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Abstract    Sensitivity analysis (SA) has been widely used to screen out a small number of sensitive parameters for model
outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the
parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation
function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used
because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research
has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather
Research and Forecasting (WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple
model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results
showed that five parameters (P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two
parameters (P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between
P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters
for precipitation, and P10 (the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation
and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation
accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and
heavy rain.
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1.    Introduction
Mesoscale numerical weather prediction (NWP)models have
become indispensable tools to investigate complex weather
processes. However, the outputs of NWPmodels usually con-
tain errors or biases compared with real weather data (Glahn
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and Lowry, 1972; Carter et al., 1989; Allen et al., 2000; Or-
rell et al., 2001; Danforth et al., 2007). Three factors affect
the simulation error of a model: the accuracy of the initial
and boundary conditions, the realism of the model physical
process representations, and the reasonableness of the model
parameters.
Errors in initial conditions were identified in the early stage

of NWP model construction (Charney, 1951; Lorenz, 1963).
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Multiple case studies showed that model prediction accuracy
was very sensitive to errors in initial values (Nitta and Ogura,
1972; Zhang and Fritsch, 1986; Zou and Kuo, 1996; Charl-
ton et al., 2004). In addition to initial value error, the effect
of lateral boundary error on NWP model forecasting has also
been studied (Bontoux et al., 1980; Collins and Allen, 2002).
Much effort has been focused on developing data assimila-
tion techniques to reduce errors in initial and lateral boundary
conditions. Common data assimilation methods, including
the ensemble Kalman filter, three- and four-dimensional vari-
ational assimilation, and the ensemble transformed Kalman
filter, have been packaged into the NWP model to improve
forecasting accuracy (Barker et al., 2004; Wang et al., 2008;
Huang et al., 2009; Jia et al., 2013; Liu et al., 2013; Sun et
al., 2015).
Along with the increasing number of observational tools

(e.g., electronic instruments, radiosonde, radar, and satel-
lites), people have expanded their understanding of real
weather physical processes. Moreover, modular structural
description of physical processes promotes further develop-
ment of the NWP model. The model divides the integrated
physical processes into multiple single sub-physical pro-
cesses, each of which is described using a single sub-model
developed by groups with different expertise. However,
some gaps still exist in the understanding of certain physical
mechanisms and the descriptions of the sub-grid processes,
and therefore the sub-models are usually represented by
different parameterization schemes (Chou and Suarez, 1994;
Walko et al., 1995; Hong and Pan, 1996; Mlawer et al., 1997;
Chen and Dudhia, 2001; Grell and Dévényi, 2002; Hong et
al., 2004; Kain, 2004; Kusaka and Kimura, 2004; Hong and
Lim, 2006; Pleim, 2006; Thompson et al., 2008; Chen et al.,
2011). The Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) is a representation of NWP models
with a modular structure and has multiple parameterization
schemes to describe various physical modular processes. The
influence of the choice of different parameterization schemes
for the same sub-physical process on the predictive results of
the WRF model has been widely studied (Ruiz et al., 2007;
Gilliam and Pleim, 2010; Kim et al., 2011; Nasrollahi et al.,
2012; Chen et al., 2014).
The specification of NWPmodel parameters is another sig-

nificant factor impacting model performance (Qiu and Chou,
1988). There are various ways to estimate parameter values.
For some parameters (e.g., density, acceleration of gravity)
that have specific physical meanings, the values are identi-
fied by observational experiments or theoretical calculation.
However, the true values of most parameters are unknown
and hard to obtain. Some of these parameters have been
loosely calibrated by “trial and error” (Allen, 1999; Knutti et
al., 2002), which is subjective and constrained by the expe-
rience of the researchers. A more objective parameter spec-
ification approach is to use an inverse method that fits the

simulated output to the corresponding observation by repeat-
edly adjusting the model parameter values. The advantage
of the inverse method is its ease of implementation; it con-
siders the complex model as a “black box” during parameter
optimization. Some inverse methods, such as Markov chain
Monte Carlo, genetic algorithms, and multiple very fast sim-
ulated annealing, have been widely used to estimate parame-
ters for NWP and climate models (Jackson et al., 2004; Niska
et al., 2005; Villagran et al., 2008; Medvigy et al., 2010;
Solonen et al., 2012; Yang et al., 2012). Data assimilation,
as a type of inverse method, has also been used to estimate
the parameter values of climate models (Annan et al., 2005;
Kondrashov et al., 2008; Schirber et al., 2013). However, the
disadvantage of inverse methods is that they require a large
number of model runs to identify the optimal parameter val-
ues, especially for models with dozens of parameters. When
the inverse method is used to estimate the parameters of the
complex NWP model because of its high computation cost
and many adjustable parameters, the computations encounter
bottlenecks. Therefore, identifying a small number of impor-
tant parameters to be optimized greatly reduces the number
of model runs needed for parameter estimation.
Sensitivity analysis (SA) is commonly used to identify a

small number of important parameters (also called sensitive
parameters) that exert a significant impact on model outputs
(Saltelli et al., 2004). Many parametric SA studies have been
carried out on the NWP and other climate models (Gilmore
et al., 2004; Liu et al., 2004; Hong et al., 2006; Bellprat et al.,
2012; Johannesson et al., 2014; Zou et al., 2014; Qian et al.,
2015; Yang et al., 2015). These have usually been classified
into three cases. (1) The model simulations for parametric
SA experiments were implemented based on a low resolu-
tion of approximately 50 to 100 km (e.g., Liu et al., 2004;
Bellprat et al., 2012; Johannesson et al., 2014). For high-res-
olution model simulations (e.g., several kilometers), conven-
tional quantitative SA methods, which require tens of thou-
sands of model runs, are not suitable for parametric SA ex-
periments. Therefore, more effective SA methods (i.e., qual-
itative SA methods) are needed to conduct parametric SA ex-
periments. (2) The adjustable parameters used for SA exper-
iments were derived from a single physical process scheme
(e.g., Gilmore et al., 2004; Hong et al., 2006; Zou et al., 2014;
Yang et al., 2015), and therefore the analyzed model parame-
ters were fewer (usually five to eight parameters). Fewer SA
studies were therefore required to conduct parametric screen-
ing experiments for all physical processes in the NWPmodel.
(3) The three steps for conducting an SA experiment include
input parameter sampling, determining the model output er-
rors of all samples, and applying the SAmethod. For a certain
model output variable (e.g., 24-hourly accumulated precipi-
tation), parametric SA experiments were usually conducted
using a single SA method (Di et al., 2015), which might have
introduced some bias into the results for sensitive parameters.
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Therefore, multiple SA methods (especially qualitative and
quantitative methods) are required to obtain more reasonable
results for sensitive parameters. In addition, various model
output-evaluated functions consisting of model output vari-
ables and evaluation metrics are used to conduct SA experi-
ments, making the results for the sensitive parameters more
comprehensive.
This study systematically explores the sensitivity of the

WRF model parameters to high-resolution precipitation
and temperature simulation results using qualitative and
quantitative SA methods. Two metrics, the threat score
(TS) and the root mean square error (RMSE), were used to
evaluate precipitation simulation errors for parametric SA
experiments, and RMSE was also used to evaluate temper-
ature simulation errors. The precipitation output variables
included 6-hourly and 24-hourly accumulated precipitation
amounts, and the temperature output variables included
3-hourly average, 24-hourly average, 24-hourly maximum,
and 24-hourly minimum temperature values. The errors in
the various output variables evaluated by the two metrics and
the various SA methods were combined to conduct various
parametric SA experiments, producing more comprehensive
and reasonable SA results for the WRF parameters.

2.    Methodology

2.1    Model configuration and weather event selection

2.1.1  WRF model configuration for the study area
The Advanced Research Weather Research and Forecasting
model (WRF-ARW) (Skamarock et al., 2008), Version 3.6.1

(http://www2.mmm.ucar.edu/wrf/users), was used in this
study. The study area was the Greater Beijing Area (the d02
area in Figure 1) in North China. To obtain more accurate
simulation results for d02, a two-grid horizontally nested
simulation area was designed. The outer layer (the d01
area in Figure 1) had a horizontal resolution of 9 km and
contained 202×145 horizontal grid cells. The inner layer (the
d02 area in Figure 1) had a horizontal resolution of 3 km and
contained 180×153 horizontal grid cells. Thirty-eight sigma
vertical levels from the surface to 50 hPa were defined for
the outer and inner layers. The uniform time step was 60
seconds.
The physical parameterization schemes used adhered to the

operational setup of the Beijing Meteorological Bureau: the
Monin-Obukhov surface layer scheme (Dudhia et al., 2001),
the Kain-Fritsch Eta cumulus scheme (Kain, 2004), theWSM
six-class Graupel microphysics scheme (Hong and Lim,
2006), the RRTM longwave radiation scheme (Mlawer et
al., 1997), the Dudhia shortwave radiation scheme (Stephens
et al., 1984; Dudhia, 1989), the unified Noah land-surface
model (Chen and Dudhia, 2001), and the Yonsei University
planetary boundary layer scheme (Hong and Pan, 1996).The
Kain-Fritsch Eta cumulus scheme was not applied to the
inner-layer simulation due to its finer spatial resolution of 3
km; however, it was used for the outer-layer simulation with
a spatial resolution of 9 km.
Meteorological data, including surface and radiative flux

data with a Gaussian T382 spatial resolution and 6-hour
interval and three-dimensional pressure level data with
0.5° spatial resolution and a 6-hour interval derived from
Climate Forecast System Reanalysis data (CFSR, http://no-
mads.ncdc.noaa.gov/data.php?name=access#cfsr),       were

Figure 1            Two-grid simulation domain, with the outer layer (d01) being North China and the inner layer (d02) being the Greater Beijing Area.
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used to drive the WRF model as initial and lateral boundary
fields.

2.1.2  Selection of rainy and sunny events
To obtain more reasonable parametric SA results for theWRF
model, rainy and sunny events were selected to conduct para-
metric SA experiments for precipitation and temperature, re-
spectively. Figure 2 shows the grid-averaged daily accumu-
lated precipitation amounts for the Greater Beijing Area in
the summer season (June, July, and August) from 2008 to
2010. As indicated by the boxes in Figure 2, nine rainy events
(marked as events (a)–(i)) and nine rainless events (also called
sunny events, marked as events (a)–(i)) were simulated to an-
alyze the parameter sensitivity of the WRF model to precipi-
tation and 2-meter air temperature, respectively. Each of the
18 events spanned two days. A complete run of the WRF
simulation for the nine events would have consumed approx-
imately 400 CPU hours; hence, it was impractical to conduct
the tens of thousands of WRF runs required by regular quan-
titative SAmethods. Therefore, three qualitative SAmethods
that required fewer parameter samples and a quantitative SA

method based on a response surface model were used in this
study to analyze the parametric sensitivity of the highly com-
plex, dynamic WRF model.

2.2    Adjustable parameters in the six physical parame-
terization schemes

Based on the list of adjustable parameters and the parametric
SA results from Di et al. (2015), the most insensitive param-
eter was removed, and a new parameter related to mineral
thermal conductivity was added. The cumulus scheme was
not included in the simulations for the Greater Beijing Area
(the d02 area in Figure 1) in theWRFmodel configuration be-
cause the effects of the cumulus scheme from the outer layer
on simulations of the inner layer are usually weak. Therefore,
the parameter sensitivities from the cumulus scheme were not
considered in the inner-layer simulations. Finally, eighteen
parameters from six physical schemes of the WRF model,
listed in Table 1, were selected to analyze their effects on pre-
cipitation and temperature simulation results over the Greater
Beijing Area.

Figure 2            Grid-averaged daily accumulated precipitation amounts in summer (June, July, and August) from 2008 to 2010 in the Greater Beijing Area. The
nine two-day rainy events are framed by black boxes with solid lines and indexed from (a) to (i). The nine two-day sunny events are framed by black boxes
with dashed lines and marked from (A) to (I).
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Table 1        Adjustable parameters and their variability ranges for the WRF model

Index Scheme Parameter Default Range Description

P1 xka 2.4×10–5 [1.2×10–5, 5×10–5] Parameter for heat/moisture exchange coefficient (sm–2)

P2
Surface layer

(module_sf_sfclay.F) czo 0.0185 [0.01, 0.037] Coefficient for converting wind speed to roughness
length over water

P3 ice_stokes_fac 14900 [8000, 30000] Scaling factor applied to ice fall velocity (s–1)

P4 n0r 8×106 [5×106, 1.2×107] Intercept parameter of rain (m–4)

P5 dimax 5×10–4 [3×10–4, 8×10–4] Limiting maximum value for the cloud-ice diameter (m)

P6

Microphysics
(module_mp_wsm6.F)

peaut 0.55 [0.35, 0.85] Collection efficiency for cloud to rain autoconversion

P7 Short wave radiation
(module_ra_sw.F)

cssca 1×10−5 [5×10–6, 2×10–5] Scattering tuning parameter (m2 kg–1)

P8 Longwave
(module_ra_rrtm.F) secang 1.66 [1.55, 1.75] Diffusivity angle for cloud optical depth computation

P9 hksati 1 [0.5, 2] Multiplier for hydraulic conductivity at saturation

P10 porsl 1 [0.5, 2] Multiplier for the saturated soil water content

P11 phi0 1 [0.5, 2] Multiplier for minimum soil suction

P12 bsw 1 [0.5, 2] Multiplier for Clapp and Hornberger “b” parameter

P13

Land surface
(module_sf_noahlsm.F)

thk0 2 [1, 4］ Thermal conductivity of other minerals

P14 brcr_sbrob 0.3 [0.15, 0.6] Critical Richardson number for the boundary
layer of water

P15 brcr_sb 0.25 [0.125, 0.5] Critical Richardson number for the boundary
layer of land

P16 pfac 2 [1, 3] Profile shape exponent used to calculate the
momentum diffusivity coefficient

P17 bfac 6.8 [3.4, 13.6] Coefficient for Prandtl number at the top
of the surface layer

P18

Planetary Boundary Layer
(module_bl_ysu.F)

sm 15.9 [12, 20] Counter-gradient proportional coefficient of non-local
momentum flux

2.3    Sampling approach

Without information on prior parameter distributions, it was
assumed that the parameters followed a uniform probability
distribution according to maximum entropy or minimum
relative entropy theory (Woodbury and Ulrych, 1993; Hou
and Rubin, 2005). To approximate the parameter prob-
ability distributions, a sampling of the parameter space
was conducted. Many sampling approaches are available,
including Monte Carlo, fractional factorial, full factorial
(Box et al., 2005), Box-Behnken (Box and Behnken, 1960),
central composite (Box and Wilson, 1951), Latin hypercube
(Mckay et al., 2000), symmetric Latin hypercube (Kenny
et al., 2000), and quasi-Monte Carlo (QMC) (Halton and
Smith, 1964; Sobol’, 1967; Caflisch, 1998). However, not all
sampling methods are suitable for uniform sampling of the
high-dimensional parameter space of the WRF model. For
instance, the number of samples required by the full factorial
approach is exponentially proportional to the dimensionality
of the parameter space, which means that the WRF model
with 18 adjustable parameters and 10 intervals in each pa-
rameter range would require 1018 samples to approximate
the uniformity of the parameter space. Obviously, it is im-
possible to perform 1018 corresponding simulations using the

WRF model to conduct SA experiments. A highly efficient
uniform sampling approach should have good space-filling
capability with relatively few samples, which would be very
useful for the WRF model because it requires huge compu-
tational resources. The uniformities of different sampling
approaches with the same sample size were compared, and
the QMC method was chosen as one of the most efficient
uniform sampling approaches (Hou et al., 2012; Wang et al.,
2014; Gong et al., 2015; Qian et al., 2015). Therefore, the
QMC method was used in this study to produce parametric
samples from the 18-dimensional adjustable parameter space
for the WRF model.

2.4    Evaluation metrics

To avoid the impact of observation errors on the parametric
SA results, the evaluation metric in the SA experiments mea-
sured the error of the simulation results of the WRF model
with perturbed parameter values by comparing them with the
simulation results of the WRF model with the default pa-
rameter values. Instead of observed data, the simulation re-
sults of the WRF model with the default parameter values
were regarded as the reference dataset. This approach can
accurately reveal the variation characteristics of the model

880 Di Z H, et al.   Sci China Earth Sci   May (2017)  Vol. 60  No. 5



response due to parameter perturbation. Some studies have
shown that sensitive parameters may vary when using differ-
ent evaluation metrics (Tang et al., 2007; van Werkhoven et
al., 2009). Hence, in this study, two common metrics, the TS
and the RMSE, were used to evaluate the precipitation sim-
ulation results of the WRF model with perturbed parameter
values. RMSEwas also used to evaluate the temperature sim-
ulation results of the WRF model with perturbed parameter
values. Precipitation evaluation functions were used to com-
pute the simulation metrics (TS and RMSE) of 6-hourly and
24-hourly accumulated precipitation for the nine rainy events,
and the temperature evaluation functions evaluated the sim-
ulation errors (RMSE) of 3-hourly average, 24-hourly aver-
age, 24-hourly maximum, and 24-hourly minimum temper-
ature for the nine sunny events. Different model evaluation
functions were used to conduct various parametric SA experi-
ments, which helped to obtain more comprehensive paramet-
ric SA results.
The definitions of the TS can be stated as follows:

NA
NA NB NC

TS ,=
+ +

(1)

where, TS ranges from zero (poor) to one (good) and NA is
the number of grid cells for which the simulated precipitation
amounts with perturbed and default parameter values simulta-
neously satisfy the prescribed threshold interval. The differ-
ent intervals represent different precipitation intensities, and
the intensity ranks for 6-hourly and 24-hourly accumulated
precipitation are given in Table 2. NB is the number of grid
cells for which the simulated precipitation amount with the
perturbed parameter values satisfies the prescribed threshold
interval, but that with the default parameter values fails. NC
is the number of grid cells for which the simulated precipi-
tation amount with the default parameter values successfully
satisfies the threshold interval, but that with the perturbed pa-
rameter values fails.
RMSE can be expressed as follows:

Sim Def

MT
RMSE

( )
,t

T

i

M

1 1
i
t

i
t 2

= = = (2)

where, Sim i
t and Def i

t represent the simulated results with
perturbed and default parameter values at the ith grid cell and

Table 2        Precipitation intensity classification criteria

Precipitation rank 6-hour precipitation
amount (mm)

24-hour precipitation
amount (mm)

Light rain [0.1, 4.0) [0.1, 10.0)

Moderate rain [4.0, 13.0) [10.0, 25.0)

Heavy rain [13.0, 25.0) [25.0, 50.0)

Storm [25.0, 60.0) [50.0, 100.0)

Heavy storm [60.0, 150.0) [100.0, 250.0)

Severe storm [150.0, 350.0) [250.0, 450.0)

at time t, respectively, and M and T are the total number of
grid cells and time steps, respectively.

2.5    SA methods

To obtain more comprehensive information on the paramet-
ric sensitivity of precipitation and temperature in the WRF
model, multi-uncertainty quantification methods, including
three qualitative SAmethods and one quantitative SAmethod
based on a response surface model, were used to conduct
parametric SA experiments on precipitation and temperature.
Thesemethods are briefly described in the following sections.

2.5.1  Qualitative SA methods
(1) Delta test. The delta test (DT) is an SA method based on
residual noise variance estimation. In a regression equation,
assumingM input points x( )i i

M
1=
and associated scalar outputs

y( )i i
M

1=
with an additive noise term:

y f x i M( ) , 1, 2, ..., ,i i i= + = (3)

where the function f is assumed to be smooth and the residual
noise ( )i i

M
1=
is independently and identically distributed with

a mean of zero. The variance of the noise ( )i i
M

1=
can be esti-

mated as:

Var
M

y y( ) 1
2

( ) ,
i

M

1
i N i( )

2

s=
(4)

where, N i x x( ) arg mins k i i k S

2= represents the nearest
neighbor of the input point xi in subset S, which is one of
the variable subsets (total 2q−1 subsets, where q is the di-
mensionality of all variables), and the right-hand term of eq.
(4) is called the DT metric, δ(S), and represents the degree
of fit of function f with subset S. If δ(S) is the minimum
value in all the variable subsets of 2q−1 DT metrics, then the
input variables (or parameters) constituting S are the most
sensitive parameters (Eirola et al., 2008). The sensitivity
score for parameter xi (i=1, 2, …, q) is the ratio of the sum of
DT metrics, including xi, to the sum of all DT metrics in the
first 50 minimum DT metrics.
(2) Sum of trees. The sum of trees (SOT) method is a

tree-based regression method. It builds a regression model
by recursively partitioning the data space and fitting a uni-
form function in each subspace (Breiman et al., 1984). If the
partition in each parameter space causes a maximum decrease
in the residual sum of squares, a split occurs. The splitting
process does not terminate until the fitness error in each sub-
space is less than a prescribed threshold. The number of splits
(NS) in each parameter space represents the sensitivity of the
parameter, meaning that the greater the value of NS for a pa-
rameter, the more sensitive the parameter is. The sensitivity
score for each parameter is the ratio of its NS to the maximum
value of all parametric NS sets.
(3)Multivariate adaptive regression splines. Themultivari-

ate adaptive regression splines (MARS) method (Friedman,
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1991; Shahsavani et al., 2010) is an extension of SOT. Com-
pared with SOT, MARS performs the same recursive parti-
tioning of the parameter space, but uses a regression func-
tion in each subspace (e.g., a uniform function in SOT and a
low-order function in MARS). In each subspace, the low-or-
der function is built using basis functions that exist in three
forms: a constant, a hinge function, and the product of sev-
eral hinge functions. The linear combination of all basis func-
tions forms a total regression function for the whole param-
eter space. Hence, the MARS method can construct a con-
tinuous regression model that provides a better fit than SOT.
MARS uses two steps to construct a reasonable regression
model: the forward step produces an overfitted model using
paired hinge functions related to the input parameters, and the
backward step prunes the overfitted model to the best model
by repeatedly deleting the least effective term. After a suit-
able regression modelM has been constructed, a generalized
cross-validation (GCV) index is used to evaluate the model:

M
N

Y Y

c M d
N

GCV( ) 1
( )

1 1 ( )
,i

N

1
i i

2

2=
+

= (5)

where, N is the number of all data points before regression,
Yi is a data point, Yi is the estimated value of Yi based on
regression model M, d is the effective number of degrees of
freedom, and c(M) is a penalty factor for adding a low-order
function. A lower GCV represents a better-fitting model.
Under a suitable regression model, the absolute increment

of GCV with the removal of one parameter is an important
parameter sensitivity metric (Steinberg et al., 1999). The
larger the absolute increment of GCVwhen one parameter is
removed, the more important that parameter is. The sensitiv-
ity score of the ith (i=1, 2, ..., n) parameter is defined as:

score i
g i

g g g n
( )

( )
max (1), (2), ..., ( )

100,= × (6)

where, Δg(i) is the absolute increment of GCV(M) when the
ith parameter is removed.

2.5.2  Quantitative SA method
A qualitative SA method can provide the sensitivity ranks of
parameters using fewer samples, but the parameter sensitiv-
ity scores are inaccurate due to the lack of a precise mathe-
matical derivation. The quantitative SA method divides the
total variance of the model response into the contribution of
each parameter based on variance decomposition theory. As
a quantitative SA method, the Sobol’ method (Sobol’, 1993,
2001) quantifies the attribution of the model response vari-
ance to specific-order terms of each parameter, providing a
relatively accurate contribution ratio not only of the main ef-
fects of individual parameters, but also of the parameter in-
teractions.
For the function f(x1, x2, …, xn) related to parameter xi(i=1,

2,…, n), the corresponding variance decomposition equation
can be expressed as:

V V V V... ,
i

n

i j n1 1
i i j n, 1, 2, ...,= + + +

= <
(7)

where, V is the total variance of the function f(x1, x2, …, xn), Vi
is the variance of the sub-function related to the ith parameter
only, Vi,j is the variance of the sub-function related to the ith
and jth parameters only, and V1, 2,…, n is the variance of the
sub-function related to all parameters.
Normalizing to eq. (7) by dividing by V

S S S... 1.
i

n

i j n1 1
i i j n, 1,2, ...,+ + + =

= <
(8)

In the Sobol’ method, the index Si is referred to as the main
effect (or first-order effect) of the ith parameter, and the in-
dex Si,j is referred to as the two-way interactive effect (or sec-
ond-order effect) between the ith and jth variables. Another
important index for the ith parameter is the total effect, which
can be computed by summing the main effect of the ith pa-
rameter and all the interactive effects related to the ith param-
eter (Sobol’, 2001).
As a quantitative SAmethod, the Sobol’ method can obtain

more reliable SA results than qualitative methods. However,
Saltelli et al. (2000) found that a large number of samples (ap-
proximately 104 to 105) were required to compute reasonable
Sobol’ indices. Otherwise, the main effects and total effects
significantly deviate from their analytical solutions, resulting
in unreasonable SA conclusions. Obviously, it is completely
intractable to perform approximately 105 runs of the WRF
model with different parameter values. Hence, in this study,
the Sobol’ methodwas implemented on a simple statistical re-
sponse surface model instead of the complex original model,
avoiding tens of thousands of WRF model runs. In addition,
the representativeness of the response surface model should
be verified before conducting Sobol’ analysis.
The relatively simple response surface model is not suffi-

cient to estimate higher-order interactions, and therefore the
higher-order interactive effects (>2) of the Sobol’ method
based on the response surface model are weak and negligi-
ble (Ziehn and Tomlin, 2009; Qian et al., 2015). Therefore,
the total effect of a certain parameter is approximately equal
to the sum of its main effect and all two-way interactive ef-
fects related to the parameter for the Sobol’ method based on
the response surface model. In this study, all response sur-
face models were built using the MARS method (also called
the MARS response surface model). In addition to the main
and total effects of the individual parameters, the two-way in-
teractions between the WRF parameters based on the MARS
response surface model were also analyzed.

2.6    SA framework

An integral parametric SA experiment includes four major
steps: (1) identifying the adjustable parameters of the model
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and defining their ranges; (2) generating representative
samples from the parameter space using a suitable sampling
method; (3) running the model with different parameter
samples and computing their output errors; and (4) assessing
the parametric sensitivity using an SA method by combining
the parametric sample values and the corresponding model
output errors.
In this study, 18 parameters from six physical schemes

of the WRF model were selected to conduct parametric SA
experiments. Based on previous experience with sampling
(Hou et al., 2012; Wang et al., 2014), a total number of
samples equal to 10 times the parameter dimensionality can
produce reasonable SA results using the QMC sampling
method. Therefore, to use the simulation results of the
WRF model effectively given its huge computation cost,
180 perturbed parameter values were included in the WRF
model for the precipitation simulations of the nine rainy
events and the temperature simulations of the nine sunny
events. Compared with the simulation results of the WRF
model with the default parameter values, the errors of the
180 WRF simulations with the perturbed parameter values
were computed using the evaluation metrics (TS and RMSE
for precipitation and RMSE for temperature). Based on the
input parameter values and the corresponding model output
errors, three qualitative SA methods (DT, SOT, and MARS)
and one quantitative SA method (the MARS response sur-
face model-based Sobol’ method) were used to perform a
systematic evaluation of the sensitivity of all 18 adjustable
parameters to the precipitation and temperature simulation
results of the WRF model.
The QMC sampling methods and the SA methods, in-

cluding DT, SOT, MARS, and Sobol’, were implemented
using a software package called the Uncertainty Quantifi-
cation Python Laboratory (UQ_PyL) (Wang et al., 2016).
This software integrates many methods to build an efficient
framework for uncertainty quantification (UQ). In the UQ
framework, UQ_PyL provides design of experiments, statis-
tical analysis, sensitivity analysis, surrogate modeling, and
optimization.

3.    Results

3.1    Parametric SA for precipitation simulation

3.1.1  Qualitative parameter screening
   (1) Six-hourly accumulated precipitation. For comparison
with the results of the corresponding precipitation simula-
tions with default parameter values, the TS and RMSE of
the 6-hourly accumulated precipitation simulations with the
perturbed parameter values were computed for the nine rainy
events. Then the qualitative SA method was applied to the
combinations of all the perturbed parameter values and their

corresponding model output metrics (TS or RMSE). The TS
metric was calculated as precipitation ranks. Six categories
of precipitation were defined (light rain, moderate rain, heavy
rain, storm, heavy storm, and severe storm) according to dif-
ferences in precipitation amount (see Table 2). Based on
sample size considerations, only the first four precipitation
categories were analyzed. The sensitivity scores of all 18
adjustable parameters for the TS of 6-hourly accumulated
precipitation (categorized as light rain, moderate rain, heavy
rain, and storm) using three qualitative SA methods (DT,
SOT, and MARS) are shown in Figures 3a–d. Another met-
ric, RMSE, was also used to evaluate the simulation results of
all 6-hourly accumulated precipitation amounts for the nine
rainy events; the parametric sensitivity scores for RMSE of
6-hourly accumulated precipitation are shown in Figure 3e.
In each subgraph of Figure 3, the horizontal axis denotes the
18 adjustable parameters of the WRF model, and the verti-
cal axis denotes the sensitivity scores according to the three
qualitative SA methods. The parameter sensitivity scores for
each SAmethodwere normalized to [0, 1], as shown in Figure
3. The score of the most sensitive parameter was 1, and the
score of the most insensitive parameter was 0. Figures 3a–d
show that four parameters (P5, P7, P10, and P16) were com-
mon sensitive parameters for all four precipitation categories.
DT, SOT, and MARS produced consistent results for the sen-
sitive parameters, but there were significant discrepancies in
the results for the moderately sensitive parameters. For in-
stance, the moderately sensitive parameters for TS of storm
were P3, P9, and P17 using MARS, but P4 and P12 using
DT. The moderately sensitive parameters were also inconsis-
tent among the four precipitation categories. The sensitive
parameters for RMSE were the same as those of TS for the
four precipitation categories, a result that demonstrates that
the sensitive parameters for 6-hourly accumulated precipita-
tion do not vary with different evaluation metrics or qualita-
tive SA methods.
(2) Twenty-four-hourly accumulated precipitation. The SA

experiments for 24-hourly accumulated precipitation were
designed in the same way as those for 6-hourly accumulated
precipitation. The sensitivity scores of the parameters for
TS and RMSE of 24-hourly accumulated precipitation are
shown in Figure 4. The common sensitive parameters were
P5, P7, P10, and P16, which is consistent with the results for
6-hourly accumulated precipitation. The conclusions regard-
ing the screened sensitive parameters were also unaffected
by the choice of SA method or evaluation metric.

3.1.2  Quantitative SA
Quantitative SA methods require a large number of samples
to analyze parameter sensitivity, unlike qualitative methods
that require fewer samples. Therefore, the results of quanti-
tative methods are more reliable and can be used to validate
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Figure 3            Parametric sensitivity scores of the three qualitative SA methods (DT, MARS, and SOT) for 6-hourly accumulated precipitation. The sensitivity
scores are normalized to [0, 1]; 1 means most sensitive and 0 means least sensitive.

the results of qualitative methods. In addition, quantitative
methods accurately produce not only sensitivity scores for
individual parameters (by computing the contribution ratio
of the main effect of each individual parameter to the total
variance of the model response), but also the interaction ef-
fects among parameters. The large number of samples re-
quired for quantitative SA methods requires a correspond-
ingly large number of model runs, which is impractical for the
WRF model given its high computational cost. However, the
statistical response surface model can be rapidly evaluated in
several seconds, and therefore it is recommended to conduct
quantitative SA analysis on a response surface model instead
of the original physical model, provided that the two models
have similar responses. In this study, the Sobol’ method was
applied to the MARS response surface model instead of the
original WRF model to obtain the quantitative parametric SA
analysis results.
(1) Evaluation of the MARS response surface model.

The representativeness of the response surface model with
respect to the original model is an important index to deter-
mine whether the SA results based on the response surface
model are reliable. Therefore, the accuracy of the response
surface model must be verified before the Sobol’ method

is applied to it. The goodness of fit of the MARS response
surface model to the response from the WRF model can
be adjusted by controlling the number of hinge functions.
Figure 5 shows scatter plots of the MARS-fitted TS (RMSE)
values against theWRF-simulated TS (RMSE) values on 180
parametric samples for 6-hourly and 24-hourly accumulated
precipitation. The MARS response surface models estimated
the metrics of different precipitation output variables with R2

varying from 0.824 for TS of 24-hourly accumulated heavy
rain to 0.964 for TS of 24-hourly accumulated light rain.
(2) Main and total effects of individual parameters. Based

on the MARS response surface models as constructed, the
Sobol’ method was used to conduct parametric quantitative
SA for precipitation simulations using the WRF model. The
sample size was 100000. The main and total effects of the 18
parameters for 6-hourly and 24-hourly accumulated precipi-
tation simulations with the two metrics (TS and RMSE) are
shown in Figure 6. In each subfigure, the black bar denotes
the main effect (first-order sensitivity), and the white bar rep-
resents the interactive effect summing all two-way interactive
effects related to the specific parameter. The total effect of a
parameter is the sum of its main effect and its interactive ef-
fect. The interactive effects of P7 and P10 are  also  evident,
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Figure 4            Parametric normalized sensitivity scores of the three qualitative SA methods (DT, MARS, and SOT) for 24-hourly accumulated precipitation.

which means that the response relationship between the
model precipitation errors and the input parameter values is
nonlinear.
Overall, five parameters were sufficient to explain the vari-

ance of the model response for 6-hourly and 24-hourly ac-
cumulated precipitation based on the SA results for the main
and total effects of individual parameters. In agreement with
the parametric screening results of the qualitative SA meth-
ods (see Figures 3 and 4), the four main sensitive parameters
for 6-hourly and 24-hourly accumulated precipitation were
P5, P7, P10, and P16, and the most sensitive parameter was
P10. Note that P3 followed the four main sensitive parame-
ters for all output-evaluated precipitation functions according
to the total effect ranks of the 18 parameters, a result that dif-
fered from the case of qualitative SA. Based on qualitative
and quantitative SA results, the five most sensitive parame-
ters for precipitation were identified as P3, P5, P7, P10, and
P16. In addition to screening results for sensitive parameters,
the quantitative SA method also provides the two-way inter-
active effects between parameters. In Figure 6, all two-way
interactive effects related to a certain specific parameter are
summed as the total interactive effect of each parameter. Fig-
ure 6 shows that the parametric interaction effect arosemainly
from P7 and P10, whereas more parameters provided an inter-

active effect in the storm rankings. This may have been due
to more complex storm mechanisms or fewer storm samples.
(3) Quantifying the relative contribution ratios of individ-

ual parameters. According to the definition of the parametric
total effect in eq. (8), the sum of all parametric total effects
is greater than one. Therefore, the relative contribution of
each individual parameter to the total variance of the model
response is defined by the ratio of its total effect to the sum of
all parametric total effects. The relative contribution ratios of
the individual parameters with the top six ranks are shown in
Figure 7. P10 plays the most significant role in the contribu-
tion to model response variance for 6-hourly and 24-hourly
accumulated precipitation simulations using the two metrics
(TS and RMSE). P5, P7, P16, and P3 followed P10 as com-
mon important parameters, but their rankings varied when
different precipitation evaluation functions were used. The
parameters ranked sixth were inconsistent. For instance, P4
was the sixth most important parameter for moderate rain and
heavy rain in the case of 6-hourly accumulated precipitation
and for light rain in the case of 24-hourly accumulated pre-
cipitation. P6 was the sixth most important parameter when
considering the RMSE of 6-hourly accumulated precipitation
and heavy rain in the case of 24-hourly accumulated precipi-
tation. P12 was the sixth most important parameter for light
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Figure 5            Scatter plots of MARS-fitted precipitation errors against WRF-simulated precipitation errors for (a)–(d) TS of 6-hourly accumulated precipitation,
(e)–(h) TS of 24-hourly accumulated precipitation, and (i)–(j) RMSE of 6-hourly and 24-hourly accumulated precipitation.

rain in the case of 6-hourly accumulated precipitation and for
moderate rain in the case of 24-hourly accumulated precipita-
tion. P9, P15, and P8 were the sixth most important parame-
ter for storm in the case of 6-hourly accumulated precipitation
and for storm and for RMSE of 24-hourly accumulated pre-
cipitation, respectively. Overall, the contributions of the first
five parameters to the total variance of the model response for
6-hourly and 24-hourly precipitation varied from 90.48% for
light rain in the case of 6-hourly accumulated precipitation
to 99.99% for heavy rain in the case of 24-hourly accumu-
lated precipitation. The one exception was a contribution of
75.23% for storm in the case of 24-hourly accumulated pre-
cipitation. Therefore, it is feasible and highly efficient to con-
duct parameter optimization for precipitation simulation us-
ing the WRF model by adjusting these five parameters while
keeping the other parameters fixed at their default values.
(4) Quantifying the contribution ratios of the main effects

of individual parameters and the two-way interactive effects
between parameters. To quantify the effect of parameter in-
teractions accurately, the contribution ratios of the main ef-
fects of individual parameters and the two-way interactive ef-

fects between parameters to the total variance of themodel re-
sponse were computed for each precipitation output variable
based on 100000 samples from a suitable MARS response
surface model. Figures 8 and 9 show the contribution per-
centages of the parametric effects (main effects of the indi-
vidual parameters and their two-way interactive effects) to
the total variance of 6-hourly and 24-hourly accumulated pre-
cipitation metrics. The main contributions to total variance
were derived from the main effects of individual sensitive pa-
rameters and the two-way interactive effect between P7 and
P10. Overall, the accumulated contribution percentages of
the main effects of individual sensitive parameters (P3, P5,
P7, P10, and P16) varied from 57% for heavy rain to 76%
for moderate rain for 6-hourly accumulated precipitation, and
from 65% for RMSE to 84% for heavy rain for 24-hourly
accumulated precipitation, except for 45% for storm. The
contribution percentages of the main effect of the most sensi-
tive parameter, P10, for light rain, moderate rain, heavy rain,
storm, and RMSE for 6-hourly (24-hourly) accumulated pre-
cipitation were 28.42% (50.27%), 41.26% (36.85%), 25.41%
(47.35%), 26.48% (13.96%), and 35.53% (38.63%), respec-

886 Di Z H, et al.   Sci China Earth Sci   May (2017)  Vol. 60  No. 5



Figure 6            Sobol’ SA indices of individual parameters for ((a)–(e)) 6-hourly and ((f)–(j)) 24-hourly accumulated precipitation simulations with two metrics
(TS and RMSE).

tively. The accumulated contribution percentages of the main
effects of the individual sensitive parameters in the case of
24-hourly accumulated precipitation were higher than those
from 6-hourly accumulated precipitation. This effect arose
because the impact of the parameters on the simulation re-
sults was more evident when the simulation integration time
was longer. In addition to the main effect of each individual
sensitive parameter, the contribution of the two-way interac-
tive effect between P7 and P10was also evident, varying from
12.69% for light rain to 20.45% for RMSE for 6-hourly ac-
cumulated precipitation and from 9.25% for storm to 18.66%
for RMSE for 24-hourly accumulated precipitation. Overall,
the range of the accumulated contribution ratios for the main

effects of the five individual sensitive parameters and one in-
teractive effect between P7 and P10 varied from 76% for light
rain to 90% for moderate rain for 6-hourly accumulated pre-
cipitation and from 84% for RMSE to 95.2% for heavy rain
for 24-hourly accumulated precipitation, except for 54% for
storm.

3.2    Parametric SA for temperature simulation

3.2.1  Qualitative parameter screening
For comparison with the results of the corresponding temper-
ature simulations using the WRF model with default param-
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Figure 7            Relative contribution percentages of the top six sensitive parameters to the total effects of individual parameters for 6-hourly ((a)–(e)) and 24-hourly
((f)–(j)) accumulated precipitation simulations with two metrics (TS and RMSE).

eter values, the RMSE values of the 3-hourly average,
24-hourly average, 24-hourly maximum, and 24-hourly
minimum temperature simulations using the WRF model
with perturbed parameter values for the nine sunny events
were computed. Qualitative SA was performed on the
combinations of all perturbed parameter values and their
corresponding temperature simulation errors (RMSE). The
normalized SA scores of the parameters using the three
qualitative SA methods (DT, MARS, and SOT) are shown
in Figure 10. The most sensitive score is 1, and the most
insensitive score is 0. From Figure 10, the common sen-
sitive parameters for 3-hourly average, 24-hourly average,
24-hourly maximum, and 24-hourly minimum temperature
simulations using the RMSE metric were found to be P7 and
P10. The number of sensitive parameters was less than for
precipitation. The two sensitive parameters for temperature
were also identified as sensitive for precipitation, and P10
was the most sensitive parameter for both precipitation and
temperature.

3.2.2  Quantitative SA
The Sobol’ method was then applied to the MARS response
surface model instead of the WRF model. The response sur-
face model was built by the MARS method with 180 sample
points. The response surface model was fitted to the original
WRF response by adjusting the number of hinge functions,
and suitable MARS response surface models were identified
for different output evaluation functions. The corresponding
MARS response surface models evaluated the response for
3-hourly average, 24-hourly average, 24-hourly maximum,
and 24-hourly minimum temperature on 180 parameter sets,
obtaining R2 values of 0.993, 0.991, 0.992, and 0.997, respec-
tively (Figures not shown).
Quantitative SA experiments were then conducted on

the most reasonable MARS response surface model using
the Sobol’ method with 100000 samples. Figure 11 shows
the main and total effects of the 18 parameters for the
3-hourly average, 24-hourly average, 24-hourly maximum,
and 24-hourly minimum temperature  simulations  using  the
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Figure 8            Contribution percentages of the main effects of individual parameters and two-way interactive effects between parameters to the total variance of
6-hourly accumulated precipitation simulations with two metrics (TS and RMSE).

RMSE metric. In each subfigure, the black and white bars
represent the main effect (first-order sensitivity) and the inter-
active effect respectively. The definitions of interactive and
total effects are the same as in the quantitative SA experi-
ments for precipitation. According to the rankings of para-
metric total effects (or main effects), the most sensitive pa-
rameters were P7 and P10, a result that is consistent with
the conclusions of qualitative parameter screening for tem-
perature (see Figure 10). The interactive effect for temper-
ature was found mainly between parameters P7 and P10 for
24-hourly average and maximum temperature; P10 has more
interactive effects with other parameters than P7 for 3-hourly
average and 24-hourly minimum temperature. Except for
24-hourly maximum temperature, the interactive effects be-
tween parameters P7 and P10 for temperature were weaker
than for precipitation. The relative contribution ratios of the
individual parameters (i.e., their percentages of the total para-
metric effects) for temperature were also computed. The rel-
ative contribution ratios of P7 (P10) to the total effect for

3-hourly average, 24-hourly average, 24-hourly maximum,
and 24-hourly minimum temperature were 10.9% (82.2%),
42.6% (40.1%), 21.0% (68.2%), and 5.7% (85.3%), respec-
tively. The sum of the total effects of P7 and P10 contributed
more than 82% of the total variance of the temperature re-
sponse, ranging from 82.7% for 24-hourly average tempera-
ture to 93.1% for 3-hourly average temperature.
To quantify the interactive effects of the temperature pa-

rameters accurately, the contribution ratios of the main ef-
fects of the individual parameters and of the two-way inter-
active effects between the parameters to the total variance of
the model response were computed for each temperature out-
put variable, based on 100000 samples from a suitableMARS
response surface model. Overall, the accumulated contribu-
tions of the main effects of the individual sensitive parame-
ters (P7 and P10) for 3-hourly average, 24-hourly average,
24-hourly maximum, and 24-hourly minimum temperature
were 93%, 73%, 55%, and 89%, respectively. For 24-hourly
average and 24-hourly maximum  temperature,  the  highest
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Figure 9            Contribution percentages of the main effects of individual parameters and two-way interactive effects between parameters to the total variance of
24-hourly accumulated precipitation simulations with two metrics (TS and RMSE).

contribution ratio among the two-way interactive effects oc-
curred for the two-way interactive effect between parame-
ters P7 and P10, at 5.3% and 29%, respectively. The to-
tal contribution ratios of all two-way interactive effects be-
tween parameters were less than 2% for 3-hourly average and
24-hourlyminimum temperature (Figures not shown). There-
fore, except for 24-hourly maximum temperature, the interac-
tive effects between parameters for temperature were weaker
than for precipitation.

3.3    Response of WRF output errors to sensitive param-
eters

To carry out a preliminary exploration of the optimal values
of the sensitive parameters, observed precipitation and tem-
perature data were chosen to evaluate the errors in the WRF
precipitation and temperature simulations from the previous
qualitative SA experiments. The observed precipitation data
came from the China Hourly Merged Precipitation Analysis
(CMPA-Hourly) product, with a horizontal spatial resolution

of 0.1° in latitude and longitude and a temporal resolution of
one hour (Shen et al., 2014). The temperature-gridded data
came from the land-surface forcing-field products for the Chi-
nese mainland (Huang et al., 2014). Out of consideration for
simulation accuracy, only the 6-hourly accumulated precip-
itation simulations with the TS metric and the 3-hourly av-
erage temperature simulations with the RMSE metric were
analyzed in this study.

3.3.1  Response of precipitation errors to the five sensitive
parameters

A uniform index was used to evaluate the four categories of
simulated precipitation with different TS ranges. The nor-
malized TS metric can be expressed as follows:

( )F
f

f
( ) 1

4
( )

,
j 1

4
j

j def

=
=

(9)

where fj(θ) is the TS value of simulated precipitation with per-
turbed parameter θ for the jth type of precipitation compared
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Figure 10             Parametric sensitivity scores of the three qualitative SA methods (DT, MARS, and SOT) for 3-hourly average, 24-hourly average, 24-hourly
maximum, and 24-hourly minimum temperature. The sensitivity scores are normalized to [0, 1]; 1 means most sensitive, and 0 means least sensitive.

with the corresponding observed data; j is equal to 1, 2, 3,
or 4, representing light rain, moderate rain, heavy rain, and
storm, respectively; and ( )def represents the default parame-
ter values. The negative sign ensures that better simulation
results have smaller normalized TS.
Using the normalized TS index, 180 simulation results for

6-hourly accumulated precipitation from the previous qual-
itative SA experiments were used to analyze the response
of the WRF precipitation simulation to its five sensitive pa-
rameters. The results are shown in Figure 12. In each sub-
figure, the black cross indicates the simulation error of the
WRFmodel with the default parameter values, and the curved
line represents the average of 180 simulation results grouped
into 20 bins (each bin including nine simulation results) for
each input parameter. Simulated precipitation was more sen-
sitive to P10 (porsl), P7 (cssca), and P5 (dimax) than to P3
(ice_stokes_fac) and P16 (pfac), a result that is consistent
with the conclusions of the previous parametric SA experi-
ments. Compared with the respective optimal parameter val-
ues, the default values of P3 and P5 were lower, and the de-

fault values of P7, P10, and P16 were higher. Most of the
normalized TS values for the five sensitive parameters were
lower than the normalized TS values of the default param-
eters, an observation that demonstrates the potential to im-
prove WRF precipitation simulation results by adjusting the
five sensitive parameter values.

3.3.2  Response of temperature errors to the two sensitive
parameters

By dividing by the RMSE of the correspondingWRF simula-
tions with default parameter values, all the RMSE values for
3-hourly average temperature simulation results in the previ-
ous 180 simulations used for qualitative SA of temperature
were normalized. The response of the normalized RMSE er-
rors to the sensitive parameters P7 (cssca) and P10 (porsl) is
shown in Figure 13. The normalized RMSE error for the sim-
ulation results with the default parameter values was 1.0. The
smaller the normalized RMSE error, the closer the simulated
results are to the observations. Figure 13 shows that P10 had
a greater impact on the model response variance than  P7,  a
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Figure 11            Sobol’ SA indices of the individual parameters for 3-hourly average, 24-hourly average, 24-hourly maximum, and 24-hourly minimum temperature
simulations with the RMSE metric.

result that is consistent with the parametric SA results for tem-
perature. There were fewer points with RMSE values lower
than the RMSE value of the default parameters, and therefore
the lowest point on the average line is higher than the default
parameter point (i.e., the black cross point). However, the de-
fault values of both P7 and P10 were higher than their optimal
values according to the tendency of the average lines.

3.3.3  Improvement by parametric optimization
To examine the possibility of improving the WRF model
by parameter optimization, the simulation results with the
default parameter values were compared to the results with
the optimal parameter values for 6-hourly accumulated
precipitation and 3-hourly average temperature. The optimal
simulation results for 6-hourly accumulated precipitation and
3-hourly average temperature were obtained by searching
for the minimum normalized metric in the respective 180
simulations of the qualitative SA experiments. Table 3 shows
the percentage improvements for 6-hourly accumulated
precipitation and 3-hourly average temperature. The optimal

parameter values improved the simulation results for the
four precipitation categories; in particular, the improvement
ratios for moderate and heavy rain were 20% and 20.83%,
respectively. The average percentage improvement in the
four categories of 6-hourly accumulated precipitation was
12%. The simulation results for 3-hourly average tempera-
ture were improved by 8.52%.
Figure 14 shows the spatial differences between the default

and optimal simulation results for precipitation and tempera-
ture. The left panel shows the spatial distribution of the ob-
served daily average precipitation for the nine rainy events,
the corresponding simulation residuals using the default pa-
rameter values, and those using the optimal parameter values.
The same comparison for temperature is shown in the right
panel of Figure 14. The optimal parameter values were found
to improve the precipitation simulation results over the de-
fault parameter values, especially for stronger precipitation.
Similarly, the improvement in the temperature simulation us-
ing the optimal parameter values was  more  evident  in the
south, with its higher temperature values. Although the pre-
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Figure 12             Response of 6-hourly accumulated precipitation to the five sensitive parameters in 180 simulations compared with observed data.

Table 3        Scores of precipitation and temperature simulations using default and optimized parameter sets
Metric Name Default Optimized Improvement

Light rain 0.165 0.169 2.42%
Moderate rain 0.072 0.087 20.83%
Heavy rain 0.035 0.042 20.00%
Storm 0.041 0.043 4.88%

TS
(6-hourly precipitation)

Total 1.000 1.120 12%
RMSE

(3-hourly average temperature (oC)) Temperature 1.408 1.288 8.52%

cipitation and temperature optimization results in Figure 14
were obtained by searching for the minimum simulation er-
rors of the corresponding variables from their 180-parame-
ter perturbation simulations for the qualitative parametric SA,
they reflect the potential of their respective sensitive param-
eters to improve precipitation and temperature simulation re-
sults. This is the case because the sensitive parameters con-
tribute most of the variance in model response based on the
quantitative parametric SA results. If a more powerful opti-
mization method were used to adjust the sensitive parameter
values, greater improvement would be achieved.

3.4    Physical interpretation of the sensitive parameters

According to the previous parametric SA results, the sensi-
tive parameters for precipitation were P3, P5, P7, P10, and

P16, and the sensitive parameters for temperature were P7
and P10. However, the physical meaning of the sensitive pa-
rameters should be discussed to determine how they affect
the precipitation and temperature simulation results. For the
microphysics scheme, P3 (scaling factor applied to ice fall ve-
locity) and P5 (limiting maximum value for cloud-ice diame-
ter) have similar effects on precipitation because they jointly
affect the conversion from cloud ice to rain water. P7 (scat-
tering tuning parameter) from the shortwave scheme directly
influences the amount of downward solar radiation reaching
the ground and hence the amount of water vapor that evapo-
rates from the surface, bringing about changes in temperature
and precipitation. P10 (multiplier for the saturated soil water
content) from the Noah land-surface scheme directly affects
water and heat conductivity in the soil and hence water vapor
exchange and heat flux between the land surface and the at-
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Figure 13             Response of 3-hourly average temperature to the two sensitive parameters in 180 simulations compared with observed data.

mosphere, which are important factors in the formation of
convection precipitation. P16 (profile shape exponent used
to calculate the momentum diffusivity coefficient) from the
planetary boundary-layer scheme is a sensitive parameter for
precipitation. Because it controls the mixing intensity of tur-
bulent eddies in the planetary boundary layer, the upward
transfer energy of water vapor and heat will change as P16
varies, affecting the development of convection.

4.    Discussion and conclusions
This study has systematically examined the sensitivity of
eighteen parameters from six parameterization schemes
corresponding to six physical processes to high-resolution
precipitation and temperature simulation results obtained
by the Weather Research and Forecasting model, version
3.6.1. The parameter sampling approach used was QMC.
Two types of SA experiments were performed. The first
was qualitative SA using three methods (DT, MARS, and
SOT), and the second was quantitative SA using the MARS
response surface model-based Sobol’ method. Qualitative
SA obtained sensitivity rankings for parameters with fewer
samples, whereas quantitative SA obtained accurate con-
tribution percentages of parameters to the total variance
of the WRF model response. For this reason, SA results
from quantitative methods are generally used to validate SA
results from qualitative methods.
It is well known that quantitative methods require simu-

lation of tens of thousands of samples. Therefore, very few
quantitative SA experiments have been performed for the
complex NWPmodel because of its huge computational cost,
resulting in a lack of validation for SA results. In this study,

one quantitative SA method, the MARS response surface
model-based Sobol’ method, was used to conduct a paramet-
ric SA of the WRF model. The results of the parametric SA
obtained by the MARS response surface model-based Sobol’
method were then used to validate the reasonableness of the
qualitative SA. In addition, rather than using a single quali-
tative SA method, three qualitative SA methods were used
to obtain more robust results for the sensitive parameters.
In summary, qualitative and quantitative methods were used
to perform a systematic evaluation of parametric SA of the
WRF model for precipitation and temperature simulations,
making the results for the sensitive parameters more accurate
and reliable.
The first step was to use a QMC sampling approach to pro-

duce 180 relatively uniform samples from the high-dimen-
sional parameter space. Then the simulated precipitation and
temperature results from the WRF model with 180 perturbed
parameter values were evaluated using the respective WRF
simulations with default parameters as reference data. Fi-
nally, three qualitative methods and one quantitative method
were applied to 180 combinations of perturbed parameters
and their corresponding simulation errors. In the case of pre-
cipitation, the three qualitative SA methods identified four
common sensitive parameters (P5, P7, P10, and P16), and the
quantitative method added P3 to this list. Therefore, the five
sensitive parameters were identified by both qualitative and
quantitative methods. A two-way interactive effect between
P7 and P10was also evaluated as important to the output vari-
ance according to the relative contribution ratio of parametric
main effects and interactive effects. The accumulated con-
tribution ratios of the sensitive parameters for precipitation
ranged from 76% for light rain to 90% for moderate rain for
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Figure 14             Comparison of simulated daily average precipitation (temperature) using default versus optimal parameter values for the nine two-day rainy
(sunny) events during the summer season from 2008 to 2010.

6-hourly accumulated precipitation and from 84% for RMSE
to 95.2% for heavy rain for 24-hourly accumulated precipita-
tion, except for a 54% value for storm. For temperature, the
same SAmethods were used to conduct a parametric SA. The
results showed that the common sensitive parameters were P7
and P10. There was less interactive effect (less than 5.3%)
between P7 and P10, except for 24-hourly maximum temper-
ature (approximately 29%). Overall, the accumulated contri-
bution ratios of P7 and P10 for 3-hourly average, 24-hourly
average, 24-hourly maximum, and 24-hourly minimum tem-
perature were 95%, 79%, 84%, and 91%, respectively. In
the last phase of this research, a preliminary exploration of
precipitation and temperature optimization was performed by
searching the sensitive parameter values, further proving that

the identification of the screened sensitive parameters was
reasonable and reliable.
An integrated SA analysis strategy for WRF parameters,

including qualitative parametric screening and quantitative
parametric sensitivity evaluation, has been presented in this
study, providing an effective solution for evaluating the pa-
rameter sensitivity of other models, especially for large, com-
plex system models. However, the method proposed in this
study has some limitations. For example, uncertainties in the
initial and boundary conditions were not considered. The pre-
liminary parametric optimization validated the robustness of
the identification of the screened sensitive parameters by both
qualitative and quantitative methods, but real parameter op-
timization was not conducted. Future studies will focus on
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optimizing the sensitive parameters of the WRF precipitation
model to explore parametric optimization strategies for large,
complex dynamic models.
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