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Dynamic Manning’s roughness coefficients

for hydrological modelling in basins

Aizhong Ye, Zheng Zhou, Jinjun You, Feng Ma and Qingyun Duan
ABSTRACT
Manning’s roughness coefficient (n) has a significant impact on routing in hydrological models.

However, computational methods for dynamic roughness coefficients are of little concern in current

research. Few studies have produced spatial-temporal distributions of the roughness coefficients in

basins. In this study, a formula to calculate the n value was established based on a statistical analysis

of estimated n values by Manning’s formula. The routing model of a distributed hydrological model

was then improved using the new formula to calculate n. The roughness coefficient is not a constant;

instead, it changes dynamically with changes in water depth and vegetation in the improved

hydrological model. The improved model was applied to the Yellow River basin. The results show that

using dynamic n can improve the streamflow simulation of hydrological models, especially on slopes.

The dynamic spatial-temporal distribution of n can now be used in other models.
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INTRODUCTION
Most recently used routing models have been based on the

Saint Venant equations or their approximations, such as a

kinematic wave, noninertia wave, linear diffusion-wave

(Wang et al. ) and quasi-steady dynamic wave (Reggiani

et al. ). Manning’s roughness coefficient, n, is one of the

most important parameters in hydrological calculations

representing the loss of energy in open channels. It is com-

monly used to calculate discharge and flood water

elevations (Coon ). Usually, the n value is a parameter

of the routing module in a hydrological model, Manning’s

formula is used to calculate discharge and flood levels in

equilibrium conditions. The value of n has an important

effect on the accuracy of the simulated streamflow. How-

ever, n is difficult to obtain in natural basin (channels and

slopes) because it incorporates many factors including veg-

etation density, riverbed irregularity, surface water width

and soil component differences, which contribute to the

resistance of flow. The values of Manning’s roughness
coefficients are different in channel and slopes, the main

cause being that the landscape surface in slopes is rougher

than channel (Cowan ; Azamathulla & Jarrett ).

Hence, substantial attention has been focused on the rough-

ness coefficient calculations in natural basins.

Generally, estimating the n value is subjective. Arce-

ment & Schneider () presented tables of n values

corresponding to different conditions. A general n value of

various boundaries is shown at http://www.fhwa.dot.gov/

engineering/hydraulics/pubs/2008090/appb.cfm. However,

this general n value is only an empirical coefficient that

does not support quantitative calculation in a hydrological

model. To quantitatively present the n value, the most

widely used formula is Manning’s formula if the observed

velocity of the flow, hydraulic radius and friction slope can

be obtained, as follows:

n ¼ R2=3S1=2f =v (1)
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where v is the velocity of the flow (m/s), n is the Manning’s

roughness coefficient, R is the hydraulic radius (m) and Sf is

the friction slope.

Equation (1) can be used to calculate uniform flow in

which the water-surface profile and energy gradient are par-

allel to the riverbed, and the river cross-section area,

hydraulic radius and depth remain constant throughout

the river reach (Jarrett ).

Considering uncertainties, Cowan () proposed a for-

mula using five parameters (n¼ (nbþ n1þ n2þ n3þ n4)·m)

to represent the influence of different variable factors,

where nb is a base value of n for a straight, uniform,

smooth channel in natural materials; n1 is a correction

factor for the effect of surface irregularities; n2 corrects for

variations in the shape and size of the channel cross section;

n3 corrects for obstructions; n4 corrects for vegetation and

flow conditions; and m is a correction factor for meander-

ing. Petryk & Bosmajian () developed a method to

derive n based on the vegetation density for a densely vege-

tated flood plain. The vegetation density has a strong impact

on the roughness of a channel (Li et al. ). An equation

was derived that incorporates the influence of the stem den-

sity on the flow resistance (Noarayanan et al. ); it was

found that the energy loss of the head due to friction is

caused by both vegetation and the side walls. Water flows

through different river cross sections with different hydrau-

lic radiuses. When the water depth is far less than the

water flow width, the hydraulic radius is approximately

equal to the water depth. Thus, n varies dynamically with

the streamflow and changes in water depth. The value of n

decreases with increasing depth of flow and varies directly

with slope for high-gradient streams (Azamathulla & Jarrett

). However, the water depth is difficult to measure for all

cross sections in an entire basin. Some equations for calcu-

lating n are based on an analytical model and solved by

iteration (Li & Zhang ). The characteristic size of

streambed particles has an influence on the roughness.

Some studies investigated the relationships between the dis-

tribution of the particle sizes and n (Limerinos ).

The roughness coefficient is not a constant because the

water depth and vegetation density change during different

seasons in a basin. However, current hydrological models

often apply a static n in calculations, without considering

its dynamic changes. The roughness coefficient is a
sensitive parameter in hydrological models (Ye et al.

). By contrast, some studies considered it to be an

empirical parameter and calibrated the hydrological

model by modifying the n value until the simulated dis-

charge reasonably matched the observation (Mahmoudi

et al. ). The n value based on more physical mechan-

isms can decrease the model uncertainty and parameter

sensitivity (Aronica et al. ). There are obvious errors

in the simulation for sub-basins, although the discharge

simulation is satisfactory in large basin outlets because of

equifinality for different parameters sets (Beven ). To

simulate a flash flood or low flow and avoid parameter

over-optimization in each sub-basin, dynamic roughness

coefficient estimation (high-accuracy n) is absolutely

necessary even for a large scale basin.

To manage the n value over a relatively accurate range,

some studies have divided river cross sections into different

strips with uniform roughness coefficients based on the land

cover classification, which were from aerial photos and field

surveys, to calibrate the n value by comparison with the

observed water levels (Kovacs et al. ; Tóth ;

Gichamo et al. ).

In this study, we tried to propose dynamic Manning’s

roughness coefficients (DMRC) and improve the routing of

a hydrological model in basins.

The structure of the paper is as follows: immediately

below the hydrological model and statistical method are

described; a section introducing the data and study

domain follows; next, a section presents the results and dis-

cussion; and the final section provides the conclusions.
METHOD DESCRIPTION

A new equation is proposed to simulate n using statistical

analysis of the estimated n values from Manning’s formula

(Equation (1)) combined with the LAI, soil components,

water depth and water surface width of a river. The new

equation was then applied to improve the routing module

of the Distributed Time-Variant Gain Hydrological Model

(DTVGM) (Xia et al. ) (Figure 1). The DTVGM

inputs are the precipitation, temperature and types of veg-

etation. The DTVGM outputs are discharge and

evapotranspiration in sub-basins. The DMRC model is a



Figure 1 | The framework of dynamic roughness coefficients in the Distributed Time-Variant Gain Hydrological Model (DTVGM). LST is the land surface temperature; c, l and s are the clay,

loam and sand percentages in soil, respectively; LAI is the leaf area index; i is the sub-basin number; k is the time step of iteration and t is the time.
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module of DTVGM. The DMRC output is the roughness

coefficient in the sub-basins. The DMRC inputs are the

LAI, soil structure and water flow cross-section area (m2),

which is from the routing model output. The modelling

time step occurs daily.
Distributed time-variant gain hydrological model

The DTVGM is a daily distributed hydrological model that

incorporates runoff and routing modules. Coupling the

advantages of both nonlinear and distributed hydrological

models, the DTVGM can simulate variable hydrological

processes under complex environmental conditions. It has

been applied to two different cases: the Heihe River basin,

which is in the arid and semi-arid region of north-western

China; and the Chaobai River basin, which is in the semi-

humid region of northern China (Xia et al. ). Multiple

versions of the DTVGM have been proposed, and the

model still undergoes continuous improvement and

innovation.
Runoff module

The runoff module in DTVGM is based on the water bal-

ance principle by calculating evaporation, soil moisture,

surface runoff, sub-surface runoff and base flow. The water
balance equation is given as (Mao et al. ):

Pi ¼ AWiþ1 �AWi þ g1 � AWui

WMu � Cj

� �g2

�Pi þAWui �Kr

þ Epi � AWui

WMu � Cj
þAWgi �Kg (2)

where P is the precipitation (mm), AW is the soil moisture

(mm), AWu is the upper soil moisture for a sub-basin (mm)

(the subscript u means upper soil), AWg is the lower soil

moisture for a sub-basin (mm), WMu is the upper field

capacity (mm), Ep is the potential evapotranspiration, g1
and g2 are parameters (0< g1< 1, 0< g2) where g1 is the

runoff coefficient when soil is saturated and g2 is a par-

ameter for soil water, C is a land cover parameter, which

ranges between 0.1 and 1. The value of C can be calibrated

by observed data or experiment. Kr is the sub-surface runoff

coefficient, Kg is the groundwater runoff coefficient, j is the

sub-basin number and i is the period of time.
Routing module

The kinematic wave model is used in the routing module of

DTVGM (Ye et al. ). The kinematic wave model simpli-

fies the full de Saint Venant equations, where the friction

term in the momentum equation is ignored. Therefore, it

assumes that the friction and gravity forces balance each
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other (Singh ). Assuming that the friction slope (Sf) is

equal to the slope (S0) and the river flow unsteadily varied

in open channels (Ye et al. a), the continuity equation

can be written as:

@A=@tþ @Q=@x ¼ q (3)

where A is the water flow cross-sectional area (m2), t is the

time (s), Q is the discharge (m3/s), x is the flow path (m) and

q is the lateral inflow (m2/s).

The discharge at the water flow cross section is calcu-

lated based on Manning’s formula and is shown below (Ye

et al. ):

Q ¼ A � R2=3 � S1=2f =n (4)

where Q is the discharge of the flow (m3/s), R is the hydrau-

lic radius and A is the water flow cross-section area (m2).

The n coefficient is often a constant in traditional hydro-

logical models and land surface models. However, the most

optimal n for a model is not always equal to a constant, it

changes dynamically with the changing water flow cross-sec-

tion area and vegetation in improved hydrological models.

It is assumed that the cross-sectional average width and

water depth are linearly dependent in channels (Coe et al.

; Paiva et al. ) and the slope is a very wide and shal-

low river, the cross-sectional width w is equal to the river

length L, w¼ L (m) in the slope (Ye et al. ):

w ¼ 2ah ) A ¼ w � h
2

¼ ah2 ) h ¼ A
a

� �1=2

(5)

where h is the average water depth (m), w is the average

water width (m) and a is a parameter determined by river

attributes.

The discharge from the cross section can be computed as:

Q ¼ 1
n
A � R2=3 � S1=2f ¼ 1

n
A � A

2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
� �2=3

�S1=2f

¼ 1
n
� S1=20 �A � aA

4a2 þ 4

� �1=3

¼ 1
n
� S1=20 � (4a2 þ 4)�1=3 � a1=3 �A4=3 (6)
By setting α ¼ (1=n) � S1=20 � (4a2 þ 4)�1=3 � a1=3, β ¼ 4=3,

S0 is the river bed slope (assuming that the friction slope Sf
is equal to the slope S0 in order to simplify the model), the

flow route length (Δx) is equal to the river length: Δx ¼ L,

the large Δx may incur error in the application and dividing

the river length into some segments can decrease the error,

the inflow term q is equal to the lateral flow term Qs/L, Qs

is the discharge (m3·s�1) from the slope to the river of the

sub-basin (the slope area is small, Qs is equal to runoff, or

Qs can be calculated by slope routing model), and the finite

difference representation of equation (@A=@t)þ (@Q=@x) ¼ q

is:

ΔALþ ΔQΔt ¼ QsΔt (7)

Denoting ΔA ¼ At �At�1 at t time and ΔQ ¼ QO �QI ,

where A is the water flow cross-sectional area (m2), QI is

the input discharge (m3·s�1), QO is the output discharge

(m3·s�1), and can be calculated as:

QO ¼ α � At þAt�1

2

� �β

(8)

Combining Equations (6) and (7) with (8), we obtain:

At �At�1 ¼ QI � α � At þAt�1

2

� �β
 !

Δt
L

þQsΔt
L

(9)

If we set

f(At) ¼ QI � α � At þAt�1

2

� �β
 !

Δt
L

þQsΔt
L

�At þAt�1

(10)

f0(At) ¼ � αβ

2
� At þAt�1

2

� �β�1Δt
L

� 1 (11)

A(k)
t ¼ A(k�1)

t � f(A(k�1)
t )

f0(A(k�1)
t )

(12)

where k is the time step of iteration.
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Statistical analysis method

In prior research, the n value in Manning’s formula was a

function of the vegetation density, soil components, water

depth and surface width of rivers (Moharana & Khatua

). In this study, we analysed the relationships between

n and the water depth and surface width using linear

regression. An optimal equation for calculating n was then

derived based on multiple nonlinear regression.

Multiple regression analysis is an appropriate method

when the research problem includes one unique metric-

dependent variable and a dependent-variable that is

related to more than one metric-independent variable

(Hair et al. ). The general purpose of multiple

regression analysis is to learn about the relationship

between several independent or predictive variables and

a dependent or criterion variable (Enayatollahi et al.

). Additionally, an advantage of multiple nonlinear

regression is that a very high order multivariate should

be able to approximate complex multivariate functions

(Cogger ).

Experimental results have indicated that Manning’s

roughness coefficient n increases with the increasing veg-

etation density, which leads to higher flow resistance in

natural channels and hillsides (Li et al. ). The vegetation

density is difficult to obtain in basins. However, the leaf area

index (LAI) can be measured by remote sensing. Instead of

the vegetation density, the LAI was used in this study to

develop a formula for calculating the n. In the simulation

process, the LAI was set to (LAIþ 1) to avoid calculation

errors when the LAI equals zero in bare areas.

Stream bed roughness is associated with bed material,

especially the particle size and distribution (Limerinos

). We selected a soil particle (clay, loam and sand con-

tent) dataset for the bed material information.

The final formula is as follows:

n ¼ p1(cþ 2 � lþ 3 � s)(LAI þ 1) p2Ap3=
ffiffiffiffiffi
2g

p
(13)

where c, l and s are the clay, loam and sand percentages in

soil, respectively; LAI is leaf area index; A is the water flow

cross-section area (m2); g is the gravitational acceleration;

and p1, p2 and p3 are parameters. The roughness of the
flood plain is higher than the roughness in the river because

the river bed was washed clean with water; then, the p1 of

the flood plain was set to greater than the p1 in the river

when it was used in the hydrological model. p2 can indicate

the sensitivity of vegetation. The large p2 shows that veg-

etation is sensitive to roughness. p3 indicates that the cross

sections are large or small or have sharp bends, constric-

tions, or side-to-side shifting of the low-water channel.

Equation (13) was used in the routing process in an

entire basin; n was separately calculated in each sub-basin

during each time period. The water flow cross-sectional

area can be computed using Newton iterations (Equation

(12)) in both channels and slopes. A continuous and consist-

ent LAI (Yuan et al. ) is composited every 8 days at 1-km

resolution. The LAI was interpolated into the sub-basins.

The LAI in the channels and slopes are equal to the LAI

that locates in sub-basins. The A and LAI vary across time

and space.

The p1, p2 and p3 parameters were optimized by 1stOpt

(http://www.7d-soft.com/). 1stOpt is a robust, easy-to-use

and powerful optimization tool that is widely used in various

engineering fields. Based on the optimization software pack-

age 1stOpt, multiple nonlinear regression can be easily

established and solved (Wang et al. ; Hu et al. ).

The 1stOpt search of optimization capability is stronger

than that of other simulation software because it can find

relatively accurate results from any initial value (Tang

et al. ). The Levenberg–MarquardtþUniversal Global

Optimization of 1stOpt was applied to optimize a set of par-

ameters in Equation (2).

There are three steps to calculate dynamic n: 1) reading

the soil structure and LAI at t time, 2) deriving the water

flow cross-sectional area using Newton iterations (Equation

(13)) based on nt,k�1, 3) using Equation (2) to calculate nt,k
for the next iteration. Therefore, n is dynamic in the

improved routing module.

Model performance measures

To evaluate the effectiveness of the simulation, the following

four statistical indices are used: the relative Bias (rBias), cor-

relation coefficient (R), Nash–Sutcliffe efficiency value

(NSE) and root-mean-square-error (RMSE). They are

http://www.7d-soft.com/
http://www.7d-soft.com/
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evaluated by:

rBias ¼ Qc �Q0

Q0
�100% (14)

NSE ¼ 1�
Pm

i¼1 (Qc,i �Q0,i)
2Pm

i¼1 (Qo,i �Q0)
2

" #
�100% (15)

R ¼
Pm

i¼1 (Qc,i �Qc)(Qo,i �Q0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 (Qc,i �Qc)

2 �Pm
i¼1 (Qo,i �Q0)

2
q (16)

and

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

(Qc �Q0)
2=m

vuut (17)

where Q0, Qc, Q0 and Qc are the observed flow, simulated

flow, average observed flow and average simulated flow,
Figure 2 | Location of hydrological stations in the Yellow River basin.
respectively. m is the number of simulation and observation

pairs.

rBias refers to the correspondence between the average

simulated value and the average observations. R checks the

fitness of the simulated and observed values. The RMSE is

used to measure the deviation between the observation

and simulated values. If NSE is close to 1, the model is con-

sidered to have good quality and be highly reliable. If it is

close to 0, the simulation is close to the observed value of

an average level and the overall results are legitimate, but

a bad simulation error has occurred. If the NSE is smaller

than 0, the model is not reliable.
DATA AND STUDY DOMAIN

The Yellow River is the second-longest river (Figure 2) in

China, originating from the Tibetan plateau. It passes

through the northern semi-arid region, crosses the Loess Pla-

teau and finally discharges into the Bohai Gulf (Yang et al.



Table 1 | Hydrological station information

ID Station name Longitude Latitude

Annual
streamflow
(m3/s)

A1 Damitan 100.24 35.32 19

A2 Huangyuan 101.27 36.68 7.32

A3 Dongjiazhuang 101.27 36.67 2.13

A4 Xining 101.78 36.63 18.2

A5 Ledu 102.41 36.48 39.6

A6 Hanfuwan 106.15 36.60 0.331

A7 Guojiaqiao 106.25 37.98 3.64

A8 Hademengou 109.63 40.68 0.006

A9 Hequ 111.15 39.37 474

A10 Fugu 111.08 39.03 500

A11 Qiaotou 111.13 38.93 0.01

A12 Wenjiachuan 110.75 38.48 4.75

A13 Gaojiachuan 110.48 38.25 6.32

A14 Dingjiagou 110.25 37.55 18.3

A15 Wubao 110.72 37.45 562

A16 Baijiachuan 110.42 37.23 19.6

A17 Ganguyi 109.80 36.70 3.36

A18 Longmen 110.58 35.67 562

A19 Jingle 111.92 38.33 10.8

A20 Dudui 113.18 37.72 0.846

A21 Yitang 111.83 37.00 10.5

A22 Hongde 107.19 36.76 1.33

A23 Tongren 102.02 35.52 15.1

A24 Jiaqiao 107.90 36.08 2.37

A25 Qingyang 107.88 36.00 3.99

A26 Banqiao 107.98 35.92 0.386

A27 Jingchuan 107.35 35.33 2.58

A28 Yangjiaping 107.74 35.33 8.95

A29 Yuluoping 107.89 35.33 8.69

A30 Tuoshi 106.53 34.49 27.1

A31 Qianyang 107.13 34.63 4.46

A32 Weijiabao 107.74 34.30 33.6

A33 Xianyang 108.70 34.32 62

A34 Laoyukou 108.53 34.02 2.94

A35 Chenhe 108.16 33.98 7.4

S1 Tangnaihai 130.37 46.82 630

S2 Yuanjiaan 107.3524 35.3355 2.1

S3 Jingchuan 107.3523 35.3398 4.98
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). The main course of the Yellow River flows for

approximately 5,464 km and has a drainage basin area of

approximately 752,443 km2. The Yellow River was divided

into 3,316 sub-basins, and each sub-basin area is greater

than 100 km2. The climate conditions vary from cold to tem-

perate zones and change from arid and semi-arid to semi-

humid regions (Cheng ). The annual precipitation for

the Yellow River is approximately 450 mm. However, the

annual evaporation is 1,100 mm.

There are 35 stations with estimated data to simulate the

roughness coefficient (Table 1), which include the water sur-

face width (w), discharge (Q), water depth (H ), friction slope

(s) and roughness coefficients (n) for the period from 2008

to 2012, obtained from hydrological year books of the

Yellow River Basin. The Manning’s roughness coefficient

is estimated using Manning’s formula.

The observed discharge in three hydrological stations

was selected to compare the raw (the model with static n)

and improved (the model with dynamic n) model results.

We selected the three stations because it is very difficult to

obtain more observed discharge data in other small catch-

ments. Tangnaihai station has a 121,927 km2 drainage area

in the upper Yellow River basin; Jingchuan and Yuanjiaan

stations have 3,145 km2 and 1,661 km2 drainage areas,

respectively, in the midstream Yellow River basin. Addition-

ally, the observed daily discharge data (from 1998 to 1999)

of Tangnaihai station, Yuanjiaan station and Jingchuan

station were collected from the Yellow River Conservancy

Commission (YRCC).

Daily precipitation and potential evaporation data from

1955 to 2012 were provided by the China Meteorological

Administration. There are 983 precipitation gauges and

839 evaporation gauges in continental China. A continuous

and consistent LAI (Yuan et al. ) is composited every 8

days at 1-km resolution, and a conterminous China multi-

layer soil particle-distribution dataset (clay, loam and sand

content) was developed by Shangguan et al. () with a res-

olution of 1 km × 1 km.

The daily precipitation and evaporation data, LAI

(Figure 3) and Yellow River soil particle-distribution

(Figure 4) were interpolated into the 3,316 sub-basins.

Figure 3 shows that the LAI on the slope is much larger

than that from the main streams. The LAI value is much

larger in the upstream and downstream in July. The main



Figure 3 | The mean spatial distribution of LAI in (a) January, (b) April, (c) July and (d) October in the Yellow River basin.
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causes are that approximately 70% of the total annual rain-

fall is restricted to the summer (June–September) (Ye et al.

b), and there is a desert in the middle stream in the

Yellow River basin.
RESULTS AND DISCUSSION

Statistical analysis of estimated n with each of the

components

From the definition of the roughness coefficient, we know

that the roughness coefficients were determined by the

soil, specific discharge conditions, and size, shape and

types of vegetation that line the bed and sides of the channel.

Therefore, we selected the composition of the soil (sand,

loam and clay), LAI and water flow cross-section area to
estimate the n value. We collected 1,177 estimated rough-

ness coefficients and corresponding water depths, surface

widths, LAIs and soil data from 35 hydrostations. However,

the samples were not sufficient to quantify the effect of soil

and vegetation in 35 stations. Li (2014) and Noarayanan

et al. () studied vegetation–flow interactions under lab-

oratory conditions. Their study showed that the Manning’s

vegetation roughness coefficient due to vegetation resistance

increased with the increasing vegetation density. We used

their results in our study. The roughness coefficient is closely

related to the particle size and distribution (Limerinos ).

Limerinos () reported that the large particle size

increased the roughness coefficient by using 11 catchment

data sites in the USA.

To explore the relationship between the n value and

water depth d and surface width w, scatter diagrams were

produced to support the statistical analysis.



Figure 4 | Clay, loam and sand fractions in the Yellow River: (a) clay fraction, (b) loam fraction and (c) sand fraction (Shangguan et al. 2012).
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The observed d and estimated n values for six stations are

shown in Figure 5. Obviously, there is a negative relationship

between d and n for the Tongren, Huangyuan, Xining, Ledu

and Dongjiazhuang stations, meaning that Manning’s n

decreases with an increase of water depth. This means that

less energy was consumed as the flow depth increased in

open channels. This behaviour was also confirmed by

Fippin-Dudley et al. (). However, this negative relation-

ship is not shown for Damitan station. The main cause is

that a decreasing n value is a comprehensive function of mul-

tiple factors, such as the riverbed irregularity, vegetation

density and particle sizes in a riverbed. The riverbed has

been cleared and fixed at Damitan station such that the

roughness is more like constant at Damitan station.

Figure 6 shows the variation of n with the water surface

width. The n value decreases with increasing water surface

width, meaning that broader water surface width will gener-

ate lower flow resistance.

Roughness coefficient model calibration and validation

The hydrological stations shown in Figure 2 are labelled, start-

ing from upstream of the Yellow River to the downstream.
There are only 1,177 estimated n values byManning’s formula

in 35 stations. The data period is from2008 to 2012. The period

is too short, and we wanted to verify the improved method in

different locations. Therefore, the observed data of 21 stations

(A1–A21) were used to calibrate the parameters in Equation

(2), and the data from the remaining 14 stations (A22–A35)

were used to validate the p1–p3 parameters.

The values for p1, p2 and p3 of Equation (2) were 0.19

(0.475 in river), 0.2, and �0.15, respectively, according to

the multiple nonlinear regression method. Equation (2)

can be represented by Equation (11) with the substitution

parameters.

n ¼ 0:19�(cþ 2lþ 3s)(LAIþ 1)0:2A�0:15=
ffiffiffiffiffi
2g

p
(18)

The results of the calibration and the validation period

are shown in Figure 7. The correlation coefficient is 0.71

and the RMSE is 0.019 between the estimated and simulated

n for the calibration (A1–A21). The correlation coefficient is

0.70 and the RMSE is 0.016 for the validation (A22–A35).

The results showed that the formula of Equation (2) for cal-

culating n is reliable and that the parameters (p1, p2 and p3)

are suitable for the Yellow River basin.



Figure 5 | Relationship between the estimated n value and water depth (d ).

Figure 6 | Relationship between the estimated n value and surface water width (w).
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There are different percentages of clay, loam and sand in

each type of soil. With a large particle size, n is large in sand.

Furthermore, a high vegetation density contributes to the

resistance of flow.
Validation of roughness coefficient in the DTVGM

In the DTVGM, each sub-basin is defined as a hydrological

unit to calculate the runoff, roughness coefficients and routing.



Figure 7 | Relationship between the simulated n and estimated n in (a) the calibration period and (b) the validation period.
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Table 2 shows the DTVGM parameter values. These

parameters were the optimized results from using the

observed streamflow. A manual calibration method was

used to calibrate the model parameters because the distribu-

ted hydrological model takes a long time to run, and

automatic calibration would be too time-consuming.

During manual calibration, the model was run a few times

to ensure that NSE, R and rBias were good. Due to the

difference of vegetation, soil and climate between upstream

and downstream in the Yellow River basin, the parameters

of the runoff module are different at different hydro-stations.

Except for the roughness coefficients, parameters in the

raw (static n) DTVGM and improved (dynamic n) DTVGM

are the same at the same station. Using the raw and

improved DTVGM, we produced raw and improved simu-

lated discharges.

Figures 8–10 show the daily hydrograph of Tangnaihai,

Jingchuan and Yuanjiaan stations in 1998 and 1999. In

Figure 8(a), the two lines of the raw discharge and improved

discharge are almost the same and the difference of error is

not obvious, mainly because Tangnaihai station is located in

the main channel of the Yellow River, and the catchment

area is very large (121,972 km2). The Manning’s n is greater
Table 2 | Parameters of the DTVGM

Station g1 g2 Kr Kg

Tangnaihai 0.4 1 0.1 3

Jingchuan 0.35 1.6 0.1 2

Yuanjiaan 0.3 2 0.1 2
than true value in main river channels and less than true

value in the slopes in the static Manning’s n model. The vel-

ocity of the flow would decrease if n increases and other

conditions do not change, and vice versa. The Manning’s

n is not equal to true value in slopes and river channels,

the simulated velocity of the flow is smaller than true

value in slopes and is greater than true value in river chan-

nels. The total simulated streamflows are similar because

the errors are offset in slopes and river channels. Figure 8(b)

depicts the absolute error between the observed and simu-

lated discharge. However, the absolute error in

Figures 9(b) and 10(b) is more obviously different than

that in Figure 8(b). The drainage areas of the Jingchuan

and Yuanjiaan catchments are small. The simulated flood

peak in the improved model is less than that in the raw

model and is more close to the observed discharge in

Figures 9(a) and 10(a). The improved model affords a

reasonable roughness to the slope, making the new simu-

lated discharge more accurate than the raw simulated

discharge in a small catchment. This means that the

improved model can increase the flood simulation accuracy

on the slope by affording an accurate roughness on the

slope.
n p1 (slope) p1 (river) p2 p3

0.04 0.15 0.375 0.2 �0.25

0.04 0.15 0.375 0.2 �0.25

0.04 0.15 0.375 0.2 �0.25



Figure 8 | The daily hydrograph (a) and absolute error (b) in 1998 and 1999 at Tangnaihai station. The raw-observed discharge is the raw model simulated discharge minus the observed

discharge. The improved-observed discharge is the new model simulated discharge minus the observed discharge.

Figure 9 | The daily hydrograph (a) and absolute error (b) in 1998 and 1999 at Jingchuan station. The raw-observed discharge is the raw model simulated discharge minus the observed

discharge. The improved-observed discharge is the new model simulated discharge minus the observed discharge.
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The improved and raw model performance indices

are shown in Table 3. The indices show that the

improved model performs better than the raw
model. The indices did not markedly increase in the

large basin, but they obviously increased in a small

catchment.



Figure 10 | Raw and improved simulated discharges at Yuanjiaan station.

Table 3 | Model performance indices in the Yellow River basin

Station No. Drainage area (km2)

NSE R rBias (%)

Raw Improved Raw Improved Raw Improved

Tangnaihai 40100350 121,972 0.821 0.830 0.909 0.915 �2.3 �2.6

Jingchuan 41200500 3,145 0.742 0.751 0.865 0.867 �1.2 �2.5

Yuanjiaan 41202000 1,661 0.656 0.736 0.819 0.859 4.8 4.2

Tangnaihai station is a control station in the Yellow River source area, and Jingchuan and Yuanjiaan stations are located midstream. The data period is 1998–1999.
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To clearly justify why having a dynamic Manning’s

roughness is necessary, the flood peak anomaly percentage

(FPAP, %) was used to compare the simulated flood peak

at sub-basins from the improved and the raw models:

FPAP ¼ Qdmax �Qsmax

Qsmax
� 100% (19)

where Qdmax is the simulated flood peak with dynamic Man-

ning’s n (m3/s), Qsmax is the simulated flood peak with static

Manning’s n (m3/s), and all other data and parameters are

the same in the improved and the raw models.

Figure 11 shows the spatial distributions of the flood

peak anomaly percentage during 1998 to 1999 in the
Yellow River basin. The FPAP is less than zero at the

slope because the dynamic Manning’s n is greater than the

static Manning’s n at the slope. However the FPAP is

close to zero in the main river channel because the dynamic

Manning’s n is less than the static Manning’s n in the river

channel. The minimum FPAP is �45%, which shows that

the simulated flood peak may have a large error at the

slope with the static Manning’s n, although the model has

high performance at the basin outlet (Table 3).

The hourly flood peak is larger than the daily flood peak

at the same time, and the hourly low flow is smaller than the

daily low flow. The hourly n will be more variable than the

daily n, resulting in a variable flow cross section (Equation

(1)). Therefore, the hourly performance will be better than



Figure 11 | Spatial distributions of the flood peak anomaly percentage (FPAP, %) during 1998 to 1999 in the Yellow River basin.
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the daily performance using the dynamic nmodel. However,

it is very difficult to obtain hourly discharge data over a long

period. We will continue to study the hourly data in the

future.

Figure 12 shows the seasonal spatial distribution of n in

1998 for the Yellow River. The n values were calculated by

Equation (2) in the DTVGM. The n values are very small

along the river channel and large on the slopes. The main

causes are the higher vegetation density and shallower

water depth on the slopes. The n values are small in

spring and summer in the river channel because the water

is deep during those two seasons. However, n is large in

spring and summer on the slopes because the vegetation is

luxuriant in spring and summer. The reverse result is

shown in autumn and winter.
Strengths and weaknesses of dynamic n model

There are three advantages for applying the dynamic n in

the hydrologic model. 1) The dynamic n is close to the

true n value, and it is better than a constant in the raw

hydrologic model. A more physical mechanistic parameter

can decrease the model uncertainty and sensitivity of the

parameter. 2) The improved simulated discharge will have

a higher accuracy than the raw model in sub-basins. 3)

The satisfactory spatial-temporal distribution of n can

improve the flash flood and low flow simulations.
The weaknesses of the model are as follows: 1) the

dynamic n equation is a statistic formula, making it difficult

to calibrate the parameters and 2) higher resolution DEM,

vegetation and soil structure datasets are needed to calculate

the dynamic n.
CONCLUSIONS

This research proposed a new way to provide a dynamic

spatial-temporal distribution of Manning’s roughness coeffi-

cients for hydrological models in basins. Based on the new

concept, a distributed hydrological model was improved

and applied to the Yellow River in China. The results

have already shown that the improved model can provide

more accurate simulated streamflow than the raw model.

The new scheme of n took the LAI, soil components,

hydraulic radius and water flow cross-section area into

consideration, producing new n values that are closer to

the true values than those from the raw model, especially

on slopes. The n values are very small along the river chan-

nel and large on the slopes. The simulated flood peak may

have a large error at the slope with the static Manning’s n,

although the model has high performance at the basin

outlet. The simulated streamflow with the dynamic Man-

ning’s n is more accurate than that with the static

Manning’s n. The dynamic spatial-temporal distribution of



Figure 12 | The seasonal spatial distribution of the roughness coefficients in the Yellow River in 1998: (a) spring, (b) summer, (c) autumn, and (d) winter.
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n can now be used in other hydrological models or land

surface models.

In the future, we will keep working to improve the

roughness coefficient equation based on higher resolution

data and other observed information. Additionally, we will

develop a global routing in the land surface model using

the new n scheme.
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