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Automatic model calibration improves numerical weather forecasting by tuning the numerical 

weather prediction model parameters to match model predictions with observations.

AUTOMATIC MODEL 
CALIBRATION

A New Way to Improve Numerical Weather Forecasting

Q. Duan, Z. Di, J. Quan, C. Wang, W. Gong, Y. Gan, 
 A. Ye, C. Miao, S. Miao, X. Liang, and S. Fan

W	eather forecasting skill has been improving  
	steadily over the years. The improvement is  
	due mostly to advances in the representa-

tion of physical processes by numerical weather 
prediction (NWP) models, observational systems, 
analyses techniques and forecasting methods (e.g., 
data assimilation, statistical postprocessing, and 
ensemble forecasting), new computational capabil-
ity, and effective communications and training. 
There is an area that has received less attention so 

far but can bring significant improvement to weather 
forecasting—the calibration of NWP models. Model 
calibration refers to a process in which model pa-
rameters are tuned to match model predictions with 
corresponding observations. This process may be 
done using a manual, unsystematic “trial and er-
ror” approach, or using an optimization algorithm 
to tune model parameters automatically to mini-
mize the difference between model predictions and 
observations (Duan et al. 2006). Automatic model 
calibration is a common practice in many fields 
including hydrology, biology, communications, and 
finance. It focuses on reducing errors resulting from 
the specification of model parameters. This is dif-
ferent from other popular approaches. For example, 
a common approach is to reduce model structural 
error by developing better physical parameterization 
schemes (Stensrud 2007). Multimodel ensemble ap-
proaches have been employed to account for model 
structural uncertainty (Krishnamurti et al. 1999). 
Data assimilation methods are commonly used to 
reduce errors in model initial conditions (Kalnay 
2003).

There are several reasons that the automatic cali-
bration of NWP models is not practiced as widely as 
in other fields. First, a typical NWP model has many 
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parameters (from tens to hundreds), which appear in 
model equations as constants or exponents. Param-
eter values may vary according to local conditions 
or climate regimes and are usually not measurable 
at the scale of application. The large number of pa-
rameters leads to a “curse of dimensionality” prob-
lem and makes optimization processes intractable. 
Second, NWP models simulate many meteorological 
variables, including precipitation, air temperature, 
atmospheric pressure, humidity, and wind speed. 
Model calibration must ensure that the simula-
tion of all key meteorological variables is satisfac-
tory. This requires model calibration be done via a 
multiobjective approach, which further increases 
the complexity of model calibration. Third, con-
ventional automatic model calibration approaches 
require many model runs (up to tens of thousands) 
to obtain optimal parameter values. Since many 
CPUs are required to generate a multiday forecast 
for a limited domain, the extraordinary computa-
tional demand makes automatic model calibration 
very challenging.

The utility of automatic calibration of NWP 
models has been suggested by a number of re-
searchers (Bennett 
et al. 1996; Evensen 
et al. 1998; Duane 
and Hacker 2007; 
A k s o y  2 0 1 5 ) . 
Various approach-
es have been at-
tempted to opti-
mize NWP model 
parameters, from 
traditional search 
algorithms such as 

downhill simplex method (Severijns and Hazeleger 
2005), genetic algorithm (Yu et al. 2013; Ihshaish et al. 
2012), and simulated annealing (Jackson et al. 2004), 
to adaptive sequential data assimilation (Gong et al. 
1998; Mu et al. 2002; Ruiz et al. 2013). Traditional op-
timization methods are either not able to handle the 
high dimensionality of NWP models or are imprac-
tical because they require too many model runs. On 
the other hand, sequential data assimilation methods 
treat model parameters as time-varying properties of 
the system. Those methods can be easily implemented 
in an existing data assimilation framework as they 
treat model parameters as extended state variables 
and are appropriate for estimating time-varying 
parameters such as leaf area index, surface rough-
ness, and albedos. However, most parameters are 
formulated as constant properties of the system. Even 
if they are time varying, those model parameters and 
state variables do not vary on the same time scale. A 
two-stage filtering is needed to estimate model pa-
rameters and model state variables separately (Santi-
tissadeekorn and Jones 2015; Vrugt et al. 2005). More 
recently, methods specially designed for parameter 
estimation of large complex system models like NWP 
have shown promise in improving the forecasting 
skill of NWP and climate models (Bellprat et al. 2012; 
Johnson et al. 2015; Neelin et al. 2010).

This paper demonstrates one such automatic 
model calibration platform for optimizing the pa-
rameters of NWP models. The keys of this model 
calibration platform are 1) to reduce the number of 
tunable parameters to a tractable level (e.g., from 
the current tens to hundreds to 15 or less) and 2) to 
develop an optimization algorithm that requires a 
relatively small number of model runs (only a few 
hundred at most). To implement these keys, a num-
ber of mathematical techniques can be employed, 
including 1) using a design-of-experiment (DoE) 
approach to judiciously sample model parameter 
sets within their physical variability ranges, and then 
using global sensitivity analysis (GSA) methods to 

Table 1. The WRF Model parameterization schemes used in this study.

Physical process Specific scheme

Surface layer Monin–Obukhov scheme (Dudhia et al. 2005)

Cumulus Kain–Fritsch (new Eta) scheme (Kain 2004)

Microphysics WRF single-moment 6-class graupel scheme (Hong and Lim 2006)

Shortwave radiation Dudhia scheme (Dudhia 1989)

Longwave radiation Rapid Radiative Transfer Model scheme (Mlawer et al.1997)

Land surface Unified Noah land surface model scheme (Chen and Dudhia 2001)

Planetary boundary layer Yonsei University scheme (Hong et al. 2006)

Fig. 1. The two-level nested study domain for the WRF 
Model. The outer domain is a 60 × 48 grid with a resolu-
tion of 27 km, and the inner domain is an 87 × 55 grid 
with a resolution of 9 km. 
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Table 2. The list of sensitive WRF Model parameters for precipitation and surface air temperature fore-
casts identified through sensitivity analysis.

Scheme
Parameter 

index
Parameter 

name
Default 
value

Parameter range Parameter description

Cumulus 
(module_cu_kfeta.F)

P3 pd 1 [0.5, 2]
Multiplier for downdraft mass 
flux rate

P4 pe 1 [0.5, 2]
Multiplier for entrainment 
mass flux rate

P5 ph 150 [50, 350]
Starting height of downdraft 
above updraft source layer 
(hPa)

Microphysics 
(module_mp_wsm6.F)

P8 ice_stokes_fac 14,900 [8,000, 30,000]
Scaling factor applied to ice fall 
velocity (s−1)

P10 dimax 5 × 10−4 [3 × 10−4, 8 × 10−4]
Limited maximum value for the 
cloud ice diameter (m)

Shortwave radiation 
(module_ra_sw.F)

P12 cssca 1 × 10−5 [5 × 10−6, 2 × 10−5]
Scattering tuning parameter 
(m2 kg−1)

Land surface 
(module_sf_noahlsm.F)

P16 porsl 1 [0.5, 2]
Multiplier for the saturated soil 
water content

Planetary boundary 
layer (module_bl_ysu.F)

P20 Brcr_sb 0.25 [0.125, 0.5]
Critical Richardson number for 
boundary layer of land

P21 pfac 2 [1, 3]
Profile shape exponent for 
calculating the momentum dif-
fusivity coefficient

identify the parameters that have the most impact 
on model forecasts; 2) instead of optimizing model 
parameters directly by running the NWP model re-
peatedly, constructing a surrogate model (also called 
statistical emulator, or metamodel) to represent the 
error response surface of the dynamical NWP model 
using a finite small number of model runs; and 3) 
using a multiobjective optimization approach to 
find the optimal parameters of the surrogate model 
and then using them to approximate the optimal 
parameters of the NWP model. In the next section, 
we provide a brief description of the platform. In the 
sections thereafter, we illustrate the usefulness of the 
automatic calibration platform through a case study 
involving 5-day forecasting of summer precipitation 
and surface air temperature in the greater Beijing 
area using the Weather and Research Forecasting 
(WRF) Model.

METHODS. A model calibration platform called 
Uncertainty Quantification Python Laboratory 
(UQ-PyL) has been developed, which has integrated 
different kinds of uncertainty quantification (UQ) 
methods, including various DoE, GSA, surrogate 
modeling, and optimization methods. It is written 
in Python language (PyL) and can run on all com-
mon operating systems such as Windows, Linux, and 

MacOS, with a graphical user interface for selecting 
and executing various commands. The different 
functions of UQ-PyL have been documented in 
Wang et al. (2016) and some specific UQ methods 
are described in several publications (Gan et al. 2014; 
Li et al. 2013; Wang et al. 2014; Gong et al. 2016). 
For example, how to use different GSA methods to 
reduce the dimensionality of complex dynamical 
models like the Common Land Model (CoLM) and 
the WRF Model has been demonstrated by Li et al. 
(2013), Di et al. (2015), and Quan et al. (2016). The 
idea behind parameter dimensionality reduction is 
to use sensitivity analysis to screen out the most im-
portant parameters that exert significant influence 
on model predictions (Guo et al. 2014). Once they are 
found, those parameters can then be optimized to 
maximize the model performance measures (Gong 
et al. 2015).

UQ-PyL also includes tools for constructing surro-
gate models and for conducting surrogate-modeling-
based optimization. In Wang et al. (2014), an adaptive 
surrogate-modeling-based optimization (ASMO) 
method was described, which allows for effective 
and efficient searches of optimal parameters of large 
complex models using a low number of model runs. 
The goal of optimization is to find the minimum 
of an error response surface in the multiparameter 
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space. ASMO is based on 
the premise that the opti-
mal solution of a dynamical 
model can be approximated 
by the optimal solution of a 
surrogate model, which is 
constructed in two steps. 
The first step uses a DoE 
approach to create random 
parameter samples that are 
evenly distributed within 
the physical variability 
ranges of the parameters 
and then construct an er-
ror response surface using 
these parameter samples. 
The second step is to re-
fine this response surface 
iterat ively by using an 
adaptive sampling strategy 
that places more parameter 
samples in the promising 
parameter space based on 
information already gained 
on the existing response 
surface. Once this iterative 
process converges, the final 
response surface is treated 
as the surrogate model. The 
optimal solution of this 
surrogate model should 
approximate the optimal 
solution of the dynamical 
model.

NUMERICAL CASE 
STUDY. We demonstrate 
how UQ-PyL can be used 
to calibrate the WRF Mod-
el through a case study. 
Our goal is to optimize the 
WRF Model parameters 
that are most important 
to the forecasting of pre-
cipitation P and surface 
air temperature T over the 
greater Beijing area dur-
ing the summer monsoon. 
Nine 5-day precipitation 
events from the June–Au-
gust (JJA) period between 
2008 and 2010 are used 
for model calibration and 

Fig. 2. The convergence results of three optimization runs: Normalized MAE 
values vs the number of model runs. The normalized MAE value for the con-
trol run (i.e., simulations using the default parameters) is equal to 1. If the 
normalized MAE is less than 1, it indicates that an improvement has been 
achieved over the control run.

Fig. 3. Comparison of the objective function values of the three optimiza-
tion runs against the objective function of the control run for nine individual 
calibration events as well as for all events combined. The numbers shown 
above the bars are the relative improvement of the optimized results vs the 
control run results.
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15 additional nonoverlapping 5-day precipitation 
events from 2005 to 2010 are chosen for validation 
of the optimization results (see Figs. ES1 and ES2). 
Those nine events were chosen for model calibra-
tion because they captured most of the heavy storm 
events over those years. The JJA 3-month period 
is chosen for calibration because over 70% of the 
annual precipitation in the area occurs during this 
period. Furthermore, storm events during this pe-
riod are often associated with severe urban flooding 
that has resulted in tremendous economic and even 
human losses.

WRF Model, version 3.3, available from the WRF web 
portal (www2.mmm.ucar.edu/wrf/users/download 
/get_source.html), is used in the study. The setup 
for the WRF Model is described in Di et al. (2015) 
and the specific parameterization schemes used in 
this study are shown in Table 1. The WRF Model is 
run with a two-level nested domain setup over the 
greater Beijing area (Fig. 1), with the grid resolution 
of the outer domain (marked as “d01”) at 27 km and 
the inner domain (marked as “d02”) at 9 km. The 
model performance is evaluated over the d02 domain. 
The lateral and initial conditions needed to run the 
WRF Model are set using the NCEP Reanalysis data 
(Kistler et al. 2001). Based on the sensitivity analysis 
results of Di et al. (2015) and Quan et al. (2016), 9 
parameters (see Table 2) selected out of a list of 23 
tunable parameters (see the entire list of parameters 
in the supplemental materials; Table ES1; http://dx.doi 
.org/10.1175/BAMS-D-15-00104.2) were identified as 
important to P and T forecasting over the area. Sub-
sequent surrogate modeling is therefore constructed 
using those nine parameters as independent variables. 
We employed the ASMO method to optimize those 
parameters. Four optimization runs were conducted 
with the ASMO method. The first two optimization 
runs were to minimize the normalized mean absolute 
errors (MAEs) of the P and T forecasts, respectively, 
while the third optimization run aimed to minimize 
the equally weighted normalized MAEs of P and T 
forecasts. The fourth optimization run was done 
using the ASMO method to maximum the 
weighted threat score (TS) of P forecasts for 
different storm categories.

The normalized MAE (NMAE), used in 
the first two optimization runs as the objec-
tive function (also called cost function), is 
computed based on the ratio of mean ab-
solute difference between model prediction 
and observation over all grid points and 
forecasted time intervals using the given and 
default parameters; that is,

	 minimizeMinimize NMAE = ( ) = ( )
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i  is the observation, N is the number of grid 
cells in domain d02, and M is the total number of 
forecasted time intervals. If θ = θ*, F(θ) = 1. If F(θ) < 1, 
it implies that θ would produce better forecasts than 
θ*. For optimization run 3, we used a weighted mul-
tiobjective function suggested by Liu et al. (2004) as 
we are concerned with minimizing the NMAE values 
of both P and T forecasts. The specific formulation of 
the objective function F'(θ) for this run is as follows:

	 minimize Minimize ′( ) = ( )
=
∑F w Fj j
j

θ θ
1

2

,	 (2)

where wj is the weight for variable j, j = 1 denotes P, 
and j = 2 denotes T, respectively. We assigned equal 
weights to both P and T (i.e., w1 = w2 = 0.5).

For optimization run 4, we used TS [also known 
as critical success index (CSI)] as the objective func-
tion. We compuate TS, which measures the fraction 
of forecast events that are correctly predicted based 
on observations, as follows:

	 TS na
na nb nc

=
+ +

,	 (3)

where na is the grid counts of hits (i.e., both forecast and 
observation fall in prescribed threshold ranges), nb is the 
grid counts of false alarms (i.e., the forecast falls in the 
threshold ranges, while observation does not), and nc is 
the grid counts of misses (i.e., the forecast falls outside 
the threshold ranges, while observation falls in). For a 
6-h precipitation event [mm (6 h)−1], the threshold values 
(mm) are set for six categories of precipitation events: 
light rain, moderate rain, heavy rain, storm, heavy 
storm, and severe storm are [0.1, 1), [1, 5), [5, 10), [10, 
25), [10, 50), [50, ∞) mm, respectively. A higher TS score 

Table 3. Comparison of the optimized objective function 
values for the first three optimization runs. The boldface 
numbers indicate the best objective function values for P 
and T.

Optimization 
run

Objective function 
value for P forecasts

Objective function 
value for T forecasts

1 0.82359 0.93526

2 0.90815 0.81845

3 0.87598 0.83729
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indicates a better forecast, with a perfect score being 1. 
For the calibration events chosen for this case study, we 
only have the first four categories. In the optimization 
run, we used a weighted TS score, with a weight of 0.25 
assigned to those four categories of storms.

Besides NMAE and TS scores, we also computed a 
combination score named SAL (Wernli et al. 2008) to 
evaluate the forecast performance, where S, A, and L 
stand for the forecast performance in terms of struc-
ture, amplitude, and location of the storm, respectively. 
A large value for S with a range of [−2, 2] implies the 
forecast storm area is too broad or too flat compared 
to observation; a small value means the forecast is 
too peaked and a value of 0 indicates being perfect. 
Amplitude A, with a range of [−2, 2], measures the aver-
age bias in precipitation amount, with 0 being perfect, 
a positive value indicating overforecast, and a negative 
value indicating underforecast. Location L, with a 
range of [0, 2], measures the displacement of forecast 
storm center from observed storm center, with 0 being 
perfect. The exact formulas for computing those scores 
are given in supplemental materials.

For all optimization runs, the size of the initial 
set of parameter samples used to construct the initial 

surrogate model was set to 
100, based on the sugges-
tion by Wang et al. (2014). 
According to the ASMO al-
gorithm, from 45 to over 130 
additional parameter sets 
were sampled adaptively to 
obtain the final surrogate 
model and optimal param-
eter set for the first three 
optimization runs (see Fig. 2). 
Figure 3 compares the opti-
mized NMAE values against 
those corresponding to the 
control run (i.e., the run made 
using the default parameters) 
for the nine individual 5-day 
calibration events as well 
as for all calibration events 
combined. The results clearly 
indicate that optimization 
has resulted in significant 
improvement in the NMAE 
values. The improvement for 
all events combined ranges 
from 14.34% for the third 
optimization run to 18.16% 
for the second optimization 
run. The improvement is 

more evident when the NMAE of a single variable (e.g., 
P or T) is optimized than when the weighted NMAE 
of both P and T forecasts is optimized. From Table 3 
we note that the optimized NMAE values for the indi-
vidual variables yield their respective best values (i.e., 
optimization run 1 yields the best value for P, while 
optimization run 2 for T) and the optimized weighted 
NMAE value of both P and T corresponds to the com-
promised values (i.e., they are better than default but 
worse than the individually optimized values).

When examining the relative improvement for the 
individual calibration events, we see improvement in 
most events for all three optimization runs. However, 
there are a few events in which the NMAE values are 
not improved by optimization. But those events tend 
to correspond to the events whose NMAE values are 
relatively small compared to that of other events. 
Figures 4 and 5 show the scatterplots and the coef-
ficients of determination R2 between the 3-h T and P 
forecasts and corresponding observations for all grid 
points during the calibrated events using the default 
parameters and three sets of optimized parameters. 
For T forecasts, the R2 values of all three optimization 
runs have improved over that of the default parameters, 

Fig. 4. The scatterplots of the 3-h surface air temperature for all grid points 
from the nine calibration events: (a) observation vs simulation using the 
default parameters, (b) observation vs simulation using optimized param-
eters from optimization run 1, (c) observation vs simulation using optimized 
parameters from optimization run 2, and (d) observation vs simulation using 
optimized parameters from optimization run 3.
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with the second run (which 
optimizes T forecasts) hav-
ing the highest R2. For P 
forecasts, the R2 values for 
optimization run 1 and run 
3 have improved over that 
of the default parameters, 
but run 2 has degraded R2 
from that of default value. 
This tells us that optimizing 
T forecasts may not result in 
improved P forecasts.

We also examined the 
optimization results for 
different lead times and 
found that the improve-
ment is consistent for all 
lead times. Figure 6 shows 
the relative improvement of 
the P forecasts for different 
lead times for all calibration 
events, which ranges from 
10.87% for day 1 to 24% for 
day 2. We further examined 
if the optimal parameters 
from run 3 would lead to improved forecasts for other 
meteorological variables such as 2-m relative humidity, 
surface air pressure, 10-m wind speed, and downward 
surface shortwave radiation. Figure 7 confirmed that 
the optimal parameters for P and T forecasts have 
indeed improved the forecasts of those variables, with 
improvement rate of 1.71% for surface air pressure to 
27% for wind speeds. Figure 8 presents the SAL score 
for the calibration events for run 3 and shows that 
the optimized parameters lead to better SAL scores 
compared to the default parameters. The improvement 
due to optimized parameters is the most obvious for 
structure S and amplitude A, implying the storm-area 
coverage and magnitude are better, and slight for storm 
location L prediction. The large value for A for the 
default parameters is consistent with the finding that 
P forecasts using the default parameters overestimate 
observed P (see Fig. ES3, which compares the daily av-
eraged P forecasts against observations over the entire 
nine events for the optimized and default parameters).

We have computed the performance measures for 
the individual validation events as well as for all vali-
dation events combined. The improvement in NMAE 
values, as well as for other performance measures 
such as R2, the SAL score, and the NMAE values for 
different lead times are similar to or slightly worse 
than those for the calibration events (see Figs. ES5–
ES9 for detailed results).

Optimizing the WRF Model parameters using 
NMAE as the objective function has resulted in better 
performance according to a number of performance 
measures shown previously. However, it does not 
always lead to consistent improvement in the TS 
values (see Fig ES10, which shows the TS values of 
the P forecasts using the optimized parameters from 
optimization run 1). Since TS is a key performance 
measure emphasized by many operational meteorolo-
gists, we conducted an additional optimization run by 
using the weighted TS for different storm categories 
as the objective function. The optimization results 
indicate that the weighted TS was improved by 9.5% 
after 162 model runs (see Fig. ES11, which shows the 
convergence of optimization run 4). Figure 9 shows 
the TS scores for individual calibration events as well 
as for all calibration events combined for the four cat-
egories of storms, with the TS scores for the combined 
events varying from −1.09% for light rain to 23.88% 
for heavy rain. The decreased TS score for light rain 
is because a weighted TS is used as the objective func-
tion. Even though the overall TS would improve, a 
TS for an individual category may not. This actually 
indicated a problem when a single objective function 
is used for model calibration. Many studies have sug-
gested that a truly multiobjective model calibration 
approach can be useful, in which Pareto optimal pa-
rameter sets are identified (Gong et al. 2016). In those 

Fig. 5. The scatterplots of the 3-h precipitation for all grid points from the 
nine calibration events: (a) observation vs simulation using the default pa-
rameters, (b) observation vs simulation using optimized parameters from 
optimization run 1, (c) observation vs simulation using optimized parameters 
from optimization run 2, and (d) observation vs simulation using optimized 
parameters from optimization run 3.
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Pareto optimal sets, some parameter sets correspond 
to optimal forecasting performance for light rain 
events, others being optimal for moderate or heavy 
rain events. None of the 
objective functions in the 
Pareto optimal sets can be 
improved in value without 
degrading some of the other 
objective values (Miettinen 
1999). The optimal param-
eters obtained using TS as 
the objective function were 
validated using indepen-
dent validation datasets. We 
found that TS for all valida-
tion events combined have 
been improved, even though 
TS for individual storms 
may not (see Fig. ES12).

We examined the dif-
ferences in the optimized 
parameter values for all op-
timization runs and com-
pared them against the de-
fault values (Fig. 10). Direct 
correspondence between 
the parameter values and 
model performance mea-
sure is not obvious, because 
P and T forecasts are the 

Fig. 6. Comparison of the MAE values for precipitation based on 
simulations using the default parameters and using the optimized pa-
rameters for different lead times for all calibration events combined.

aggregated results of complicated, 
highly nonlinear interactions be-
tween different physical processes 
such as ascent or descent of moist 
air, turbulent exchanges of water and 
energy fluxes between land surface 
and atmosphere, and horizontal 
advection of momentum, mass, and 
energy. From Fig. 8 (also Figs. ES3 
and ES4), there is an apparent over-
estimation of both P and T over the 
greater Beijing area when default 
parameters are used. The changes 
in most parameters tend to show the 
effect of depressing P and lowering 
T. For example, a large value for P12 
(the scattering tuning parameter) 
means a higher scattering of solar 
radiation, leading to reduced short-
wave radiation reaching the surface 
and thus decreasing evaporation 
from the ground, and ultimately 
depressed P and T. The changes 

in P3 (the multiplier for downdraft mass flux rate) 
and P5 (the starting height of downdraft above the 
updraft source layer) have similar effects. When 

Fig. 7. Comparison of the MAE values of the simulations of other meteorologi-
cal variables using the default parameters and using the optimal parameters 
for the nine calibration events and for all calibration events combined: 
(a) 2-m relative humidity, (b) surface air pressure, (c) 10-m wind speed, and 
(d) surface shortwave radiation.
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Fig. 8. Comparison of the SAL precipitation forecasting skill score 
for the nine calibration events combined. For all SAL components, a 
value of 0.0 indicates a perfect score.

their values increase, the downdraft 
flux becomes stronger, suppressing 
further development of updraft con-
vection and depressing precipitation. 
Meanwhile, more evaporation from 
condensed water occurs during the 
downdraft, cooling the atmosphere 
temperature, thus reducing T. For 
P16 (the multiplier for the saturated 
soil water content), the optimized 
values for P and T are conflicting. 
When P16 value increases, soil mois-
ture content increases and surface 
evapotranspiration is enhanced, 
thus inducing stronger P. On the 
other hand, when P16 value decreas-
es, the incidence of P becomes weak 
and higher T results. Parameter P21 
(the profile shape exponent for cal-
culating momentum diffusivity coefficient) reflects 
the mixing intensity of turbulent eddies in planetary 
boundary layer. When its value decreases, turbulence 
diffusivity intensity is weakened, making the upward 
transfer of heat and water vapor from the ground 
surface slow down. So the formation of convection 
is more difficult, and P is thus reduced. The slower 
thermal eddy diffusivity also restrains the increase 
of T. For parameters P4 (multiplier of entrainment 

mass flux rate) and P8 (scaling factor applied to ice 
fall velocity), lower values for them lead to less favor-
able conditions for formation of rain and thus lead 
to reduced P. A larger value for P10 (the maximum 
value for the cloud ice diameter) has similar effect 
as the lower P8. When parameter P20 (the critical 
Richardson number for boundary layer) decreases, 
the planetary boundary layer height is depressed and 
thermal eddy diffusivity is decreased, leading to lower 

T. Of course, it is impossible 
to explain all the changes in 
parameter values completely 
because of nonlinear inter-
actions among them.

CONSIDER ATIONS 
FOR PRACTICAL AP-
PLICATIONS. We have 
demonstrated the potential 
of automatic model calibra-
tion as a new way to improve 
numerical weather forecast-
ing. This study has been 
intended to provide practi-
cal guidance to operational 
NWP modelers. In practice, 
several considerations must 
be taken before using au-
tomatic model calibration 
methods. First, the model 
setup in this study is not 
exactly as in the operation-
al settings for the greater 
Beijing area by the Beijing 

Fig. 9. Comparison of the TS values of the precipitation simulations obtained 
using the default parameters and using the optimized parameters from 
optimization run 4 for the nine calibration events and all calibration events 
combined.
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Institute of Urban Meteorology Research, which runs 
the WRF Model over a larger domain with three-level 
nested grids and the inner grid resolution at 1 km, 
compared to a two-level nested domain and a 9-km 
resolution for the inner domain in this study. The 
operational model is also initialized with a data as-
similation system that provides more realistic initial 
conditions, which should lead to further improve-
ment because of improved initial conditions for the 
model. If the optimization methodology presented 
here is applied to the operational setting, we need 
to recalibrate the WRF Model and the final optimal 
parameter values may differ from the ones we ob-
tained in this study. Another important note is that 
the tunable parameters we selected for this study may 
not include all impactful parameters on the forecasts, 
owing to the fact we are not totally familiar with all of 
the schemes in the WRF Model. Any WRF modeler 
who wants to optimize the WRF Model parameters 
should make full use of her knowledge about the 
model in identifying the tunable parameters.

Second, we choose nine summer storm events 
over a 3-yr period to ensure that the optimized 
model parameters are reasonably robust. We found 
that the improvement in calibration events is consis-
tent when we computed a number of performance 
measures (i.e., NMAE, TS, R2, the SAL scores, and 
NMAE for different lead times). More interestingly, 

Fig. 10. Comparison of optimized parameter values against the default pa-
rameter values for the four optimization runs. The horizontal axis denotes 
different parameters and vertical axis denotes parameter values, with zero 
corresponding to the lower bound and 1 corresponding to the upper bound 
of the parameters.

the performance measures 
for other meteorological 
variables are also improved 
when P and T forecasts are 
optimized. The validation 
results confirm that the op-
timized parameters have 
also resulted in improved 
performance measures for 
the 16 individual valida-
tion events as well as for all 
validation events combined. 
When conducting model 
calibration for specific ap-
plications, one always needs 
to perform those validation 
studies to ensure the effec-
tiveness of the optimization 
results. Further, even though 
the parameters obtained in 
this study were found to be 
optimal for forecasting sum-
mer storms, they may not 
be optimal for other types 
of storm events such as the 

winter storms. It may be arguable whether model 
calibration based on only nine calibration events is 
sufficient in practice, especially for the rare events. 
A more comprehensive study using a large sample 
of events may be necessary in the future to assess 
the impact of sampling error on optimal parameter 
estimates.

Third, the performance metrics used in calibration 
are very important. In this study we used NMAE and 
TS as the objective function and they resulted in dif-
ferent model parameters. We also used a number of 
performance measures such as the scatterplots, R2, 
and the SAL scores to verify the forecasts. In practice, 
the evaluation of model performance is multifaceted 
and the choice of objective functions must reflect the 
values of the forecast practitioner. It is possible that 
the optimal parameters for one metric may conflict 
with that for another metric. One should consider a 
multiobjective approach that weighs different objective 
functions subjectively to reflect one’s preference for a 
particular performance metric. Another approach may 
be used to search for a Pareto optimal set, in which all 
parameter sets are noninferior compared to another 
set according to at least one performance metric. With 
this set of Pareto optimal parameters, one can create 
an ensemble of forecasts using different parameters.

The optimization approach presented here is 
different from the sequential data assimilation 
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approaches, which update model parameters as new 
data become available. The approach is also more ef-
ficient and effective than conventional optimization 
approaches (e.g., downhill simplex, simulated anneal-
ing, and genetic algorithm) as we relied on techniques 
such as parameter screening and surrogate modeling 
to achieve computational saving. We hope this study 
will stimulate more development in using automatic 
model calibration methods to optimize NWP model 
parameters.
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