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Despite the tremendous improvement made in numerical weather and climate models over the recent
years, the forecasts generated by those models still cannot be used directly for hydrological forecasting.
A post-processor like the Ensemble Pre-Processor (EPP) developed by U.S. National Weather Service must
be used to remove various biases and to extract useful predictive information from those forecasts. In this
paper, we investigate how different designs of canonical events in the EPP can help post-process precip-
itation forecasts from the Global Ensemble Forecast System (GEFS) and Climate Forecast System Version 2
(CFSv2). The use of canonical events allow those products to be linked seamlessly and then the post-pro-
cessed ensemble precipitation forecasts can be generated using the Schaake Shuffle procedure. We used
the post-processed ensemble precipitation forecasts to drive a distributed hydrological model to obtain
ensemble streamflow forecasts and evaluated those forecasts against the observed streamflow. We found
that the careful design of canonical events can help extract more useful information, especially when
up-to-date observed precipitation is used to setup the canonical events. We also found that streamflow
forecasts using post-processed precipitation forecasts have longer lead times and higher accuracy than
streamflow forecasts made by traditional Extend Streamflow Prediction (ESP) and the forecasts based
on original GEFS and CFSv2 precipitation forecasts.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction is a World Meteorological Organization sponsored decade-long
An accurate and reliable hydrological forecast can provide use-
ful information for emergency and water resources managers to
deal with hydrologic hazards such as floods and droughts
(Pappenberger et al., 2013). Numerical ensemble weather
(Gneiting and Raftery, 2005) and climate predictions, which are
used as inputs to streamflow prediction models, have great bear-
ings on the accuracy and reliability of a hydrological forecast (Xu
et al., 2014).

A number of international initiatives have highlighted the
significant improvement in the predictive skills of precipitation
forecasts generated by numerical weather prediction (NWP) and
climate models in the recent years. For example, a suite of med-
ium-range ensemble meteorological forecast products in the TIGGE
database have shown significant skill in forecasting severe weather
events such as heavy rains, where TIGGE stands for THORPEX
Interactive Grand Global Ensemble, and THORPEX stands for The
Observing System Research and Predictability Experiment, which
project started in 2003 to improve medium range forecast of severe
weather events (Swinbank et al., 2005). The North American Multi-
Model Ensemble (NMME) has assembled nine different climate
models to produce global seasonal climate forecasts with a lead
time of up to eleven and half months. The preliminary results
showed that hydrological forecasts driven by NMME seasonal pre-
cipitation forecasts showed meaningful skill (i.e., with the skill bet-
ter than that of the forecasts by Extended Streamflow Prediction
(ESP), which uses climatology as forcing) even six months into
the future (Kirtman et al., 2014, Ma et al., 2016). Besides the
improved skill in the NWP and climate forecasts, many of those
forecasts come with a long retrospective reforecasts (>30 years),
which allow forecast users to post-process those forecasts to
remove various biases and to downscale them to the application
domain of interest.

The Global Ensemble Forecast System (GEFS) and the Climate
Forecast System version 2 (CFSv2) are the medium- and long-range
meteorological forecasts, respectively, produced by the U.S.
National Center for Environmental Prediction (NCEP). Those fore-
casts are easily accessible online in real-time and both have over
30 years of retrospective reforecasts available. Like other forecast
products, the GEFS and CFSv2 forecasts are plagued by various
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uncertainties and cannot be applied directly to hydrological fore-
casting. They need to be post-processed before they can be used
to drive a hydrological model (Li et al., 2009a; Liu et al., 2013).

Post-processing serves numerous purposes, including removing
systematic and spread biases, downscaling, and generating spatio-
temporal time series needed by a hydrological model. There are
many post-processing methods that have been used in hydrologi-
cal forecasting, such as Perfect Prognosis (Klein et al., 1959), Model
Conditional Processor (MCP) (Todini, 2008), Model Output Statis-
tics (MOS) (Glahn et al., 2009; Glahn and Lowry, 1972), Multi-
model Bayesian methods (Ajami et al., 2007; Duan et al., 2007;
Coccia and Todini, 2011), wavelet transformation autocorrelation
methods (Bogner and Kalas, 2008) and Ensemble Pre-Processor
(EPP) (Schaake et al., 2007). Those post-processing has shown to
be very effective in improving the raw meteorological (or hydro-
logical) forecasts from NWP and climate (or hydrological) models
(Olsson et al., 2016).

This study uses the EPP method as a statistical post-processor of
precipitation forecasts. EPP first establishes joint probability distri-
butions between the forecasted precipitation and their corre-
sponding observation for predetermined canonical events
(Schaake et al., 2007). A canonical event refers to a meteorological
event for a given location, with a specific lead time and duration.
Canonical events can be divided into single-time step canonical
events (SCEs, e.g., events with time steps of one day or less like
the first 6-h precipitation, the 2nd day precipitation) and compos-
ite time step canonical events (CCEs, e.g., multi-day events like the
day 6-day 10 average daily precipitation) (Tao et al., 2014). Once
the joint probability distributions between forecasts and observa-
tions are established for all canonical events, we can obtain the
conditional distributions of the observed precipitation given a
specific precipitation forecast. Afterwards, the Schaake Shuffle pro-
cedure can be applied to create different ensemble forecast mem-
bers of precipitation time series to be used to drive a hydrological
model (Clark et al., 2004).

The choice of canonical events can influence the quality of post-
processing by EPP. If canonical events are designed properly, one
can extract the maximal amount of predictive information from
the raw forecasts. Due to the chaotic nature of the weather and cli-
mate systems, long-term precipitation forecasts generally contain
less predictive information than shorter lead-time forecasts
(Lorenz, 1963). It is nearly impossible to obtain an exact daily pre-
cipitation forecast after 7 days into the future. However, it is rela-
tively easy to obtain a satisfactory monthly precipitation forecast
for the next month. The reasons are: (1) there is skill in forecasting
total amount of precipitation over a long future period, even
though it is impossible to avoid the timing error of a precipitation
forecast. For this reason, the forecasted precipitation for a future
month or a future season can be treated as a canonical event which
contains meaningful predictive information. There are many bene-
fits of using canonical events. For example, they can reduce the cal-
culation error when using the average of forecasts to calculate by
establishing a statistical relationship between the historical obser-
vations and forecasts to extract useful information. Different
canonical event schemes, however, will produce different post-
processing results (Liu et al., 2013; Tao et al., 2014). The traditional
way of generating canonical events in EPP tends to be arbitrary.
Since there are some links between the forecasts and observations
from the previous few days, we attempted to make use of this link
to design canonical events used in EPP to post-process the GEFS
and CFS precipitation forecasts.

The organisation of the paper is as follows: Section 2 describes
the EPP methodology; Section 3 introduces the data and study
domain; Section 4 presents the results and discussion; and
Section 5 provides the conclusions.
2. Method

2.1. Ensemble Pre-Processor (EPP)

The Ensemble Pre-Processor (EPP) (Schaake et al., 2007; Wu
et al., 2011) is a post-processing method available in the National
Weather Service River Forecast System (NWSRFS) that prepares
precipitation and temperature forecast ensemble members for
hydrological models. This method is aimed to improve the accu-
racy of forecasts by downscaling the forecast to match the scale
of the hydrological models. The methodology transforms the time
series of single-value Quantitative Precipitation Forecasts (QPFs)
and Quantitative Temperature Forecasts (QTFs) into corresponding
ensemble forecasts of precipitation and temperature, which can
then be used as input data for the hydrological models.

Fig. 1 shows a flowchart of the main steps of the EPP method. X
and Y denote sets of single-valued QPFs and the corresponding
observations. Statistical parameters for observations (Y) and the
corresponding forecasts (X) then need to be calculated using the
EPP. Because precipitation often occurs as a 0 value event for a long
period of time, it will affect the stability of the model when the EPP
directly calculates single-value precipitation for the statistical
parameters. To ensure a sufficient sample size for the calculations,
a time window is used to include forecasts before and after the
forecast day (e.g., day 5–30 before and after). The window should
ensure a sufficient number of non-zero values when the EPP
chooses the length of the window. In the statistical analysis, it is
necessary to consider the rain and non-rain events. Given the
threshold value (e.g., 97%) of zero precipitation, it is assumed that
no precipitation occurred when the precipitation is less than the
threshold value.

We can determine the marginal distribution of X and Y using
the data from years of observations and forecasts. The EPP can fit
X and Y to a probability distribution function (PDF), such as a
Gamma, Log Normal, Exponential, or Weibull distribution function.
A Gamma distribution function is used in the study, because we
found the Gamma distribution can get the better precipitation
pre-processing results than other distributions in China. It is diffi-
cult to determine the joint distribution of X and Y using this PDF.
Therefore, we transform X and Y into Gaussian space using the Nor-
mal Quantile Transform (NQT) method (Kelly and Krzysztofowicz,
1997, 1997; Montanari and Grossi, 2008), mapping X and Y into
standard normal random variables U and V. Thus, we obtain the
joint distribution of U and V, BU,V(u,v), which is assumed to be a
bivariate standard normal distribution. We can determine BU|V(u|
v) from the given conditional PDF, FY|X(y|x). From FY|X(y|x), we can
obtain the ensemble size, which is the number of years of observed
data. We can obtain the corresponding forecasts using the inverse
of NQT through remapping random variables U and V from the nor-
mal space.

2.2. The ‘‘Schaake Shuffle”

Using the method described above, we can obtain the condi-
tional probabilistic forecasts that were calculated by raw forecasts
and observed precipitation. For each given canonical event, the
corresponding ensemble member is generated to construct ensem-
ble forecasts by using the ‘‘Schaake Shuffle” (Clark et al., 2004;
Schaake et al., 2007) methodology.

Table 1 shows the ‘‘Schaake Shuffle” procedure for single-time
step canonical events (SCEs). The ‘‘Schaake Shuffle” method
needs two sets of data, which are the observations and ensemble
members. There are three steps: (1) obtaining the ascending
ranks of the observation matrix in each time step; (2) obtaining
the sampled ensemble members for SCEs in ascending order;



Fig. 1. Flowchart showing the main steps of the EPP method.
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and (3) finishing the shuffled ensemble members with the same
ranks as the observations. The y matrix is the final output of the
EPP.

The composite time step canonical events (CCEs) contain multi-
day precipitation (or temperature) information. Expressions for the
CCEs and the shuffled ensemble members for use in the CCE for-
mula are as follows:

Ce;j ¼ 1
n

Xn

k¼1
ae;k

yi;j ¼
xe;Ri;j � ai;j
1
n

Pn
k¼1ae;k
where i (1–365 days) and k refer to time; j refers to each ensemble
member; Ri,j refers to the rank of the i,j-th observation; e refers to
the canonical event; a refers to the observed precipitation; C refers
to the CCE of the observations; x refers to the sampled ensemble
members for CCEs in ascending order; and y refers to the shuffled
ensemble members for CCEs redistributed into individual time
steps according to observed ratios.

Table 2 shows an illustration of the ‘‘Schaake Shuffle” procedure
for the CCEs. Similar to the SCEs, the CCEs also require observations
and ensemble members. There are three steps: (1) generating the
CCEs using Eq. (1) and ranking them; (2) re-ordering the sampled
ensemble members for the CCEs in an ascending order; and (3)
Redistributing the values of shuffled ensemble members for the



Table 1
Illustration of ‘‘Schaake Shuffle” for single-time step canonical events (SCEs), where a is the observed precipitation; x is the sampled ensemble members for SCEs in ascending
order; and y is the shuffled ensemble members with the same ranks as the observations.

Observation matrix Sampled ensemble members for SCEs
in ascending order

Shuffled ensemble members with the same
ranks as the observations

Year Time Step 1 Time Step 2 Ranks Ens. # Time Step 1 Time Step 2 Ens. # Time Step 1 Time Step 2

2001 a1,1 a2,1 5 6 1 x1,1 x2,1 1 y1,1 = x1,5 y2,1 = x2,6
2002 a1,2 a2,2 4 7 2 x1,2 x2,2 2 y1,2 = x1,4 y2,2 = x2,7
2003 a1,3 a2,3 1 4 3 x1,3 x2,3 3 y1,3 = x1,1 y2,3 = x2,7
2004 a1,4 a2,4 6 2 4 x1,4 x2,4 4 y1,4 = x1,6 y2,4 = x2,2
2005 a1,5 a2,5 7 1 5 x1,5 x2,5 5 y1,5 = x1,7 y2,5 = x2,1
2006 a1,6 a2,6 3 5 6 x1,6 x2,6 6 y1,6 = x1,3 y2,6 = x2,5
2007 a1,7 a2,7 2 3 7 x1,7 x2,7 7 y1,7 = x1,2 y2,7 = x2,3

Step1 Step2 Step3
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CCEs into individual time steps according to the observed ratios
using Eq. (2). The y matrix is the final output of the EPP.

The order of separating the CCEs into each time step is deter-
mined according to the order of the correlation coefficients (obser-
vations and forecast), which is from small to large, or the order of
the lead time, which is from the future to the present.

2.3. The distributed hydrology model

The distributed time-variant gain model (DTVGM) (Xia et al.,
2005; Wang et al., 2009) is used in this study and was established
on the basis of the geographic information system (GIS) and
Remote sensing (RS) information. Based on the GIS and RS, the
model extracts land surface information, such as the slope, flow
direction, flow path, river networks, watershed boundaries and
land cover (Li et al., 2009b; Ma et al., 2014). The water balance pro-
cedure can be expressed by Eq. (3):

Pi þWi ¼ Wiþ1 þ g1
Wui

WMuCj

� �g2

Pi þWui � Kr þ f c �
Wgi

WMg

� �

þ Epi �
Wui

WMuCj

� �
ð3Þ

whereW is the soil moisture (mm);Wu is the upper soil moisture at
the sub-basin (mm); Wg is the lower soil moisture at the sub-basin
Table 2
Illustration of the ‘‘Schaake Shuffle” procedure for composite time step canonical events (

Observation matrix

Year Time Step 1 Time Step 2 Time Step 3 CCEs

2001 a1,1 a2,1 a3,1 C1,1 = (a1,1 + a2,1)/2 C2,1 = (
2002 a1,2 a2,2 a3,2 C1,2 = (a1,2 + a2,2)/2 C2,2 = (
2003 a1,3 a2,3 a3,3 C1,3 = (a1,3 + a2,3)/2 C2,3 = (
2004 a1,4 a2,4 a3,4 C1,4 = (a1,4 + a2,4)/2 C2,4 = (
2005 a1,5 a2,5 a3,5 C1,5 = (a1,5 + a2,5)/2 C2,5 = (
2006 a1,6 a2,6 a3,6 C1,6 = (a1,6 + a2,6)/2 C2,6 = (
2007 a1,7 a2,7 a3,7 C1,7 = (a1,7 + a2,7)/2 C2,7 = (

Step 1

Shuffled ensemble members for CCEs redistributed into individual time steps accordi

Ens. # Time Step 1

1 y1,1 = x1,5 * a1,1/C1,1
2 y1,2 = x1,4 * a1,2/C1,2
3 y1,3 = x1,1 * a1,3/C1,3
4 y1,4 = x1,6 * a1,4/C1,4
5 y1,5 = x1,7 * a1,5/C1,5
6 y1,6 = x1,3 * a1,6/C1,6
7 y1,7 = x1,2 * a1,7/C1,7

Step 3
(mm); WMu is the upper saturated soil moisture (mm); u is the ‘up-
per’ soil; WMg is the lower saturated soil moisture (mm); fc is the
soil permeability coefficient (mm/h); g1 and g2 are parameters
(0 < g1 < 1, 0 < g2); g1 is the runoff coefficient when the soil is satu-
rated; g2 is the soil moisture parameter; C is the land cover param-
eter; Kr is the subsurface runoff coefficient; Kg is the groundwater
runoff coefficient; Ke is the evaporation coefficient; i is a period of
time; and j is the hydrological unit number.

DTVGM evaluations can use three time scales: the monthly
scale, daily scale, and hourly scale. An appropriate time scale
should be chosen according to need when using the model. A daily
scale is used in this study.

DTVGM used the degree–day method to compute the depth of
snowmelt (Bormann et al., 2014). The snow melted water was
added to precipitation in DTVGM.

S ¼
a � ðTa � TmÞ Ta > Tm and a � ðTa � TmÞ < Hs

Hs Ta > Tm and a � ðTa � TmÞ > H

0 Ta > Tm

8><
>: ð4Þ
a ¼ 11 � qs

qw

where S is melted water (mm), a is degree-day factor (DDF)
(mm/�Cd), Ta is average air temperature (�C), Tm is the critical
CCEs) (Tao et al., 2014).

Sampled ensemble members for CCEs in
ascending order

Ranks Ens. # Time Step 1 + 2 Time Step 1 + 2 + 3

a1,1 + a2,1 + a3,1)/3 5 6 1 x1,1 x2,1
a1,2 + a2,2 + a3,2)/3 4 7 2 x1,2 x2,2
a1,3 + a2,3 + a3,3)/3 1 4 3 x1,3 x2,3
a1,4 + a2,4 + a3,4)/3 6 2 4 x1,4 x2,4
a1,5 + a2,5 + a3,5)/3 7 1 5 x1,5 x2,5
a1,6 + a2,6 + a3,6)/3 3 5 6 x1,6 x2,6
a1,7 + a2,7 + a3,7)/3 2 3 7 x1,7 x2,7

Step 2

ng to observed ratios

Time Step 2 Time Step 3

y2,1 = x1,5 * a2,1/c1,1 y3,1=x2,6 * a3,1/c2,1
y2,2 = x1,4 * a2,2/c1,2 y3,2 = x2,7 * a3,2/c2,2
y2,3 = x1,1 * a2,3/c1,3 y3,3 = x2,4 * a3,3/c2,3
y2,4 = x1,6 * a2,4/c1,4 y3,4 = x2,2 * a3,4/c2,4
y2,5 = x1,7 * a2,5/c1,5 y3,5 = x2,1 * a3,5/c2,5
y2,6 = x1,3 * a2,6/c1,6 y3,6 = x2,5 * a3,6/c2,6
y2,7 = x1,2 * a2,7/c1,7 y3,7 = x2,3 * a3,7/c2,7



Table 3
Description of the common verification measures used in the study. The x is observed data, y is simulated data, and z is benchmark data.

Verification Measures Formulas Descriptions Perfect/
No skill

Nash-Sutcliffe efficiency value
(NSE) NSE ¼ 1�

PN

i¼1
ðxi�yiÞ2PN

i¼1
ðyi��yÞ2

Assessing the predictive power of hydrological models;
quantitatively describe the accuracy between forecasts
and observations

1/60

NSE calculated on inverse
transformed flows NSEI ¼ 1�

PN

i¼1
1
xi
� 1

yi

� �2

PN

i¼1
1
yi
� 1

yi

� �2

NSE calculated on benchmark
model NSEB ¼ 1�

PN

i¼1
ðxi�yiÞ2PN

i¼1
ðyi�ziÞ2

Root Mean Square Error (RMSE) RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðxi � yiÞ2

q
Association of forecasts and observations over a long
time period

0/1

Pearson Correlation Coefficient
R ¼

PN

i¼1
ðxi��xÞðyi��yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðxi��xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðyi��yÞ2

q Linear dependency between forecasts and observations 1/60

rBias rBias ¼ PN
i¼1xi=

PN
i¼1yi � 1

� �
� 100% Relative difference between forecasts and observations 0/1

BSS BS ¼ flagðy; tÞ � 1
n

Pn
i¼1flagðxi; tÞ

� �2

flagðx; tÞ ¼
1; x P t
0; x < t

8<
: BSS ¼ 1� BS

BSref

� �
; xj < y < xjþ1

Brier Skill Score. t is the threshold. Ref. is a reference
forecast (e.g., climatology)

1/0

CRPSS CRPS ¼ Pj�1
i¼1P

2
i � ðxiþ1 � xiÞ þ P2

j � ðy� xjÞ þ ðPj � 1Þ2 � ðxjþ1 � yÞ
þPn

i¼jþ1ðPi � 1Þ2 � ðxiþ1 � xiÞCRPSS ¼ 1� CRPS
CRPSref

� �
; xj < y < xjþ1

Continuous Rank Probability Skill Score. P is the
probability that was forecast.

1/0
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temperature of snowmelt, qs is snow density, qw is water density, Hs

is snow cover depth.
DTVGM used the kinematic wave model for routing (Ye et al.,

2013). The flow direction and serial number of sub-basins were
defined by an automatic drainage network extraction method (Ye
et al., 2005). The routing is calculated from upstream to down-
stream on each sub-basin, and to the basin outlet.

2.4. The seamless hydrologic ensemble forecasting

The seamless hydrologic ensemble forecasting is explored
through integrating weather forecasts and seasonal climate predic-
tions (Yuan et al., 2014). Weather forecasts are from GEFS and cli-
mate predictions are from CFSv2. The integrating method is to use
the EPP based on canonical events. There are four steps: (1) convert
the raw GEFS and CFSv2 time series into daily time series; (2) com-
bine the raw GEFS (1st –8th day) data and the raw CFSv2 (9th-)
data to form a new forecast data (GEFS + CFSv2); (3) Use the
GEFS + CFSv2 data to design the canonical events for the EPP; (4)
the final ensemble forecasts from the EPP was then used as inputs
to the hydrological model.

2.5. Model performance measures

To evaluate the daily scale EPP and DTVGM, we considered the
following model performance measures (see Table 3): the Nash-
Sutcliffe efficiency value (NSE) (Nash and Sutcliffe, 1970); the
NSE value calculated for the inverse transformed flows (NSEI)
(Pushpalatha et al., 2012); the NSE value calculated for the bench-
mark model (NSEB) (Schaefli and Gupta, 2007); the correlation
coefficient (R); the relative bias (rBias); the Root Mean Square Error
(RMSE); the Brier Skill Score (BSS) and the Continuous Rank Prob-
ability Skill Score (CRPSS) (Brown et al., 2010). The BSS and CRPSS
scores are used to evaluate ensemble forecast performance.

We denote xi and yi as the forecast and the corresponding obser-
vation, respectively, at time i, while N is the number of pairs of
forecast and observations. Similarly, x and y are denoted as the
forecast average and the observation average, respectively.

To evaluate the reliability of the predictive distributions, the
rank histogram (Hamill, 2001; Yuan et al., 2013) is used in this
study to diagnose whether the spread of the ensembles is satisfac-
tory for forecasts. A perfect rank histogram would show observa-
tions evenly spread across equal probability bins. The perfect
rank value is 1/(n + 1), where n is the number of ensemble
members.
3. Data and study domain

3.1. The Yalong River basin

The Yalong River is the largest tributary of the Jinsha River in
the southern region of the Tibetan Plateau. The Yalong River
(25�12–34�9N, 96�47–102�42E) runs from the northwest to the
southeast, with an approximate total basin area of 136,000 km2

and mainstream length of 1571 km. The maximum altitude is
greater than 6000 m, and the minimum altitude is less than
1000 m (Fig. 2). The mean annual temperature is approximately
2.5 �C. The mean annual precipitation is approximately 600–
1800 mm, decreasing from the south to the north. The average
annual estuarine discharge is 1860 m3/s. The major vegetation
types are forest, shrub and meadow.
3.2. Observed precipitation and discharge data

The observed precipitation (Shen et al., 2010) used in this study
is 0.5-degree gridded data between 1957 and 2009 that were gen-
erated from the 2416-gauge national network. There are 76 grids
in the Yalong River basin (Fig. 2). We collected 32 years (1980–
2011) of daily discharge data for the Ganzi station, which is located
in the middle reach of the Yalong River basin.
3.3. The NCEP Global Ensemble Forecast System (GEFS) and Climate
Forecast System, Version 2 (CFSv2) forecasts

Data from the GEFS and CFSv2 were used as weather and cli-
mate forecast data in this study. The GEFS dataset was provided
by NOAA’s National Centers for Environmental Prediction (NCEP)
(Hamill et al., 2013). The real-time forecasts and the reforecasts
were both generated using the GEFS model version 9.0.1. For a
detailed description, readers are referred to http://www.emc.
ncep.noaa.gov/GFS/impl.php. The Reforecast V2 dataset consists
of an 11-member ensemble forecasts produced every day,

http://www.emc.ncep.noaa.gov/GFS/impl.php
http://www.emc.ncep.noaa.gov/GFS/impl.php


Fig. 2. The illustration of the Yalong River basin.
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beginning with 00 UTC initial conditions, from December 1984 to
the present. The horizontal resolution of the GEFS forecasts is
T254 out to 8 days and T190 from 8 to 16 days. Data are saved at
this resolution from day +8 to day +16, which is the end of the GEFS
integration period. In this study, the first 8-day precipitation
reforecasts, which has a higher spatial resolution, are used. The
data format is Grib2 for each day of 1.0�� 1.0� global coverage
(360 � 181).

The Climate Forecast System, Version 2 (Saha et al., 2014;
http://cfs.ncep.noaa.gov) was developed by the Environmental
Modeling Center at NCEP. It is a fully coupled model representing
the interaction between the Earth’s atmosphere, oceans, land and
sea ice. This model offers hourly data from around the world for
many variables, with a horizontal resolution of 0.5 degrees. CFSv2
uses the latest scientific approaches for collecting or assimilating
observations from many data sources: surface observations, upper
air balloon observations, aircraft observations, and satellite obser-
vations. CFSv2 reforecasts have been extensively used for hydro-
logic applications (Yuan et al., 2011, 2013). The daily data were
used in this study. CFSv2 has updated data on the website from
1985 to the present, with 9-month hindcasts were initiated from
every 5th day and run from all 4 cycles of that day, at a spatial res-
olution of 0.938� by 0.938�.

We used a common period (1985–2009) of GEFS and CFSv2
reforecast datasets for running the hydrological model. Both GEFS
and CFSv2 reforecast datasets are bi-linearly interpolated to 0.5
degrees over the Yalong River basin.
4. Results and discussion

4.1. Evaluation of the ensemble means of the GEFS and CFSv2
precipitation forecasts

We evaluated the ensemble means of the GEFS and CFSv2 pre-
cipitation forecasts over the 76 grids within the Yalong river basin
(Fig. 2) based on different canonical events. The two sets of canon-
ical events for GEFS and CFSv2 are indicated in Table 4, respec-
tively. The GEFS canonical events are daily events (Liu et al.,
2013), while the CFSv2 canonical events are multi-day cumulative
events starting from the first day.

Figs. 3 and 4 show the correlation coefficients between the
observations and the GEFS and CFSv2 forecasts for all canonical
events for each day of the year (vertical axis). The horizontal axis
denotes different canonical events. Each of subplots within the fig-
ures are results for all 76 grids over the Yalong River basin. The
orange to red colour in the plots indicates a high correlation,
whereas the blue colour indicates a low correlation. Most of corre-
lation coefficients are greater than 0.7, which indicates that the
precipitation forecasts have meaningful skill. When comparing

http://cfs.ncep.noaa.gov


Fig. 3. The correlation coefficients between the raw GEFS forecast and observations in the given canonical events.

Table 4
Two canonical events to evaluate GEFS and CFSv2.

GEFS: 1986–2009
Events 1 2 3 4 5 6 7 8
Start 1 2 3 4 5 6 7 8
End 1 2 3 4 5 6 7 8

CFSv2: 1983–2009
Events 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Start 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
End 1 2 3 4 5 6 7 8 9 10 14 18 22 26 30

Fig. 4. The correlation coefficients between the raw CFSv2 forecast and observations in the given canonical events.
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Table 5
Different scenarios of canonical events in GEFS. ‘�1’ means using 1 day of observed data.

GEFS (1986–2009) Events 1 2 3 4 5 6 7 8

Scenario 1: daily SCEs Start 1 2 3 4 5 6 7 8
End 1 2 3 4 5 6 7 8

Scenario 2: cross CCEs Start 1 1 1 2 3 4 5 6
End 1 2 3 4 5 6 7 8

Scenario 3: from 1st CCEs Start 1 1 1 1 1 1 1 1
End 1 2 3 4 5 6 7 8

Scenario 4: using 1 day of observed data CCEs Start �1 �1 �1 �1 �1 �1 �1 �1
End 1 2 3 4 5 6 7 8

Scenario 5: using 3 day of observed data CCEs Start �3 �3 �3 �3 �3 �3 �3 �3
End 1 2 3 4 5 6 7 8

Scenario 6: using 5 day of observed data CCEs Start �5 �5 �5 �5 �5 �5 �5 �5
End 1 2 3 4 5 6 7 8
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individual grids, we note that the correlation coefficients indicate
that the accuracy of the ensemble mean forecasts are decreasing
with the lead time. Both GEFS and CFSv2 have higher correlations
in cool seasons than in warm seasons for the upstream grids (1–
24). For the GEFS daily precipitation forecasts, notable accuracy
is indicated mostly for the first few days (Fig. 3). In the winter,
the accuracy of daily forecasts can last up to approximately one
week. Forecasts of CFSv2 cumulative precipitation have notable
accuracy (i.e., the correlation coefficient values of >0.5) for even
day 30 for almost all of the grids and for some of the seasons
(Fig. 4).
4.2. Schemes for designing canonical events

The EPP calculations were based on canonical events. Canonical
events can be designed as different combinations, which may
result in different outcomes. We designed six different scenarios
for the canonical events for GEFS as shown in Table 5.

In the six scenarios, the length of time for each event was suc-
cessively extended. Notably, in the fourth scenario, this study
included the historical observations of precipitation information
in each event to improve the accuracy of the pre-process forecast.
Fig. 5 shows the historical periods and future periods used in the
improved canonical events in this study. As different canonical
events under different scenarios can lead to different forecasts,
we chose the most satisfactory results from those scenarios as
the input of hydrological model.

In this study, most of the canonical events are CCEs. The CCEs
needed to be divided into daily precipitation using the ‘‘Schaake
Shuffle” method. The order of splitting the CCEs into each daily
time step is performed according to the ascending order of the cor-
relation coefficients between observations and forecasts for the
Fig. 5. The data window for a canonical event, where Nh is the number of data
points in the history period; Nf is the number of data points in the future period; Nw

is the number of data points of a canonical event; Ph is precipitation in the history
period; and Pf is precipitation in the future period.
canonical events, which goes from the event with the smallest cor-
relation coefficient to the largest. We provided a comparison of the
two schemes below to determine which order of splitting CCEs
results in greater improvement for the precipitation forecasts.

Scheme1: The order of splitting CCEs is performed according to
the ascending order of the correlation coefficients of the canon-
ical events between observations and the raw forecast. We first
split the canonical event with the smallest correlation coeffi-
cient into daily precipitation using Eq. (2). Then, we split the
event with the next higher correlation coefficient. The following
gives an example: Scenario 3 shown in Table 5, assuming the
correlation coefficient of the eight events is [0.9, 0.8, 0.6, 0.7,
0.2, 0.4, 0.3, 0.5]. First, we split Event 5, which has the smallest
correlation coefficient (0.2), using Eq. (2). Event 5 is the average
forecast of day 1 to day 5. Then, we rank the ensemble members
of the fifth day forecast (y5,j). Upon completion of the initial
event, the evaluation of the next event will be successively per-
formed using the same method.
Scheme2: The order of splitting CCEs is performed according to
the lead time, which is from the future to the present. We first
split the canonical event with the longest lead time into daily
precipitation according to Eq. (2). Then, we split the canonical
event with the penultimate lead time. The calculation method
is similar to Scheme 1.

Fig. 6 displays the RMSE of the rank histograms in six canonical
event scenarios for those two schemes. The perfect RMSE is 0. Each
figure shows the RMSE of 76 grids (vertical axis) in 8 days (hori-
zontal axis).

When comparing individual schemes, we note that the RMSE of
the rank histogram indicates that the reliability of ensemble fore-
casts is different for the different canonical event scenarios. Fig. 7
shows the RMSE mean of different scenarios. As the canonical
events in scenario 1 are SCEs, the RMSE has the highest value,
which indicates that the SCEs are the most unreliable canonical
events. The CCEs can generate more reliable ensemble forecasts
than the SCEs, especially when the historical precipitation observa-
tions are included in the event (Scenario 4). However, the RMSEs
for Scenarios 5 and 6 are not substantially different than Scenario
4, which indicates that using the first day of historical observed
data is sufficient. The main explanation for this is because we
would sacrifice useful forecast information if we add too much past
observation data.

When comparing the two schemes, the RMSE of Scheme 2 is
smaller than Scheme 1 (Fig. 7), which indicates that Scheme 2 is
better than Scheme 1 (i.e., the order of splitting CCEs into daily
time step is better according to the order of lead times than accord-
ing to the order of correlation coefficients).



Fig. 6. The RMSE of rank histograms in six canonical event scenarios for two schemes.
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Fig. 7. The RMSE average of the rank histograms in six scenarios for two schemes.
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4.3. Verification of the EPP ensemble precipitation forecasts

Through the analysis described above, we found that the best
scenarios for the canonical event is Scenario 4 in Scheme 2. There-
fore, we selected this scenario to verify the EPP ensemble precipi-
tation forecast. The results indicate that the pre-processing of raw
precipitation forecasts has resulted in significant improvement in
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Fig. 8. The rank histogram of the 001 grid for Scenario 4 in Scheme 2.
precipitation forecasts. The Nash-Sutcliffe efficiency value has
been substantially improved from 0.1 to 0.4 for all grids. The corre-
lation coefficients have been increased slightly for lead times
longer than four days in the southern area of the basin. In addition,
the bias indicates a notable decline from 1 to 0.1 or less. Similarly,
the RMSE values are also reduced.

Fig. 8 is a rank histogram of grid 001 for Scenario 4 in Scheme 2.
It can be used to evaluate the reliability of the EPP ensemble pre-
cipitation forecasts. Other grids display similar rank histograms
as grid 001 and are not shown here. The rank value in the figure
is the frequency of the observed values falling within the rank
interval. The perfect rank value is 100/24, as shown by the blue line
on Fig. 8. The histogram shows that the rank histogram is relatively
flat and that the RMSE value is 0.2687, which indicates that the EPP
result is satisfactory and that the ranks are uniform.
4.4. Calibration and validation of the DTVGM

To demonstrate the usefulness of the pre-processed GEFS
and CFSv2 ensemble precipitation forecasts, we evaluated those
forecasts by applying them to a hydrological model, DTVGM. In
order to calibrate and validate the DTVGM, we obtained 30 years
(1980–2009) of observed precipitation to drive the model. We
selected the Ganzi hydro-station (31.6186N, 99.9673E, Fig. 2) to
verify the streamflow simulation based on observed precipitation.
The total drainage area above the station is 32,575 km2. The cali-
bration period is 1980–1999, the validation period is 2000–2009.

A manual calibration method was used to calibrate the model
parameters, because automatic calibration would be too time con-
suming as the distributed hydrological model take a long time to
run. During the manual calibration, the model was run a few times
to ensure that NSE, R and rBias were good.

The R, NSE, NSEI, NSEB, rBias and RMSE were shown in Table 6.
When computing NSEB, the daily discharge averaged over the
1980–2009 period was treated as the benchmark daily discharge.
All performance indices were reasonably good for a river basin
which is humid and exhibits a highly seasonal streamflow pattern
(Moriasi et al., 2007). The NSE values of the daily simulated
streamflow are close to 0.8 for both the calibration and validation
periods, which surpassed the daily streamflow forecast skill stan-
dard of 0.6 or above, according to Streamflow Forecasting Manual
issued by Chinese Ministry of Water Resources (MWR, 2002). The



Table 6
The performance indices of DTVGM discharge simulation in Ganzi station.

R NSE NSEI NSEB rBias RMSE

Calibration (1980–1999) 0.899 0.805 0.619 0.455 �4.2% 103.206
Validation (2000–2009) 0.895 0.798 0.739 0.466 �4% 99.831
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NSEI values are in the 0.6–0.7 range, which indicate that low flow
simulations are also reasonable for both the calibration and valida-
tion periods, even though the NSEI for measuring the performance
of low flows is lower than the NSE value for measuring high flows.
The NSEB values are 0.455 and 0.466 (>0) for the calibration and
validation periods, respectively, which suggest that the model sim-
ulated daily streamflow are much better than the long-term aver-
age daily discharge. The rBias values are �4.2% and �4%, which
indicate an under-bias in streamflow simulations. The slight nega-
tive rBias value could be due to under-reported precipitation,
model structural error or improper model parameters (Zhao
et al., 2011), but the under-bias are still within acceptable range
of 5% or less (i.e., >�5% and <5%). Figs. 9 and 10 display the daily
precipitation-discharge hydrographs in the calibration period and
the validation period. We note that the simulated discharge values
(i.e., the black dash line) are generally close to the observations
(i.e., the solid red line) in all periods. Those results indicate that
DTVGM is an acceptable (Moriasi et al., 2007) model for hydrolog-
ical simulation of this basin.
Fig. 9. Daily discharge hydrograph in

Fig. 10. Daily discharge hydrograph i
4.5. Verification of the ensemble means of the streamflow forecasts

We verified the ensemble means of the streamflow forecasts
generated by DTVGM, driven by pre-processed GEFS and CFSv2
precipitation forecasts. Five sets of precipitation data are tested
as inputs to DTVGM, including the observed precipitation (OBS),
precipitation as used in the ESP framework (ESP), the pre-pro-
cessed GEFS precipitation forecasts (GEFS), the pre-processed
CFSv2 precipitation forecasts (SFSv2) and the combined pre-pro-
cessed precipitation forecasts (GEFS + CFSv2). The GEFS + CFSv2
precipitation data has integrated GEFS for the first 7 days, and
CFSv2 from day 8 to one month into the future. In the ESP frame-
work, historical observed precipitation data for forecast window
from each year of the observed data period are used as ensemble
precipitation members and are used to drive DTVGM.

Fig. 11 shows the daily, weekly and monthly model perfor-
mance indices of the streamflow simulation. Comparing the daily
forecasts, we note that the performance indices indicate that the
accuracy of streamflow forecasts decreased with lead time. The
calibration period (1980–1999).

n validation period (2000–2009).



Fig. 11. Daily, weekly and monthly model performance indices of the discharge simulations.

Fig. 12. Brier skill score (BSS) and continuous ranked probability skill score (CRPSS) of the ensemble discharge forecasts using different precipitation forecast (during 1999–
2008). The different colors of bars indicate different precipitation forecast.
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integrated GEFS and CFSv2 forecast precipitation can achieve the
best streamflow forecast. The ESP performance is the weakest as
it correspond to the smallest NSE and correlation values for
streamflow simulations. The GEFS performance indices are higher
than CFSv2 performance indices for the first few days. The GEFS
+ CFSv2 precipitation forecast also has high performance indices
for weekly and monthly streamflow forecasts.
4.6. Ensemble verification of the streamflow forecasts

Fig. 12 displays the Brier skill score (BSS) and the continuous
ranked probability skill scores (CRPSS) of the ensemble discharge
forecasts relative to climatology using different precipitation fore-
casts (during 1999–2008). All forecasts exhibit quite significant
skills compared to climatology, especially for lead times of day 1
to day 3. Using different precipitation forecasts as inputs, the per-
formance indices of the ensemble streamflow forecasts are similar
to the performance indices for the ensemble mean forecast in Sec-
tion 4.5. The GEFS and GEFS + CFSv2 precipitation forecasts also
have high performance indices when the ensemble streamflow
forecasts were evaluated over the two-week period. The ESP per-
formance indices are the worst with the smallest NSE values and
correlation coefficients.
5. Conclusions

In this study, we presented the EPP and ‘‘Schaake Shuffle” meth-
ods in the context of canonical events in detail. Six canonical event
scenarios and two schemes for designing canonical event were
evaluated to determine suitable canonical event setups. We also
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tested the combined pre-processed GEFS and CFSv2 precipitation
forecasts as inputs to the DTVGM model and obtain a seamless
hydrological ensemble forecast for the Yalong River basin.

The performance indices indicate that the CCEs that include a
day with observed precipitation data prior to day 1 can help
extract more useful information. We also found that the optimal
order for ‘‘Schaake Shuffle” to split CCEs into daily time step is
the one based on the order of the lead time from the future to
the present.

The streamflow forecast results are the best when the combined
GEFS + CFSv2 precipitation forecasts are used. The resulting seam-
less streamflow forecasts have longer lead times and higher accu-
racy than the forecasts based on the original CFSv2 precipitation
forecasts and the ESP streamflow forecasts.

The EPP method used in this study was based on a parametric
approach. We used the Gamma distribution to describe the daily
precipitation amounts. Although this distribution was tested, the
choice and calibration of this distribution may introduce some
uncertainty in the results. Alternative approaches are the non-
parametric ones (Van Steenbergen et al., 2012) and further studies
in the future should consider those approaches. Another potential
issue with the setup of the canonical events in this study is that the
data we used contained only six possible extreme events. The opti-
mal events we found may be the local optimum instead of the glo-
bal optimum. A more comprehensive evaluation that include other
strategies for choosing the canonical events (for example, choosing
canonical events based information theory) should also be consid-
ered in future studies.
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