distribution.62 There are other autoregressive
models, such as autoregressive moving average
(ARMA)59 and AR for multimodel combinations.60

Methods based on Kalman filter and ensemble Kal-
man filter have a close relationship with autoregres-
sive models, and they have also been applied to the
postprocessing of streamflow forecasts.57,124

General Linear Model Postprocessor
Zhao et al. developed the GLMPP53 specifically for
hydrological postprocessing. Similar to autoregressive
models, GLMPP is a linear regression model that pre-
dicts future observations with future forecasts and
recent past observations and simulations. The NQT is
first applied to transform the predictors and predic-
tand into standard Normal distribution before fitting
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the regression model. The GLMPP model is as
follows:53

Y =A�X+B�E; ð20Þ

where Y = eQf
obs is the NQT-transformed predictand

vector, including the observations in the forecast

period; X = eQf

sim, eQa

obs, eQa

sim

h iT
is the NQT-

transformed predictor vector, including the simula-
tions in the future forecast period (denoted by ‘f’),
the observations, and corresponding simulations in
the recent past analysis period (denoted by ‘a’); E is
the error vector; and A and B are the coefficient
matrix.

GLMPP is a convenient and effective tool to
predict future observations at different lead times
based on recent past forecasts and observations. Its
performance has been demonstrated in several
experiments using streamflow data from the Model
Parameter Estimation Experiment (MOPEX).54,55

Variance Inflation and Member-by-Member
Methods
The variance inflation method was originally devel-
oped to calibrate ensemble seasonal streamflow fore-
casts.88 The aim is to adjust the ensemble mean and
spread so that the adjusted ensemble forecasts are sta-
tistically indistinguishable from the truth in a climato-
logical sense.125 The regression model is as follows125:

git = αf t + βε
i
t; ð21Þ

where git is the ith adjusted ensemble member at time

t; f t is the unadjusted ensemble mean; εit is the devia-
tion of the unadjusted ensemble member to the
ensemble mean, namely εit = f

i
t − f t, α and β are the

coefficients to adjust the mean and the spread of the
new ensemble members, respectively.

To calibrate the ensemble mean and spread, the
parameters are estimated based on the following two
constraints125:

1. The average climatological variance of the
adjusted ensemble members should equal the
climatological variance of the real observation,
namely,

σg = σo: ð22Þ

2. The correlation of the adjusted ensemble mem-
bers with the unadjusted ensemble mean should

equal the correlation of the real observation
with the unadjusted ensemble mean, namely,

corr gt, f t
� �

= corr ot, f t
� �

: ð23Þ

Van Schaeybroeck and Vannitsem extended the vari-
ance inflation method to the situation of multiple
predictors, called the MBM approach.38 The
member-by-member approach achieved CRPS scores
similar to those of the EMOS method and also
avoided the undercorrection of the ensemble spreads
problem of the MOS.38 Moreover, the MBM method
maintains the rank of the ensemble and thus pre-
serves the correlation structure of the raw forecasts,
which is especially important for further application
in hydrology.38

Ensemble Dressing Method
The ensemble dressing method first adds (‘dress’) the
raw ensemble members with the error distribution
and then forms a mixture probability distribution of
the predictand using the sum of these dressed kernels.
Here, we introduce the ‘best member’ method devel-
oped by Roulston and Smith.40 In this method, the
error distribution is estimated from the ‘best member’,
which is defined as the member closest to the observa-
tion among all the ensembles. Let yt be the real obser-
vation at time t and xt = {xt,k, k = 1,2, …, K} the
corresponding ensemble forecasts with K members.
The best member x*t is the one that minimizes the
kyt − xt,kk for a given norm k � k as follows:39

x*t = argmin
xt,k

yt −xt,k
�� ��: ð24Þ

Then, the distribution p*ε of the best member’s error
ε* = yt −x*t is estimated from the archive. Typically, a
certain kernel function is assumed (e.g., Gaussian
kernel) for the distribution of the error. The final
mixture distribution is obtained as the average of the
error distributions for each member as follows39:

p ytjxtð Þ≈ 1
K

XK
k =1

p*ε yt −xt,k
� �

: ð25Þ

After Roulston and Smith introduced the ‘best mem-
ber’ method, several improvements have been made.
Wang and Bishop developed the second-moment
constraint dressing method to make the forecasts
more reliable.41 As the ‘best member’ method is only
used for correcting the underdispersion problem, For-
tin et al. developed a weighted ensemble dressing
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method to add a different weight to each member,
which is suitable for both under- and overdispersion
problems.39 Boucher compared these three kinds of
dressing methods and found that Fortin’s method
performed the best, although more training data were
needed for this method.126 Furthermore, bias correc-
tion should be applied when using some of the
ensemble dressing methods.126

Further Discussion on Postprocessing
Methods for Single-Model Forecasts
Table 1 shows the postprocessing methods reviewed
in this section. The applications of these methods for
meteorological forecasts are represented in the fourth

column in Table 1. Among these methods, the early
ad-hoc methods perform less well than other newly
developed methods. As mentioned in Section Quan-
tile Mapping, QM performs poorly when raw fore-
casts suffer from problems of reliability or coherence.
AM is a nonparametric method that does not need
the assumption of the distribution form of the predic-
tand. However, its performance depends heavily on
the sufficiency of training datasets. For example, AM
may perform less well for extreme events that rarely
appear in the historical archives.31 Parametric meth-
ods are able to avoid this problem by extrapolating
the statistical relations established by the datasets of
normal events with extreme events as long as the sta-
tistical assumptions are reasonable.31

TABLE 1 | List of Representative Works on Single-Model Postprocessing Methods (Not Exhaustively)

Type Method Abbreviation
References for Meteorological
Forecasts

References for Hydrological
Forecasts

Ad-hoc Rank histogram recalibration RHR Hamill and Colucci (1998)87

Distribution
transform

Quantile mapping QM Piani et al. (2010)23 Hashino et al. (2007)22

Nonparametric Analog method AM Hamill and Whitaker (2006)19

Conditional bias-penalized
indicator cokriging

CBP-ICK Brown and Seo (2010)64 and
(2013)65

Conditional
distribution

Bayesian processor of output/
forecast

BPO/BPF Krzysztofowicz (2006)94

Bayesian processor of ensemble BPE Krzysztofowicz (2008)28

Ensemble preprocessor EPP Schaake et al. (2007)1,24

Hydrological uncertainty processor HUP Krzysztofowicz et al. (2000)43

Model conditional processor MCP Todini et al. (2008)47

Bayesian joint probability BJP Robertson et al. (2013)106 Wang et al. (2009)50

Regression Perfect prognosis PP Klein et al. (1959)15

Model output statistic MOS Glahn and Lowry (1972)16

Ensemble Kalman filter EnKF Crochet (2004)113 Vrugt et al. (2005)124

Autoregressive model AR Seo et al. (2006)58, Bogner
et al. (2011)62

General linear model
postprocessor

GLMPP Zhao et al. (2011)53

Ensemble MOS EMOS Gneiting et al. (2005)29,
Scheuerer et al. (2014)115

Hemri et al. (2015)116

Logistic regression LR Wilks (2009)33

Extended logistic regression ExLR Messner et al. (2015)35 Fundel and Zappa (2011)120

Quantile regression QR Bremnes et al. (2004)36 Weerts et al. (2011)123

Variance inflation VI Wood and Schaake (2008)88

Member-by-member regression MBM Van Schaeybroeck and
Vannitsem (2015)38

Error-in-variable MOS EVMOS Vannitsem (2009)127 Roulin and Vannitsem
(2014)128

Kernel density Ensemble dressing ED Roulston and Smith (2003)40 Pagano et al. (2013)129
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Several comparison experiments have been con-
ducted for the parametric postprocessing methods,
including LR, ExLR, EMOS, and ensemble dress-
ing.86,118,126,130 Wilks concluded that LR, EMOS,
and ensemble dressing were the three most promising
methods among postprocessing methods in their
experiments.86 Wilks and Hamill later compared
these three methods based on precipitation forecasts
from the Global Forecast System (GFS) and found
that there is no single best method for all applications
among these three methods, and the difference in the
length of the training dataset leads to larger differ-
ences in forecast skill than different methods
do.86,130 As mentioned in Section Logistic Regression
and Extended Logistic Regression, the traditional LR
is more sensitive to training sample size than other
methods and thus performs less well, especially for
extreme events.118 There are still several other meth-
ods that are not introduced in this section due to
space limitation, such as the error-in-variable model
(EVMOS).127,131

Several representative postprocessing methods
for hydrological forecasts are listed in the fifth col-
umn of Table 1. Some methods originally designed
for the postprocessing of meteorological variables
can also be applied for hydrological forecasts, such
as EMOS, QR, LR, and ensemble dress-
ing.116,120,123,129 Besides, there are other methods
that have been developed specifically for hydrological
forecasts, such as HUP, autoregressive model, and
GLMPP. A unique feature of these models is that the
temporal correlation between hydrological quantities
is strong, and thus, past recent observations or fore-
casts should be added as predictors in the models to
utilize the temporal dependence information.

Several comparisons among the postprocessing
methods for hydrological forecasts have been con-
ducted. Van Andel et al. conducted the intercompar-
ison experiment based on observation and forecast
datasets from the MOPEX,132 where hydrological
models were driven by real observations so that the
uncertainty of meteorological input is removed.7

Preliminary results showed that the skill of postpro-
cessed forecasts is not very sensitive to the choice of
postprocessors, but is sensitive to other factors such
as the choice of predictors.133 To further compare
the regression-based methods with dressing methods
for hydrological forecasts, Boucher et al. conducted
several synthetic experiments and found that
although regression-based and ensemble dressing
methods have similar overall performance, they per-
form differently with regard to resolution and relia-
bility: the former leads to better resolution, while
the latter achieves better reliability.126 Boucher et al.

recommended ensemble dressing, rather than a sim-
plified EMOS, for most of the cases in their experi-
ments to obtain forecast reliability, especially for
underdispersed, asymmetric forecasts.126 Recently,
Mendoza et al. conducted a comparative experiment
among seven postprocessing methods, including lin-
ear blending, QM, extended LR, QR, AM, and
GLMPP.134 Preliminary results showed that no one
postprocessor outperforms other methods for all
situations, and the performance of postprocessors
depends on factors such as basin types.134 There are
also some studies on whether to apply postproces-
sors for meteorological forecasts, or postprocessors
for hydrological forecasts, or both.90,135–137 Results
showed that postprocessors for hydrological fore-
casts are needed even after postprocessing of the
meteorological forcing.135,136 In seasonal hydrologi-
cal forecasting, Yuan and Wood also found that
combining postprocessors for precipitation forecasts
and postprocessors for streamflow forecasts
achieved the best performance.137

There are other postprocessing methods for
hydrological forecasts that are not introduced here
due to space limitation, but most of them are similar
to the statistical models reviewed here. For example,
machine learning methods, such as uncertainty esti-
mation based on local errors and clustering
(UNEEC), perform similar to piecewise linear regres-
sion.138 Besides, to avoid the drawbacks of paramet-
ric distribution assumptions, some nonparametric
methods have been developed, such as the postpro-
cessor based on indicator cokriging.64,65

MULTIMODEL POSTPROCESSING
METHODS
Because all models are imperfect, many researchers
resort to multimodel postprocessing methods to com-
bine outputs from multiple models and achieve better
forecast skill. This section reviews several postproces-
sing methods for forecasted variables from multiple
models. Several linear model-averaging methods are
reviewed in the first subsection, including the ‘poor
man’s ensemble’ method,67 the SMA,70 and the
‘superensemble’ method.72,73 In the second subsec-
tion, the popular BMA75 is reviewed.

Linear Model-Averaging Methods
This subsection reviews three linear model-averaging
methods: poor man’s ensemble method, SMA, and
superensemble method. The ‘poor man’s ensemble’
method simply combines forecasts from different
forecasting centers to generate ensemble forecasts.
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This method samples uncertainty in the ensemble
forecast system via the different forecasting techni-
ques used by operational centers.139 It was applied in
several early meteorological forecasting studies, and
the multimodel averaging forecasts achieved better
forecast skill than forecasts from a single model
because of the improved forecast skill of the ensem-
ble mean.67–69,139

SMA simply combines each individual model
output with equal weights. SMA can be expressed by
the following formula70,71:

S=O +
XN
i = 1

Fi−Fi

N
; ð26Þ

where S is the SMA prediction, �O is the time mean
of historical observations, N is the total number of
models, Fi is the time mean of the historical forecasts
by model i, and Fi is the prediction by the ith model.
Hagedorn et al. applied SMA for DEMETER multi-
model seasonal ensemble forecast systems and
demonstrated the superiority of multimodel forecasts
relative to single-model forecasts.70 Georgakakos
et al. applied SMA for hydrological forecasts and
also obtained more skillful and reliable simulation
results than a single model.71

Methods that are more complex include model-
dependent weights, which reflect each model’s perfor-
mance in the training period. The superensemble
method is an example where the weights are esti-
mated by linear regression73:

S=O +
XN
i = 1

ai Fi−FiÞ;
� ð27Þ

The weights ai are estimated at each grid point by mini-
mizing the sum of squared residuals. Krishnamurti
et al. applied the superensemble method for a combina-
tion of multiple meteorological forecasts, including sea-
sonal/multiseasonal precipitation.73 Recently,
Krishnamurti et al. provided a theoretical framework
of multimodel superensemble methods for weather and
climate application.74 The superensemble method can
also be applied for hydrological forecasts.66

Bayesian Model Averaging
The BMA75 is one of the most popular multimodel
postprocessing methods developed in recent years.
Similar to the ‘best member’ dressing method, the out-
put of BMA is also a mixture probability distribution.
However, instead of finding a ‘best member,’ as in

dressing methods, in BMA, the weight for each mem-
ber is estimated by the posterior probability of each
member to be the best forecast. The final output of the
BMA is a weighted average of forecasts as follows75:

p yjF1,F2,…,FNð Þ =
XN
i = 1

wi�gi yjFið Þ; ð28Þ

where gi(y|Fi) is the distribution of observation y,
given the raw model forecast Fi. The weight wi is the
posterior probability of forecast Fi to be the best
forecast, which reflects the forecast performance for
the training data. The weights are assumed to be
nonnegative and add up to 1. The weights and the
parameters in the forecast distribution of each mem-
ber can be estimated by the expectation–
maximization (EM) algorithm.140 As the BMA
weight represents each model’s performance for the
training dataset, BMA is suitable for the postproces-
sing of distinguishable members from different mod-
els. On the contrary, the standard ensemble dressing
methods mentioned in the last section are mainly for
the postprocessing of undistinguishable members,
such as members obtained by perturbing initial con-
ditions of one model.141

As there are more parameters in BMA than in
other postprocessing methods such as EMOS, the
training sample size for BMA should be large enough
to avoid overfitting.142 Hamill et al. suggested that
reforecast datasets should be applied to fit BMA if
available.142 However, as reforecast datasets are
often not available for all models in the multimodel
postprocessing of meteorological forecasts, alterna-
tive methods have been proposed, such as enlarging
sample size by using samples from supplemental loca-
tions and applying simpler merging methods such as
QM and ensemble dressing.143

In addition to Raftery’s BMA in 2005, several
variants of BMA have been developed. For postpro-
cessing of precipitation forecasts, Sloughter
et al. applied LR to determine the PoP and used
Gamma distribution for the precipitation amount.77

Duan et al. applied the BMA model with Box–Cox-
transformed predictand.76 Fraley et al. extended BMA
to situations with missing members or exchangeable
members.144 More advanced methods, such as particle
filter, Monte Carlo, and copula functions, have been
applied to improve BMA for non-Gaussian variables
in hydrology.145–148 BMA has been combined with
other methods for further applications. For example,
Kleiber et al. developed the geostatistical model aver-
aging (GMA) method, which combines BMA with
geostatistical methods to interpolate forecasts between
gauge stations.149,150 Marty et al. developed the
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Bayesian processor of ensemble member (BPEM)
model , which combines BMA and Krzysztofowicz’s
BPO by hierarchical model to calibrate and downscale
weather forecasts.151

For postprocessing and downscaling of seasonal
climate forecasts, Luo and Wood developed a Bayes’
theorem-based Bayesian merging method,152,153 which
has been applied to generate climate inputs for seasonal
hydrological forecasting.154,155 Wang et al. developed a
modified version of BMA to merge forecasts from dif-
ferent GCM models.156 In this model, the Dirichlet
prior distribution function is applied to stabilize the
weights when significant sampling variability exists.156

Moreover, a cross-validation likelihood function is used
to replace the classical likelihood function to better rep-
resent the predictive abilities of models.156 Schepen
et al. suggested that to obtain better forecasts from
GCM models, the ‘Calibration, Bridging, and Merging’
(CBaM) framework should be applied, which combines
three techniques together: (1) to calibrate raw forecasts
from each model, (2) to bridge large-scale climatic indi-
ces (e.g., ENSO) with local weather forecasts, and
(3) to merge all the calibrated and bridged forecasts
from multiple models.157 The CBaM method has been
successfully applied for seasonal precipitation, tempera-
ture, and streamflow forecasts.157–160

Further Discussion on Multimodel
Postprocessing Methods
Representative works of multimodel postprocessing
methods mentioned in this section are listed in
Table 2. The aim of multimodel postprocessing is to
achieve better predictions by combining the outputs
of multiple models. The model combination methods
mentioned in this section can be categorized into
methods with equal weight (e.g., SMA) and methods
with model-dependent weight (e.g., super-ensemble
and BMA). The former type of methods is easier to
implement than the latter type, and they are already
able to obtain forecasts with better skill than single-
model forecasts both for meteorological and hydro-
logical forecasting.67,70,71 The second type of

methods that apply model-dependent weight accord-
ing to each model’s historical performance are theo-
retically appealing, but they are more complicated
and still need further research. The benefits of apply-
ing model-dependent weight will be few if most raw
ensembles are similar.161

Among the methods with model-dependent
weight, the superensemble method is simpler than
BMA, but the coefficients may be negative and not
suitable for the averaging of probability.161 The
BMA weights, however, are constrained to be posi-
tive and represent the forecast performance of each
member. However, the BMA method still suffers
from several problems, such as overfitting,142 prob-
lematic treatment of extreme events,162 and over-
weighting of the climatology.163 Aside from the
methods mentioned in this section, there are many
other methods for multimodel postprocessing,164

such as the heuristic methods,68,78,79 which could not
be reviewed in detail here due to space limitations.

POSTPROCESSING METHODS TO
ACCOUNT FOR SPATIOTEMPORAL
AND INTERVARIABLE DEPENDENCY

The aforementioned postprocessing methods are
established for a single hydrometeorological quantity
at a fixed location and lead time. However, for fur-
ther application in hydrology, spatiotemporal
weather trajectories should be generated from the
calibrated probability distributions, which preserve
the spatial, temporal, and intervariable dependency
structure. In this section, methods to generate ensem-
ble members that maintain those dependency struc-
tures are reviewed. These methods can be categorized
into two types: parametric methods and nonparamet-
ric methods.

Parametric Methods
Parametric methods are generally extensions of uni-
variate EMOS, BMA, or classical regression for mul-
tivariate situations considering the spatial, temporal,

TABLE 2 | List of Representative Works on Postprocessing of Multimodel Forecasts (Not Exhaustively)

Types Method
References for Meteorological
Forecasts References for Hydrological Forecasts

Equal Weight Poor man’s ensemble Mylne et al. (2002)67

Simple model average (SMA) Hagedorn et al. (2005)70 Georgakakos et al. (2004)71

Model-dependent Weight Superensemble Krishnamurti et al. (1999)72 Ajami et al. (2006)66

Bayesian model averaging (BMA) Raftery et al. (2005)75,
Sloughter et al. (2007)77

Duan et al. (2007)76
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or intervariable dependencies. The dependency struc-
tures are usually modeled by parametric copulas.165

Here, we consider a postprocessing model to preserve
temporal dependency by Gaussian copula as an
example.166

Gaussian copula is an L-variate function C as
follows165:

C u1,…,uLð Þ =ΦΣ Φ−1 u1ð Þ,…,Φ−1 uLð Þ� �
=ΦΣ Φ−1 Fy1 y1ð Þ� �

,…,Φ−1 FyL yLð Þ� �� �
; ð29Þ

where yj is the predictand, Fyj is the CDF of yj, Φ
−1 is

the inverse of the CDF of a standard univariate Nor-
mal distribution, and ΦΣ is the CDF of a standard L-
variate Normal distribution with covariance Σ.

We noted that zj = Φ−1(uj) and then (z1, …, zL)
~ N(0, Σ). Then, the covariance between zj at differ-
ent lead times can be modeled by mathematical func-
tions. Here, an exponential function is applied as
follows166:

cov zt, l1 ,zt, l2
� �

= exp −
l1− l2j j
v

	 

, 0 < l1, l2 ≤L; ð30Þ

where zt, l1 and zt, l2 are the transformed predictand at
forecast date t with lead time l1 and l2, respectively;
L is the maximum of the lead time; and v is a param-
eter to be estimated.

To preserve spatial dependency for meteorolog-
ical forecasts (e.g., precipitation), the geostatistical
output perturbation (GOP) model was combined
with traditional univariate postprocessing methods.
Gel et al. added the GOP-based Gaussian error fields
to the deterministic weather fields to incorporate the
spatial dependency of weather forecasts at different
locations.167 Berrocal et al. proposed a spatial BMA
model that combined GOP with the univariate
ensemble BMA.83,84 Later, the spatial EMOS model
was also developed, which is a combination of
EMOS and the GOP method.81,82 Experiments show
that the spatial EMOS model performed similar to
the spatial BMA approach, but the former is more
efficient.82 As for intervariable dependency, methods
have been developed to combine univariate EMOS or
BMA with Gaussian joint distribution or Gaussian
copula.168–170

To preserve the temporal correlation between
predictand at different lead times for hydrological
forecasts (e.g., streamflow), Engeland and Steinsland
developed a Gaussian copula-based regression
model.171 Hemri et al. applied temporal BMA and
temporal EMOS for streamflow postprocessing over

different lead times and obtained a better forecast
skill than univariate BMA or EMOS.116,172

Nonparametric Methods
Nonparametric methods are generally reordering
methods like Schaake shuffle80 and ECC85, both of
which could be seen as empirical copula methods.85

The aim of these methods is to reorder the ensemble
forecast members to preserve the spatial, temporal,
or intervariable dependency structure. The steps of
Schaake shuffle and ECC for each margin l are
shown in Boxes 1 and 2. The two methods differ
mainly in the choice of dependency template. For
Schaake shuffle, the template is chosen from past
observations in the historical archive.80 The underly-
ing assumption is that the dependency structure does
not change over time.80 For ECC, the template is the
raw ensemble members, which assumes that the raw
ensembles are able to represent the actual depend-
ency structure.85 Recently, Schefzik developed a vari-
ant of Schaake shuffle, namely SimSchaake method,
which chooses the reordering template from past
observations under similar situations.173 The
SimSchaake was reported to perform better than the
ECC method with broader applicability.173 Scheuerer
et al. provided an alternative similarity criterion to
select similar historical dates in the Schaake shuffle to
preserve the spatial–temporal dependence of meteor-
ological forecasts for hydrological application.174

The above methods were originally developed for

BOX 1

SCHAAKE SHUFFLE

1. DrawM samplesXl = xl
1,…,xl

M

� �
from the cali-

brated cumulative distribution function Fl. Sort

the forecast ensembles such that eXl = exl1,…,
�

exMl
�
= xl

1ð Þ,…,xl
Mð Þ

� �
with xl1ð Þ ≤ x

l
2ð Þ ≤ ,…, ≤ xlMð Þ.

2. Choose M samples of observations from
the historical archive. Sort the observations

Yl = yl
1,…,yl

M

� �
such that eYl = eyl1,…,eyl

M

� �
=

yl
1ð Þ,…,yl

Mð Þ
� �

with yl
1ð Þ ≤ y

l
2ð Þ ≤ ,…, ≤ yl

Mð Þ. Denote

the corresponding ranks of these observation
samples as rkl

m.
3. Arrange the forecast ensembles according

to the rank dependency structure of the histori-
cal observations and obtain the reordered fore-

casts as Xss
l = exlrkl

1
,…,exlrkl

m

� �
.
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meteorological forecasts, but they could also applied
for hydrological forecasts such as streamflow.116

Further Discussion on Methods to Account
for Spatiotemporal and Intervariable
Dependency
Several representative references of both parametric
and nonparametric methods to generate ensemble
members that preserve the spatiotemporal and inter-
variable dependency structure are presented in

Table 3. Between the two types of methods, paramet-
ric methods (e.g., the EMOS, BMA or classical
regression-based methods) are based on parametric
statistical assumptions and avoid the spurious and
inaccurate predictions from the ensemble template in
nonparametric methods.82 One drawback is that
these methods suffer from large computational bur-
den; thus, parametric methods mainly address low-
dimensional or highly structured correlations to avoid
a large number of parameters to be fitted.175 Moreo-
ver, temporal and spatial stationarity of the depend-
ency structure is often assumed in parametric
methods, which can be problematic in applica-
tions.82,83 Contrarily, nonparametric methods
(e.g., ECC and Schaake shuffle) are based on simple
reordering processes, which make these methods
more suitable for high-dimensional structures, such as
simultaneous spatiotemporal and intervariable
dependency structure. The drawback of this kind of
methods is that their performance depends on the rep-
resentativeness of the reordering templates. For exam-
ple, the Schaake shuffle may not perform well for
extreme events that rarely appear in historical
archives.4

Some comparison experiments have been con-
ducted for these two types of methods. For example,
Hemri applied the nonparametric ECC and paramet-
ric Gaussian copula approach to postprocess the
streamflow with different lead times. They found both
methods to be generally suitable for modeling tempo-
ral dependency of hydrological forecasts.116 Combi-
nations of the two types of methods have also
emerged, such as the bivariate EMOS–ECC
method,176 which models intervariable dependency

TABLE 3 | List of Representative Works on Methods to Account for Dependency Structure (Not Exhaustively)

Types Method Dependency
References for Meteorological
Forecasts

References for Hydrological
Forecasts

Parametric EMOS-based Spatial Scheuerer and Buermann (2014)30

Temporal Pinson et al. (2011)166 Hemri et al. (2015)116

Intervariable Baran and Möller (2016)170

BMA-based Spatial Berrocal (2007)83

Temporal Hemri et al. (2013)172

Intervariable Möller et al. (2013)168

Regression-based Temporal Engeland and Steinsland
(2014)171

Nonparametric Schaake shuffle Spatial/
temporal

Clark et al. (2004)80

Ensemble copula coupling
(ECC)

Spatial/
temporal

Schefzik et al. (2013)85 Hemri et al. (2015)116

SimSchaake Spatial Schefzik (2015)173

BOX 2

ENSEMBLE COPULA COUPLING

1. Draw M samples Xl = xl1,…,xlM
� �

from the
calibrated cumulative distribution function Fl.
The sampling method varies among ECC-Q,
ECC-R, and ECC-t.85 Sort the forecast ensembles

such that eXl = exl1,…,exlM� �
= xl

1ð Þ,…,xl
Mð Þ

� �
with

xl
1ð Þ ≤ xl2ð Þ ≤ ,…, ≤ xl

Mð Þ.
2. Sort the raw forecast ensembles

Rl = rl1,…,rlM
� �

such that rl1ð Þ ≤ r
l
2ð Þ ≤ ,…, ≤ rlMð Þ.

Denote the corresponding ranks of raw fore-
casts as rkl

m.
3. Arrange the postprocessed samples

according to the rank dependency structure of
the raw forecast ensemble and obtain the reor-

dered forecasts as XECC
l = exlrkl

1
,…,exlrkl

m

� �
.
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via parametric bivariate EMOS and describes the spa-
tial dependencies via nonparametric ECC. Schefzik’s
experiments have demonstrated that this new method
performed well for postprocessing temperature and
wind speed at several locations simultaneously, but
problems such as multivariate ranking and sampling
still need to be addressed.176

CONCLUSION

Statistical postprocessors are an integral part of
HEFSs. Their purpose is to calibrate the biases and
quantify the uncertainty of the raw forecasts. Various
statistical postprocessing methods have been devel-
oped to calibrate raw hydrometeorological forecasts
in recent decades. In this paper, statistical postproces-
sing methods for hydrometeorological forecasts are
reviewed in three aspects: (1) postprocessing of the
meteorological forecasts and hydrological forecasts,
(2) postprocessing for consensus forecasts from multi-
ple models, and (3) generating ensemble members that
preserve the spatiotemporal and intervariable depend-
ency. In the future, more experiments will be needed
to verify and compare these methods, especially using
real datasets instead of synthetic ones, and to provide
suggestions on how to choose suitable postprocessing
methods for specific operational applications.118

In addition to the methods reviewed in this
paper, we indicated several directions that need fur-
ther work in statistical postprocessing for hydrome-
teorological forecasts. First, for non-Gaussian
hydrological variables, although data transforma-
tions such as NQT have been widely applied, pro-
blems such as extrapolation to extreme values have
occurred.177 New tools such as nonparametric
models,64 a copula-based method,91,147,148 or
machine learning methods138 may help to address
these problems.

Moreover, stationarity is often assumed in tra-
ditional statistical postprocessing methods. Under
such an assumption, the statistical correlation
between observations and raw forecasts from simula-
tion models in the training period is similar to that in
the verification period. However, this assumption is
not always valid in hydrology.178 Ceola
et al. developed a theoretical framework to deal with
hydrological nonstationarity, which may help to alle-
viate this problem.179

In addition, the forecasting of extreme events is
of great importance for applications such as flood
warnings. However, as there are far fewer extreme
events than normal events in the historical archive, it
is difficult to train a statistical postprocessing model

for extreme events.118 Traditional statistical postpro-
cessing methods, such as classical linear regression,
mainly deal with the mean of the predictand rather
than extreme situations.37 Thus, new methods need
to be developed to deal with extreme events.

Another aspect that needs more attention is the
treatment of systematic timing and spatial errors in
raw precipitation and streamflow forecasts (e.g., the
timing and location of the forecasted storm peaks are
systematically shifted from the observed values).
Those forecasts would be skillful if the timing and
spatial errors were removed. However, most postpro-
cessors build statistical relationships between obser-
vations and raw forecasts for a particular location
and a specific forecast time and do not account for
the timing and spatial errors, which makes the cap-
ture of the true skill of raw forecasts unlikely. A
potential way to alleviate this kind of error is to
incorporate spatiotemporal neighborhood informa-
tion, which means that more sophisticated postpro-
cessing methods to correct the timing and spatial
errors of the forecasts need to be developed.99,159

Another problem emerges when postprocessing
forecasts for locations without gauge stations. Several
studies have been conducted on this topic. Kleiber
et al. developed the geostatistical model averaging
(GMA) for precipitation forecasts.150 Later works
include locally adaptive EMOS and standardized
anomaly MOS (SAMOS).180,181 For hydrological
forecasts, Skoien et al. developed the top kriging-
based EMOS method to interpolate EMOS para-
meters at calibrated locations to uncalibrated loca-
tions.182 More methods still need to be developed in
this field, especially for hydrological forecasts.

Finally, studies to integrate multiple ensemble
forecasting techniques to account for total uncer-
tainty of different sources are needed. Statistical post-
processing methods mainly address the uncertainty in
model input and output. However, hydrometeorolo-
gical forecasts include various uncertainties, such as
model parameters, model structure, and model initial
or boundary conditions. All these uncertainties
should be considered together in order to gain a bet-
ter understanding of the interactions among uncer-
tainties throughout the forecasting process.2,13 There
have been some studies that try to address different
uncertainty sources in an integrated manner, includ-
ing the Bayesian Total Error Analysis (BATEA) and
the Integrated Bayesian Uncertainty Estimator
(IBUNE),128,183–185 but those methods have not been
implemented in a real-time forecasting system. There-
fore, more studies are needed for the development of
a total uncertainty approach in operational hydrome-
teorological forecasting.
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APPENDIX

Several commonly used postprocessing-related R packages are listed in the following table, which may be help-
ful for interested readers.35,186–192

List of Commonly Used Postprocessing -Related R Packages

R Package Method References

ProbForecastGOP Geostatistical output perturbation (GOP) Berrocal et al. (2012)186

ensembleBMA Ensemble BMA Fraley et al. (2016)191

ensembleMOS Ensemble MOS Yuen et al. (2013)188

crch Heteroscedastic censored and truncated regression
(including logistic regression)

Messner et al. (2015)35

quantreg Quantile regression Koenker (2016)190

qrnn Quantile regression neural networks Cannon (2011)192

verification Weather forecast verification utilities NCAR—Research Applications
Laboratory (2015)189

SpecsVerification Verification routines for ensemble forecasts of
weather and climate

Siegert (2017)187
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