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simulation results were also examined. All the results 
showed that the optimal parameters obtained by ASMO are 
superior to the default parameters for WRF simulations for 
predicting summer precipitation in the Greater Beijing Area 
because the optimal parameters are not constrained by spe-
cific precipitation events, boundary conditions, and spatial 
resolutions. The optimal values of the nine parameters were 
determined from 127 parameter samples using the ASMO 
method, which showed that the ASMO method is very 
highly-efficient for optimizing WRF model parameters.

Keywords Adaptive surrogate model-based optimization 
method · Parameter optimization · Optimization 
assessment · Weather Research and Forecasting model

1 Introduction

Numerical weather prediction (NWP) models have become 
indispensable tools for studying mesoscale weather pro-
cesses due to the continuity and predictability of their sim-
ulation results (Lorenz 1960; Richardson 2007). In recent 
decades, NWP models have developed rapidly based on 
multiple advanced techniques, including supercomputer 
capability, observational systems, data assimilation, and 
post-processing, among others. For instance, more observed 
data obtained by the advanced observation tools have deep-
ened our understanding of certain weather processes, lead-
ing to better dynamic representations of physical processes 
(Cotton et  al. 1982; Dudhia 1989; Janjic 1994; Gregory 
et al. 2000; Chen and Dudhia 2001; Hong and Lim 2006; 
Gilliam and Pleim 2010). The data assimilation method 
improves the initial values of the NWP model by merg-
ing the observed data with the simulations (Evensen 1997; 
Barker et al. 2002; Kalnay 2003; Rabier 2005; Wang et al. 

Abstract Forecasting skills of the complex weather and 
climate models have been improved by tuning the sensi-
tive parameters that exert the greatest impact on simulated 
results based on more effective optimization methods. 
However, whether the optimal parameter values are still 
work when the model simulation conditions vary, which 
is a scientific problem deserving of study. In this study, a 
highly-effective optimization method, adaptive surrogate 
model-based optimization (ASMO), was firstly used to 
tune nine sensitive parameters from four physical param-
eterization schemes of the Weather Research and Forecast-
ing (WRF) model to obtain better summer precipitation 
forecasting over the Greater Beijing Area in China. Then, 
to assess the applicability of the optimal parameter val-
ues, simulation results from the WRF model with default 
and optimal parameter values were compared across pre-
cipitation events, boundary conditions, spatial scales, and 
physical processes in the Greater Beijing Area. The sum-
mer precipitation events from 6  years were used to cali-
brate and evaluate the optimal parameter values of WRF 
model. Three boundary data and two spatial resolutions 
were adopted to evaluate the superiority of the calibrated 
optimal parameters to default parameters under the WRF 
simulations with different boundary conditions and spatial 
resolutions, respectively. Physical interpretations of the 
optimal parameters indicating how to improve precipitation 
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2008; Huang et al. 2009; Liu et al. 2013). Recently, more 
and more studies started focusing on optimizing parameters 
of complex NWP models to improve their forecasting skills 
as the highly-efficient optimization methods arose (Duan 
et al. 2016; Ollinaho et al. 2014; Yang et al. 2012).

Parameter optimization refers to a process that searches 
a set of parameter values in the multi-dimensional param-
eter ranges by the parameter perturbation method, with the 
intent of bringing the simulation results of a model with 
the selected parameter values closer to the corresponding 
observed data (Duan et al. 1994). During parameter optimi-
zation, each parameter perturbation produces a new param-
eter set that is used to update the original model parameter 
set to carry out new simulations. Therefore, optimization 
usually requires thousands of model runs using routine 
optimization methods such as the quasi-Newton method 
(Liu and Nocedal 1989), the downhill simplex method 
(Nelder and Mead 1965), simulated annealing (Eglese 
1990), and genetic algorithms (Michielssen et  al. 1993), 
among others. However, it is not suitable to tune the param-
eters of complex NWP model with huge computational 
demand required. So, earlier studies focused on parameter 
optimization of relatively simple weather models (e.g., Qiu 
and Chou 1988; Mu et  al. 2002; Severijns and Hazeleger 
2005; Duane and Hacker 2008). Even for parameter opti-
mization of complex climate models, simulations at lower 
spatial resolutions have been conducted to reduce the time 
consumption of a single model run (Liu et al. 2004; Annan 
et  al. 2005; Bellprat et  al. 2012; Ihshaish et  al. 2012). In 
recent years, some highly-efficient optimization methods 
(e.g., Jackson et al. 2008; Wang et al. 2014) were proposed, 
making it possible to optimize the parameters of complex 
NWP models. For instance, Yang et  al. (2012) optimized 
the parameters of a cumulus convection parameteriza-
tion scheme for the Weather Research and Forecasting 
(WRF) model using multiple very fast simulated annealing 
(MVFSA) (Jackson et  al. 2008). Santanello et  al. (2013) 
used the NASA land information optimization system (LIS-
OPT) to adjust the parameters of the Noah land model in 
the WRF model, which improved the simulation results 
for the variables related to land–atmosphere interaction. 
Duan et al. (2016) optimized the sensitive parameters from 
five physical parameterization schemes of WRF model to 
improve summer precipitation simulations with 9-km reso-
lutions using adaptive surrogate model-based optimization 
(ASMO) proposed by Wang et al. (2014).

After the parameter optimization, the problem arises 
whether the calibrated optimal parameters can still 
improve the simulation results of model when some sim-
ulation conditions are changed. The conditions refer to 
simulation events, lateral boundary forcing data, and spa-
tial resolutions, among others. If the model with optimal 
parameters calibrated in last year does not improve the 

future forecasting or the optimal parameters calibrated in 
the high-resolution simulations do not have better simula-
tion ability than the default parameters in the low-resolu-
tion simulations, the usefulness of the parameter optimi-
zation will be limited. However, note that more attention 
has been paid to how to obtain the optimal parameters, 
and the applicability of the optimal parameters across the 
different simulation conditions is usually ignored. Yan 
et  al. (2014) compared the optimal parameter values of 
WRF models across three spatial resolutions, but whether 
the optimal parameters obtained at higher resolutions can 
improve the simulations at lower resolutions was not dis-
cussed. Ollinaho et al. (2014) evaluated the model simu-
lations with optimal parameters under the different geo-
graphical distribution and found that the simulated results 
of surface temperature in Northern Hemisphere get better 
but worse in Southern Hemisphere and tropics. So, we 
only analyzed the applicability of the optimal param-
eters across the different simulation conditions for certain 
region.

This paper tries to address two problems related to 
parameter optimization in the NWP model. The first is 
how to conduct highly efficient parameter optimization of 
NWP precipitation simulations using the ASMO method. 
The second is whether the optimal parameters are robust on 
other simulations of the study area. In this study, the WRF 
model, as a representative of the complex NWP model, was 
used to implement parameter optimization for the precipita-
tion simulations. According to the results of the screened 
sensitive parameters from the parameterization schemes of 
six physical processes (Di et  al. 2016), only the sensitive 
parameters of the WRF model were optimized by AMSO. 
The threat score (TS), a common precipitation index used 
in operational forecasting systems, was used to evaluate 
the difference between the simulation results and the corre-
sponding observed data. Because a higher resolution WRF 
simulation was conducted, there was no parameterization 
scheme to be used to describe the cumulus physical pro-
cesses. Hence, the optimized parameters are distinctly dif-
ferent from that from experimental design of Duan et  al. 
(2016). After optimization, the applicability of the optimal 
parameters across precipitation events, boundary condi-
tions, spatial resolutions, and physical processes was exam-
ined to demonstrate the robustness of optimal parameters.

This paper is organized as follows. Section  2 presents 
the methodology related to the ASMO optimization pro-
cedure. Section 3 offers a description of the experimental 
design, including the parameters optimized, the sampling 
algorithm, the WRF configuration, the selected precipita-
tion events, and the observed data. Section 4 presents the 
optimization results and discusses the applicability of the 
optimal parameters under various conditions. Conclusions 
and further discussion are presented in the last section.
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2  Methodology

Compared to routine parameter optimization methods, 
ASMO method is especially suitable for parameter opti-
mization of large complex dynamic models (e.g., WRF, 
GCM) with heavy computational requirements. Because 
the ASMO method searches for the optimal model solu-
tion (usually the minimum error between the simula-
tion and the observation), relying mainly on the statisti-
cal surrogate model rather than the real physical model, 
the optimization convergence speed using the ASMO 
method will be greatly improved. The surrogate model 
is also called the statistical regression model and is built 
by a statistical regression method based on the parameter 
inputs and corresponding output errors of the real physi-
cal model. Many regression methods can be selected, 
such as the multivariate adaptive regression spline 
(MARS), sum of trees (SOT), support vector machine 
(SVM), artificial neural networks (ANN), and Gaussian 
process regression (GPR). The ASMO procedure consists 
of initial sampling, surrogate model construction, and 
adaptive sampling. Model parameter optimization of the 
real physical model using the ASMO method can be sim-
ply described as follows.

1. Obtain representative sample sets from the ranges and 
distributions of the adjusted parameters using a suit-
able sampling method. Then evaluate the simulation 
results of the real model with the different parameter 
sample values and compute their errors by compar-
ing the simulation results with the observed data. The 
input parameter values and their corresponding model 
simulation errors are combined to constitute the initial 
sample points.

2. Build a surrogate model by a statistical regression 
method among the initial sample points. Note that this 
usually requires a surrogate model that is more repre-
sentative of the real model. Hence, the various statisti-
cal regression methods should be compared beforehand 
to determine the best one.

3. Search the optimal parameter values on the surrogate 
model using the rapid optimization method. Then, as a 
new parameter set, the optimal parameter values from 
the surrogate model are substituted into the real physi-
cal model to evaluate the corresponding output error of 
the real model. Finally, new sample point consisting of 
the new parameter set and its simulated error is added 
to the initial sample point sets to update the existing 
surrogate model.

4. Repeat steps (2) and (3) until the convergence criteria 
for parameter optimization of the real physical model 
are met. The globally optimal parameter values of the 
real physical model have now been found.

3  Experimental design

3.1  Model configuration and optimized parameters

The advanced research WRF is a new-generation mes-
oscale numerical weather prediction model (Skamarock 
et  al. 2008). It serves meteorological applications at 
scales ranging from tens of meters to thousands of kilo-
meters. WRF version 3.6.1 was used in this study. The 
simulation domain was located within 38.35°−42.25°N 
and 113.35°−119.55°E over the Greater Beijing Area 
in China (i.e., the d02 area in Fig. 1). To obtain a more 
reasonable lateral boundary data for the d02 area, a two-
grid horizontally nested domain was set up. The inner 
layer is the Greater Beijing Area, which is composed of 
180 × 153 horizontal grid cells with a spatial resolution 
of 3 km, and the outer layer is the North China area (i.e., 
the d01 area in Fig. 1), which is composed of 202 × 145 
horizontal grid cells with a spatial resolution of 9  km. 
The common 38 sigma vertical levels are divided from 
the surface to 50 hPa. The uniform time step is 60 s. The 
lateral boundary meteorological fields driving the simula-
tion of the d01 area are 6-hourly interval data from cli-
mate forecast system reanalysis (CFSR) data, including 
surface and radiative fluxes with Gaussian T382 spatial 
resolution and three-dimensional pressure-level data with 
a 0.5° grid in latitude and longitude.

To obtain more reasonable precipitation simulations 
over the Greater Beijing Area, the physical parameteriza-
tion schemes were chosen to comply with the operational 
forecasting choices of the Beijing Meteorological Bureau. 
Hence, the WRF single-moment 6-class (WSM6) micro-
physics scheme (Hong and Lim 2006), the Kain-Fritsch 
(new Eta) cumulus scheme (Kain 2004), the rapid radi-
ative-transfer model (RRTM) longwave scheme (Mlawer 
et  al. 1997), the Dudhia shortwave scheme (Dudhia 
1989), the Yonsei University (YSU) planetary bound-
ary layer scheme (Hong et  al. 2006), the Monin-Obuk-
how surface layer scheme (Dudhia et  al. 1999), and the 
Noah land-surface model (Chen and Dudhia 2001) were 
used to constitute the WRF configuration for the physical 
schemes in this study. Due to the higher spatial resolution 
(i.e., 3 km) in the d02 area, the cumulus scheme was not 
used for the inner-layer simulations. However, it had to 
be considered in the outer-layer simulations with a spa-
tial resolution of 9 km. Finally, based on the WRF param-
eter sensitivity results of Di et al. (2016), nine parameters 
from the four physical processes (i.e., the microphysics, 
shortwave, land-surface, and planetary boundary layer 
schemes) were selected to tune the precipitation simula-
tion results for the Greater Beijing Area. The nine opti-
mized parameters are listed in Table 1.
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3.2  Observed data and precipitation events

Summer precipitation events from 2008 to 2010 in the 
Greater Beijing Area were selected to conduct WRF param-
eter optimization. The observed data came from China 
hourly merged precipitation analysis products (CHMPA-
Hourly, version 1.0), which combines 30,000 gauge stations 
and the climate precipitation center morphing (CMOPRH) 
satellite precipitation product at a horizontal resolution of 
0.1° in latitude and longitude (Shen et al. 2014).

Based on observed data, the daily average precipitation 
amounts for the Greater Beijing Area over summer (JJA) 
from 2008 to 2010 are shown in Fig. 2. From these, nine 
precipitation events, including the maximum precipitation 
event for each month, were selected to conduct the optimi-
zation experiments for obtaining the better WRF parameter 

value for precipitation simulations; except that, another six 
precipitation events, including the second strongest precipi-
tation events, were selected to conduct the validation of the 
optimal parameter values. Each of all 15 events spanned 
2  days. Therefore, the nine optimization events were 
framed by boxes (a–i) with solid borders, and the other six 
validation events were framed by boxes (A–F) with dotted 
borders in Fig.  2. Besides the 15 precipitation events, 20 
summer (JJA) precipitation events from 2011 to 2013 were 
also simulated to validate the reasonableness of the optimal 
parameters.

3.3  Experimental setup for parameter optimization

The ASMO method was used to optimize the nine sensitive 
parameters. The method is available in a software package 

Fig. 1  WRF simulation domain 
with two horizontally nested 
grids

Table 1  The list of the sensitive parameters from four physical schemes of WRF version 3.6.1

Parameter Scheme Default Range Description

ice_stokes_fac Microphysics (module_mp_wsm6.F) 14,900 [8000, 30,000] Scaling factor applied to ice falling velocity  (s−1)
n0r 8e+6 [5e+6, 1.2e+7] Intercept parameter of rain  (m−4)
dimax 5e−4 [3e−4,  8e−4] Limiting maximum value for the cloud-ice diameter (m)
cssca Short wave radiation (module_ra_sw.F) 1e−5 [5e−6,  2e−5] Scattering tuning parameter  (m2  kg−1)
porsl Land surface(module_sf_noahlsm.F) 1 [0.5, 2] Multiplier for saturated soil water content
bsw 1 [0.5, 2] Multiplier for Clapp and Hornberger “b” parameter
brcr_sb Planetary boundary layer (module_bl_

ysu.F)
0.25 [0.125, 0.5] Critical Richardson number for the boundary layer of 

land
pfac 2 [1, 3] Profile shape exponent used to calculate the momentum 

diffusivity coefficient
sm 15.9 [12, 20] Counter-gradient proportional coefficient of non-local 

momentum flux
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called the uncertainty quantification Python laboratory (UQ_
PyL) (Wang et al. 2016). UQ_PyL integrates many tools for 
uncertainty quantification (UQ), including design of experi-
ments, statistical analysis, sensitivity analysis, surrogate mod-
eling, and optimization. Parameter optimization for the WRF 
model using ASMO required four steps. First, the adjusted 
parameters were sampled according to their ranges and dis-
tributions to obtain the initial parameter sets. If the param-
eter distributions are unknown, it is usually assumed that the 
parameter follows a uniform probability distribution accord-
ing to the maximum entropy or minimum relative entropy 
theory (Woodbury and Ulrych 1993; Hou and Rubin 2005). 
Under the assumption, it has been proved that a quasi-Monte 
Carlo (QMC) sampling method can achieve better uniform-
ity in higher-dimensional projections (Hou et al. 2012; Wang 
et al. 2014). Jones et al. (1998) suggested that the sample size 
for the initial parameter sets should be 10 times the dimen-
sionality of the parameters. Hence, 100 points in nine-dimen-
sional parameter space, as selected using the QMC sampling 
method in this study, were sufficient. Second, all the simula-
tion errors of the WRF models with the 100 different parame-
ter sets were evaluated, and then a statistical surrogate model 
was constructed using a reasonable statistical regression 

method based on 100 combinations of parameter inputs and 
corresponding model output errors. Wang et  al. (2014) and 
Gong et al. (2015) found that the Gaussian process regression 
(GPR) method had better regression ability than the other 
methods (e.g., SVM, MARS, ANN, and random forests, 
among others), and therefore the GPR method was chosen 
to construct the surrogate model. Third, to optimize the sur-
rogate model, the more efficient shuffled complex evolution 
(SCE-UA) optimization method (Duan et al. 1994) was used 
to search for the optimal parameter values of the surrogate 
model. As a new parameter set, the optimal parameter values 
were put into the real WRF model to obtain the correspond-
ing simulation error. The new parameter set and its simula-
tion error were added to the initial sample sets to update the 
existing surrogate model. Finally, the two processes (optimi-
zation and update of the surrogate model) were repeated until 
the convergence criteria for WRF model parameter optimi-
zation were met. In this study, the convergence criteria were 
defined as either the local optimal value of WRF simulation 
remaining unchanged after a number of searches equal to 
five times the dimensionality of the parameters, or the num-
ber of searches reaching the prescribed maximum number of 
samples.
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Fig. 2  The 15 precipitation events, including the maximum pre-
cipitation in each month during the summer from 2008 to 2010. The 
events were divided into two categories: (1) the calibration events, 

framed by boxes (a–i) with solid border; (2) the validation events, 
framed by boxes (A–F) with dotted border
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The evaluation function for the precipitation simulation 
results was the threat score (TS), which can be formulated as 
follows:

where NA is the number of grid cells where the simulated 
and observed precipitation amounts simultaneously fall into 
the prescribed threshold range; NB is the number of grid 
cells where the simulated value falls within the range, but the 
observed value does not; and NC is the number of grid cells 
where the simulated value does not fall within the range, 
but the observed value does. The range of TS is from 0 to 1, 
where 0 indicates no score, and 1 indicates a perfect score. 
To evaluate the precipitation simulation results more pre-
cisely, the 6-hourly TS were used rather than the 24-hourly 
TS. According to the classification of 6-hourly precipitation 
intensity in Table 2, the TS formulation in Eq. (1) was used 
to compute the hit rates for the various threshold intervals. 
Because of the lower occurrence rates for heavy storm and 
severe storm among the selected precipitation events accord-
ing to the observation date, simulations for the first four 
types of precipitation (i.e., light rain, moderate rain, heavy 
rain, and storm) were considered in this study.

To obtain better forecasts of the four types of precipita-
tion, multi-objective optimization was used. According to the 
strategy proposed by Liu et al. (2005) to solve multiple-objec-
tive optimization problems, the multi-objective cost func-
tions were converted to a single-objective cost function by a 
weighted sum method that allocated the different weights to 
multiple single-objective functions and then summed them. 
In this study, the total weighted objective function for the four 
precipitation types was defined as follows:

where fj(�) is the TS value of the simulation with input 
parameter values θ for the jth type of precipitation; j is 
equal to 1, 2, 3, or 4, representing light rain, moderate rain, 

(1)TS =
NA

NA + NB + NC
,

(2)F(�) = −
1

4

4
∑

j=1

fj(�)

fj
(

�def

) ,

heavy rain, and storm, respectively; �def  is a constant repre-
senting the default parameter values; and the ratio of fj(�) 
to fj

(

�def

)

 is the normalized TS for parameter values � for 
the jth type of precipitation. Taking the 100 initial sample 
points as an example, the average values of all normalized 
TS for light rain, moderate rain, heavy rain, and storm were 
1.013, 1.031, 1.089, and 0.964, respectively. Therefore, 
equal weights (i.e., 1

4
) were divided into the respective nor-

malized TS in the total multi-objective function. Higher TS 
value indicates better precipitation forecasting according to 
the definition of TS, and hence the negative sign means that 
better simulations have smaller values of total normalized 
TS.

Besides TS, another quantitative assessment index for 
the validation of precipitation optimization simulations 
is the structure, amplitude, and location (SAL) index pro-
posed by Wernli et al. (2008). They describe the difference 
between simulated and observed precipitation fields under 
the different aspects. Structure (S) represents the difference 
between simulation results and observations using the ratio 
of total to maximum precipitation. It captures information 
on the size and shape of the precipitation field. Negative 
values of S usually occur in cases with fewer forecasts for 
the precipitation area or more forecasts of the maximum 
precipitation amount. Amplitude (A) corresponds to the 
simulation bias because it represents the normalized differ-
ence between the average precipitation amounts in the sim-
ulated and observed precipitation fields. A negative value 
for A means that the simulated amounts are less than the 
observed amounts. Location (L) refers to the normalized 
distance between the centers of gravity of the simulated 
and observed precipitation fields. It includes two parts, the 
first being the normalized distance between the centers of 
gravity of the total simulated and observed precipitation 
fields, and the second being the difference of the normal-
ized weighted averaged distances, which is computed by 
taking the distances between the centers of gravity of the 
total and each individual precipitation field, each of these 
for both simulated and observed precipitation fields. The 
closer the values of S, A, and L are to zero, the better are 
the simulated results.

4  Results and analysis

4.1  Optimization results and analysis

4.1.1  The optimization effect and speed of WRF 
precipitation simulation using ASMO

After optimizing the nine WRF model parameters using 
ASMO, the objective function value from formulation (2) 
was reduced from −1.0 with the default parameter values 

Table 2  Precipitation intensity classification criteria

Precipitation ranks 6-hourly precipita-
tion amount range 
(mm)

Light rain [0.1, 4.0)
Moderate rain [4.0, 13.0)
Heavy rain [13.0, 25.0)
Storm [25.0, 60.0)
Heavy storm [60.0, 150.0)
Severe storm [150.0, 350.0)
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to −1.141 with the optimal parameter values. The mini-
mum value for the 100 initial samples was −1.092, which 
was less than the objective function value with the default 
parameters. The adaptive optimization speed of the WRF 
model for the total normalized TS using ASMO is shown in 
Fig. 3. It can be seen that about 27 new parameter samples 
were generated based on the 100 initial samples to meet 
the optimization convergence criterion. The last minimum 
value appeared at the 127th sample point. After that, 45 
new samples did not further reduce the total objective func-
tion value, and therefore the optimization convergence cri-
terion was met according to the previous definition.

4.1.2  Comparison of TS values for WRF precipitation 
simulations by the optimization

After parameter optimization of the WRF model for simu-
lation of summer precipitation in the Greater Beijing Area 
using ASMO, the optimal parameter values of the WRF 
model over the region were finally obtained. Next, com-
parisons of TS values for WRF precipitation simulations 
with the optimal parameters against the default parameters 
were conducted to validate the optimization effect. The TS 
results of WRF simulations with both default and optimal 
parameters for calibrated events (a–i) are shown in Fig. 4. It 
is apparent that the average percentage improvements of TS 
values for light rain, moderate rain, heavy rain, and storm 
were 6.97, 22.26, 28.07, and 1.02%, respectively. These 
results show that the optimal WRF parameters obtained by 
AMSO can greatly improve summer precipitation simula-
tions in the Greater Beijing Area. However, the simulations 
for storm showed little improvement. This problem was 
caused by the definition of the multi-objective functions 
in formulation (2), where the normalized TS for the four 
types of precipitation were assigned equal weights. This 

scheme was meant to ensure that the simulation results of 
all four types of precipitation would be better, and therefore 
it is acceptable that the simulation results for three types 
of precipitation were significantly improved, whereas those 
for storm showed little improvement. If much more weight 
had been assigned to the single objective function for storm 
in formulation (2), the simulation results for storm would 
have shown distinct improvement.

Figure  5 show a comparison of TS values of the opti-
mization simulations with the two different weighted 
objective functions for Event (c) in calibration events. 
“Opt1” represents the optimization of Event (c) using the 
equal weighted objective function [i.e., Formulation (2)]. 
The second optimization for Event (c) used the unequal 
weighted objective function and was defined as “Opt2”. 
The weights of light rain, moderate rain, heavy rain, and 
storm in the unequal weighted objective function were 
assigned as 0.1, 0.1, 0.1, and 0.7, respectively. We found 
that the percentage improvements for storm by optimiza-
tion varied from −2.75–11.05% when its weight in objec-
tive function was assigned from 0.25 to 0.7, which indi-
cates that the optimization for storm will be significantly 
improved if the much more weights are assigned to the 
storm in the multi-objective optimization function. By the 
comparison of “Opt1” and “Opt2”, we also found that the 
improvements for other types of precipitation simulations 
would be reduced if much more weights were assigned to 
the storm.

In fact, many studies have pointed out that a true mul-
tiple-objective optimization method should construct a 
Pareto surface made up of all the optimal values of the 
various weighted objective functions (Gong et al. 2016). 
In Fig. 4, the simulations for all four types of precipita-
tion were improved, which indicates that the setup of the 
overall objective function is reasonable and can provide 
positive feedback to the four single objective functions 
(i.e., the normalized TS). Not only were total precipita-
tion simulation results for all nine events improved, but 
also most of the simulation results for single precipita-
tion events were also improved for the four precipitation 
types. Negative optimization percentages tended to be 
associated with events with lower TS values or less than 
10% losses. Moreover, after 127 re-samplings, better sim-
ulation results were obtained than with the default param-
eters. Therefore, it can be concluded that the ASMO 
method is a highly-efficient way to optimize WRF model 
parameters.

4.1.3  Comparison of precipitation spatial distributions 
by the optimization

In addition to a comparison of total precipitation amounts 
with the TS index, the simulation results for spatial 
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distributions of daily average precipitation for the nine cali-
brated events are shown in Fig. 6. Figure 6a gives the spa-
tial distribution of observed precipitation obtained by aver-
aging precipitation data for all nine events (i.e., 18  days) 
in each grid cell of 0.1°  ×  0.1° latitude and longitude. 

To match them with observed data, the WRF simulation 
results with 3-km spatial resolution were interpolated to the 
grid cells with a spatial resolution of 0.1°. For the default 
and optimal parameters, the bias between the simulation 
results and the observed data is shown in Fig. 6b, c, respec-
tively. Figure  6 shows two significant improvements in 
strong precipitation areas. One is the strongest precipitation 
area, marked by the deep red color in Fig. 6a and occurring 
in the southeast region along the coastline of China. For the 
strongest precipitation area, the simulation biases with the 
optimal parameter values were significantly smaller. The 
other area is the second strongest precipitation area, marked 
by the orange color in Fig. 6a, across the southern border 
between Beijing City and Hebei Province. There was also 
a distinct improvement in simulated precipitation amounts 
for the second strongest precipitation area. This means that 
the simulations with optimal parameter values can provide 
more accurate precipitation forecasting than the original 
simulations with default parameter values, especially for 
high-precipitation areas. This demonstrates the usefulness 
of improving WRF model simulation results using opti-
mal parameter values. Note also that no obvious improve-
ment was seen in the Bohai Sea, located in the southeastern 
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corner of the study area; this was related to the lack of pre-
cipitation observation stations and inaccuracy of sea tem-
perature forcing data in the Bohai Sea.

Besides the total spatial distributions of daily average pre-
cipitation for nine calibrated events, the spatial distributions 
of daily average precipitation for nine single calibrated cases 
were also compared to analyze how the optimized param-
eters improve the simulation of single case. There are two 
representative cases to be given and their comparisons of the 
simulations with default and optimal parameters are shown 
in Fig. 7. Event (h) has an obvious improvement and Event 
(b) has little improvement in all nine precipitation events. 
Compared with the default simulation results, the optimal 
parameter values have a significant improvement on the sim-
ulation of storm (marked red in Fig. 7b) for Event (h). The 

precipitation pattern of the optimization results is closer to 
the observation compared with the default simulation results. 
The conclusions are consistent to those of the comparisons 
for the total precipitation simulations. Event (b) is one of the 
little improved cases, because the optimal parameter values 
extended the storm band simulated by the default simulation 
northward a little, but the observed precipitation bands in the 
north and south of Hebei Province were not still captured by 
the optimization simulation.

4.1.4  Comparison of SAL between the default 
and optimization precipitation simulations

An SAL comparison of the total simulated precipitation 
fields with default and optimal parameters for the nine 

(a)

(b) (c)

Fig. 6  Spatial distributions of precipitation for all the calibration events: a observed precipitation amounts; b difference between WRF simula-
tions with default parameters and observed values; c difference between WRF simulations with optimal parameters and observed values
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events (a–i) is shown in Fig. 8. Overall, it was found that 
the SAL values of the simulation results with the optimal 
parameter values were closer to zero than those of the 
simulation results with the default parameter values, which 
demonstrates that using the optimal WRF model parame-
ters is a valid way to improve simulation results for summer 
precipitation in the Greater Beijing Area. By combining 
these results with those shown in Fig. 6, it was concluded 
that the negative values of S occurred in Fig.  8 mainly 
because the simulated equivalent precipitation amounts 

with default parameters were lower than the observed val-
ues. With parameter optimization, the simulated maximum 
precipitation amount occurred in the south of Tianjin City 
has been reduced from 40.48 to 29.96 mm  day−1 which is 
closer to the observed value. Meanwhile, the total precipi-
tation amounts increased, as shown in Fig. 6. These results 
bring the increase of S according to the definition of the 
structure index S. With parameter optimization, A varied 
from negative to positive values, which indicates that the 
average precipitation amounts in the optimized simulation 

(a) (d)

(b) (d)

(c) (f)

Fig. 7  Spatial distributions of precipitation for two events (h) and (b) of the nine calibration events. Event (h) has an obvious improvement and 
Event (b) has little improvement in all nine calibration events
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were greater than the observed data based on the definition 
of A. The A value for the optimized simulation was 0.027, 
which is obviously smaller than the absolute value of A 
(−0.06) for the default simulation. The L value for the opti-
mized simulation was smaller than that for the default sim-
ulation, which indicates that the location of the rain band 
was moved closer to the observed rain band. The SAL com-
parison further verifies the reasonableness of the parameter 
optimization for the WRF model.

4.2  Impact of the optimal parameters on simulations 
of other precipitation events

4.2.1  Validation of summer precipitation event simulations 
from 2008 to 2010

One of the important issues for verifying the applicabil-
ity of the optimal parameter values is whether the optimal 
WRF model parameter values obtained by the parameter 
calibration for the precipitation events (a–i) will still work 
for the simulations of the new validation events (A–F) 
shown in Fig. 2. Therefore, the WRF model with the opti-
mized parameter values was used to simulate the precipi-
tation amounts of the validation events (A–F). Then the 
results were compared with the corresponding simulation 
results from the WRF model with the default parameters. 
Figure 9 shows a comparison of the TS values of the four 
types of precipitation simulations for events (A–F) using 
the optimal and default parameter values. The TS values of 
the optimized simulations also showed significant improve-
ment over those of the default simulations. The percent-
age improvements for light rain, moderate rain, heavy rain, 
and storm were 8.14, 5.84, 19.09, and 7.26%, respectively. 
Moreover, only the TS value of the storm in the (C) event 

significantly decreased in the optimized WRF simulations. 
However, this does not change the conclusion that the 
WRF model with optimal parameters obtained by ASMO 
improved the precipitation forecasting of other events from 
2008 to 2010 in the Greater Beijing Area.

The SAL measure was also used to evaluate the precipi-
tation simulation results for validation events (A–F). Fig-
ure  10 shows a comparison of the SAL values for WRF 
simulations of the validation events (A–F) with the optimal 
and default parameter values. It is evident that the absolute 
values of S, A, and L for the WRF simulations with optimal 
parameter values are smaller than those of the WRF simu-
lations with default parameter values, which indicates that 
the WRF simulation results with optimal parameter values 
are closer to observations for precipitation events (A–F) 
during the validation period, according to the definitions 
of S, A, and L. Overall, it has been demonstrated that the 
WRF model with the optimal parameter values obtained 
by ASMO can obtain better summer precipitation forecast-
ing than WRF model with the default parameters over the 
Greater Beijing Area from 2008 to 2010. However, are the 
optimized WRF model parameter values superior to the 
default parameter values for predicting summer precipita-
tion for other years in the Greater Beijing Area? This ques-
tion will be addressed in the next section.

4.2.2  Validation of summer precipitation event simulations 
from 2011 to 2013

To validate further the applicability of the optimal param-
eters on different precipitation events, the precipitation 
events from 2011 to 2013 were simulated to compare the 
results of WRF models using optimal and default param-
eter values. The Greater Beijing Area belongs to the East 
Asian monsoon region, and its precipitation occurs mainly 
in summer due to the impact of the summer monsoon from 
the Pacific Ocean. Therefore, the events were selected from 
the summers of 2011–2013. According to the CHMPA-
Hourly precipitation product, the daily average precipi-
tation amounts for the summers of 2011 to 2013 in the 
Greater Beijing Area are shown in Fig. 11. To obtain more 
reasonable validation results, the 20 selected events framed 
by the boxes marked with numbers (1–20) were simulated 
by WRF models with both default and optimal parameter 
values. Finally, Fig. 12 shows a comparison of the TS val-
ues of precipitation simulations using optimal and default 
parameters. Similarly to previous results, the simulations 
with the optimal parameters enhanced the accuracy of 
precipitation forecasting. The percentage improvements 
for light rain, moderate rain, heavy rain, and storm were 
1.61, 7.15, 2.10, and 9.44%, respectively. About 70% of the 
forecasts for the four types of precipitation were improved 
using the simulations with optimal parameters. For the rest 
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Fig. 8  Comparison of structure (S), amplitude (A), and location (L) 
of precipitation simulations of the calibration events using default and 
optimal parameters
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of the forecasts with negative improvement rates, most of 
them had less than 10% losses in accuracy, and the losses 
greater than 10% occurred mainly in the forecasts with 
lower TS values, meaning that the effect of these negative 
improvement rates on total TS variability was weak. There-
fore, it has been demonstrated that the optimal parameters 
were superior to the default parameters for precipitation 
simulations from 2011 to 2013, even when more precipita-
tion events were selected to conduct the validation experi-
ments. Overall, we think that the optimal parameters were 

proved to be robust for precipitation simulations from the 
different years.

4.3  Impact of the optimal parameters on precipitation 
event simulations with other boundary conditions

To assess the transferability of the optimal parameters 
across different boundary conditions, two reanalysis data, 
NCEP-FNL (Final) data with a 1.0° grid in latitude and 
longitude and ECMWF Re-Analysis (ERA)-interim data 
with a 0.5° grid in latitude and longitude, were used to 
drive the simulations of summer precipitation events from 
2011 to 2013 over Greater Beijing Area besides the CFSR 
data driving the previous WRF simulations. For the two 
simulation experiments, the WRF model configurations, 
the simulation area, and the simulated precipitation events 
were identical with those of the validation experiments 
from 2011 to 2013 (see Sect. 4.2.2), except for the bound-
ary conditions. One simulation experiment adopted the 
NCEP-FNL data as the boundary conditions, and the other 
experiment used the ERA-interim data as their boundary 
conditions. We mainly compared the difference of precipi-
tation simulation results from the WRF model with default 
and optimized parameter values under a new boundary 
condition.

With the NCEP-FNL data as lateral boundary conditions, 
Fig. 13 compares the TS values of the two simulations using 
optimal and default parameter values on precipitation events 
of 2011–2013. Overall, the TS values of the optimized 

Fig. 9  Comparison of TS val-
ues of four types of precipita-
tion simulations using optimal 
and default parameters for the 
validation events from 2008 to 
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simulations were significantly improved over the default 
simulations. The percentage improvements for light rain, 
moderate rain, and heavy rain were 4.83, 6.08, and 6.63%, 
respectively. Although the improvement for the storm sim-
ulations was negative using the optimal parameters, the 
authors concluded that a decrease of −1.69% will not have 
significantly detrimental effects on storm simulations with 
the default parameter values. Moreover, only one-sixth of 
the 80 classification precipitation forecasts [i.e., light rain 
in events (5) and (6); moderate rain in events (7), (11), and 
(14); heavy rain in events (4), (5), and (12); and storm in 
events (1), (4), (5), (6), (11), (14), and (20)] showed sig-
nificantly weakened trends, which does not change the con-
clusion that the WRF model with the optimal parameters 
calibrated by ASMO can obtain still better precipitation 
forecasts for the Greater Beijing Area even if the boundary 
conditions were replaced from CFSR to NCEP-FNL.

When the WRF simulations over summer precipitation 
events of 2011–2013 in Greater Beijing Area were drove 
by the ERA-interim data instead of CFSR data, the differ-
ence of precipitation skill scores for WRF simulations using 

optimal and default parameter values was also compared. 
The corresponding results were shown in Fig. 14. Overall, 
the percentage improvements for light rain, moderate rain, 
heavy rain, and storm were 3.18, −0.86, 11.02, and 12.77%, 
respectively. The TS results of WRF simulations with the 
optimal parameters are better than that with the default 
parameters, especially for the events of heavy rain and 
storm. There was a little negative improvement for moderate 
rain, but −0.86% losses would not produce the large destroy 
to the moderate rain simulations of WRF model with the 
default parameter values. For all single precipitation events, 
about one-eighth of the 80 classification precipitation fore-
casts [i.e., light rain in events (17) and (20); moderate rain 
in events (7) and (20),; heavy rain in events (15) and (19); 
and storm in events (12), (16), (17), (19), and (20)] showed 
significantly weakened trends. Another one-tenth of the 
80 classification precipitation forecasts showed less than 
5% losses. Therefore, we think that the optimal parameters 
obtained by calibration experiments are superior to the 
default parameters for WRF summer precipitation simula-
tions even for ERA-interim data as a new boundary.
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Fig. 11  The 20 precipitation events during the summer in the Greater Beijing Area from 2011 to 2013
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Generally speaking, from the previous comparison 
experiments using three reanalysis data (CFSR, NCEP-
FNL, and ERA-interim) as the boundary conditions respec-
tively, it can be concluded that the optimal parameters are 
independent of boundary conditions for summer precipita-
tion simulations of the Greater Beijing Area. Moreover, the 
conclusions obtained by the simulations of 20 precipitation 
events are convincing.

4.4  Impact of the optimal parameters on precipitation 
event simulations with the different spatial 
resolutions

To examine the applicability of the optimal parameters on 
precipitation event simulations at different spatial resolu-
tions, the same experimental design was used as for the 
parameter calibration period for the Greater Beijing Area, 
except for the spatial resolution of the simulations. It refers 
to two WRF simulations with different spatial resolutions, 
including a two-layer nested WRF simulation with 3-km 
spatial resolution in inner layer and 9-km spatial resolu-
tion in outer layer (i.e., the previous calibration simulation 

called as Run1) and a one-layer WRF simulation with a 
spatial resolution of 9 km (i.e., called as Run 2). The two 
WRF simulations had common default parameter values. 
They were used to simulate summer precipitation events 
in the Greater Beijing Area. Here, the common simulated 
precipitation events included events (a–i) from the calibra-
tion period and events (A–F) from the validation period in 
the summers from 2008 to 2010 (see Fig. 2). The common 
initial and boundary conditions were derived from CFSR 
data. We first validated the applicability of optimal param-
eters from Run 1 with high-spatial resolution for improving 
precipitation forecasts of Run 2 with low-spatial resolution. 
The optimal parameters of Run 1 adopted that of the pre-
vious calibration experiments. Then, the optimization for 
Run 2 was conducted to obtain the optimal parameters of 
low-resolution simulation by ASMO. After that, the opti-
mal parameters of Run 2 were put into Run 1 to validate 
whether they are still superior to corresponding default 
parameters for improving WRF high-resolution precipita-
tion simulations. Finally, the optimal parameter values of 
Run 1 and Run 2 were compared to check their consistency.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

(a) Light Rain

T
S 1.79% −3.79%16.67%

8.35%−16.94%

3.11%

−6.77%

27.94%
3.14% −4.11%

−1.01%

−10.95%
53.67%

28.97% 22.58%
−10.76%

 −7.05%

53.93%
−5.69%

−16.07%
1.61%

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(b) Moderate Rain

T
S −12.76%31.22%

75.30%
7.83%

−0.78%

27.00%

−5.63%

24.95%

−17.69%
7.70%

1.66% 23.36%

88.67%
65.23%

6.27%
0.53%

 −2.39%

24.09%
28.97%

−16.43%

7.15%

0.00
0.05
0.10
0.15
0.20
0.25

(c) Heavy Rain 

T
S −30.45%

21.66%

5.64%
−5.41%

29.20%

11.50%
−21.25%

17.57%

3.21%
−20.21%−9.90% −5.11% 11.93%

−14.76%
−3.62%

12.14%

31.18%3.52%

−2.31%

2.10%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) All
0.00

0.05

0.10

0.15

0.20

Events

T
S

(d) Storm

 

 

−6.24%

−12.32%

16.62%

11.68%

1.37% 12.46%

−22.97%
−17.27%

−3.21%

2.91%

 

1.29%
1.10%

 −2.45%

34.44%

90.44%

9.44%

Default

Optimization
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the Greater Beijing Area from 2011 to 2013
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4.4.1  A comparison of Run 2 using default and optimal 
parameters of Run 1

The optimal parameters of Run 1 obtained by previous cali-
bration experiments were put in a one-layer WRF simula-
tion with 9-km spatial resolution (i.e., Run 2) to compare 
their simulation results with the corresponding default sim-
ulations. Figure 15 shows the comparison results of Run 2 
with default and optimal parameters of Run 1. Clearly, Run 
2 with optimal parameters of Run 1 has better precipita-
tion simulation capability than that with default parameters. 
Overall, compared to the Run 2 with default parameters, 
the Run 2 with optimal parameters of Run 1 improved the 
TS values for light rain, moderate rain, heavy rain, and 
storm by 10.19, 4.21, 4.52, and 1.12%, respectively. Fig-
ure  15 also shows that one-third of the 60 classification 
precipitation forecasts had negative increments, and half 
of these had less than 5% losses in accuracy, which proves 
that the optimal parameters of Run 1 are superior overall 
to the default parameters for improving single precipitation 
forecasts in Run 2. This result demonstrates the superiority 
of the optimal parameters from the high spatial resolution 

simulations for improving precipitation simulations with 
low spatial resolution in the Greater Beijing Area.

4.4.2  A comparison of Run 1 using default and optimal 
parameters of Run 2

Firstly, the optimal parameters of Run 2 for the summer 
precipitation events of 2008–2010 needed to be obtained 
by re-conducting ASMO method. Based on the 100 ini-
tial samples, the optimization convergence criteria were 
met after 55 adaptive sampling using ASMO. The total 
weighted objective function values for the four precipita-
tion types decreased from −1 with the default simulation to 
−1.088 with the optimal simulation. After that the optimal 
parameters of Run 2 were obtained, it was applied to Run 
1 for validating whether the optimal parameters are still 
superior to corresponding default parameters for improv-
ing WRF high-resolution precipitation simulations. The 
TS values of Run 1 with default parameters and optimal 
parameters of Run 2 were shown in Fig.  16. Overall, the 
percentage improvements for the simulations of light rain, 
moderate rain, and heavy rain are 7.62, 11.71, and 14.07%, 
respectively. Note also that the simulated average TS 
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value of storm has a 2.88% loss for optimization simula-
tion, but the decrease can be also accepted compared with 
corresponding default simulation. As a whole, the optimal 
parameters of Run 2 were superior to the corresponding 
default parameters in Run 1 for summer precipitation event 
simulations over Greater Beijing Area.

4.4.3  Comparison of two sets of optimal parameters

Three sets of parameters (i.e., default parameters, optimal 
parameters for Run 1, and optimal parameters for Run 2) 
were put into Run 1 to conduct their simulated results for 
precipitation events of 2008–2010 in Greater Beijing Area, 
respectively. The comparison results of the average TS val-
ues for four types of precipitation simulations using three 
sets of parameters were shown in Fig. 17. Both of the opti-
mization results are significantly superior to the default 
simulation results for light rain, moderate rain, and heavy 
rain. However, note that the storm simulation with optimal 
parameters from Run 1 are slightly better than that with the 
default parameters, and the storm simulation with optimal 
parameters from Run 2 are slightly weaker than default 
simulation. As the whole, both of optimal parameters bring 

the better precipitation simulation results compared with 
the simulation results using default parameters. We also 
found that the simulated TS values using optimal param-
eters of Run 1 were higher than those using optimal param-
eters of Run 2, especially for moderate rain and heavy rain. 
That is mainly due to the fact that the validation experi-
ments were conducted by Run 1. So, the optimization effect 
using optimal parameters of Run 1 is more obvious.

Three sets of parameters were also normalized to exam-
ine the difference of the two sets of optimal parameters and 
the difference between optimal parameters and defaults 
parameters, where the maximum value is 1 and the mini-
mum value is 0. The normalized values for three sets of 
parameters were shown in Fig. 18. Except for three parame-
ters (i.e., n0r, dimax, and sm), there is an obvious difference 
of the optimal parameter values for Run 1 and Run2. The 
inconsistency of two sets of optimal parameter values may 
be the reason that the truly global optimal solution are not 
found due to limited optimization researches used. However, 
the whole variation trend of two sets of optimal parameters 
is basically consistent compared to the default parameter set. 
Although the opposite trends exist in parameter of bsw, it 
is not crucial for altering the simulation results because the 
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sensitivity of bsw is weakest in all nine optimized param-
eters (Di et al. 2016). The consistent trend proved the rea-
sonability of two sets of optimal parameters to some extent.

Overall, compared with the default parameter set, both 
of two sets of optimal parameters had demonstrated the 
superiorities for the two simulations with 3 and 9-km spa-
tial resolutions (i.e., Runs 1 and 2). So, it can be concluded 
that the optimal parameters are independent of spatial reso-
lution for summer precipitation simulations of the Greater 
Beijing Area.

4.5  Impact of the optimal parameters on simulations 
of other variables

In this study, the optimal parameters were obtained by 
constraining the WRF precipitation simulations to the cor-
responding observations using the ASMO method. The 
question then arises of how other simulated variables may 
vary when the optimal precipitation simulation parameters 

are used. Using the experimental designs of the calibra-
tion period, both 2-m air temperature and 10-m wind speed 
were simulated by the WRF model with both optimal and 
default precipitation simulation parameters. Then the dif-
ferences between the simulation results for 2-m air temper-
ature (10-m wind speed) with optimal and default param-
eters were compared.

Figure  19 shows the difference between the simulated 
biases for 2-m air temperature (10-m wind speed) with 
optimal and default parameters. The simulated results for 
both temperature and wind speed with the optimal parame-
ters were significantly improved over those with the default 
parameters, especially for the regions with the highest pre-
cipitation amounts (see Fig.  6a), where the precipitation 
simulations with the optimal parameters showed signifi-
cant improvement. This shows that the optimal parameters 
obtained by optimizing the precipitation simulation results 
are also superior to the default parameters for simulating 
2-m air temperature and 10-m wind speed.
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4.6  Physical interpretation of the parameter 
optimization results

It is shown in Fig.  18 that the variation trends for all 
the parameters between default and optimal values are 
inconsistent. This occurred because precipitation is a 

comprehensive result of highly nonlinear interactions 
among various physical processes such as convergence 
or divergence of water vapor, uplifting and down-draft-
ing of moist air, turbulent exchanges of water and heat 
fluxes in the surface layer. The ice_stokes_fac (Scaling 
factor applied to ice falling velocity) and dimax (Limit-
ing maximum value for the cloud-ice diameter) param-
eters have jointly positive effects on fallout of ice crys-
tals, and an increase in this factor strengthens conversion 
from cloud ice to rain water, resulting in a precipitation 
increase. A decrease in n0r (Intercept parameter of rain) 
means a decrease in rain concentration, which easily pro-
duces oversaturation of cloud water and enhances rain 
sedimentation through the increased mean size of rain 
aggregates. A lower value for the cssca parameter (Scat-
tering tuning parameter) means less scattering of solar 
radiation in the atmospheric layer, which enhances the 
amount of shortwave radiation reaching the surface and 
then the evaporation from the ground, ultimately lead-
ing to an increase in precipitation. A higher value for the 
porsl parameter (Multiplier for saturated soil water con-
tent) means greater soil porosity between the groundwa-
ter surface and the ground surface. This leads to stronger 
conveyance of soil water upward and thus enhanced 
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surface evapotranspiration, which is helpful for the 
development of precipitation. Higher values for the bsw 
parameter (Multiplier for the Clapp and Hornberger “b” 
parameter) can also enhance surface evapotranspiration 
by increasing the conductivity of water and heat in soil 
layers. Its effect is similar to that of porsl. The brcr_sb 
(Critical Richardson number for the boundary layer of 
land) and pfac (Profile shape exponent used to calculate 
the momentum diffusivity coefficient) parameters have 
a positive effect on the heat and momentum diffusiv-
ity coefficients, respectively. When the values of these 
two parameters increase, the eddy turbulence diffusivity 
intensity is enhanced, uplifting heat and water vapor from 
the ground surface and strengthening convection forma-
tion. The sm parameter (Counter-gradient proportional 
coefficient of non-local momentum flux) is used to com-
pute the counter-gradient term, which is a supplement to 
the local gradient by incorporating the contribution of 
large-scale eddies to the total flux. Therefore, a higher sm 
value enhances the supply of local eddies in the mixed 
layer, strengthening the upward transfer of heat and water 
vapor from the ground surface.

5  Summary and discussion

This study first optimized the nine sensitive parameters 
of the WRF model using the ASMO method to improve 
summer precipitation simulations in the Greater Beijing 
Area. Then, the applicability of the optimal parameters 
to WRF simulations of the region across precipitation 
events, boundary conditions, spatial scales, and physical 

processes was examined. The selected nine parameters had 
been obtained from previous parametric sensitivity analy-
sis results for the WRF summer precipitation simulations 
in the Greater Beijing Area. Multiple precipitation events 
from 2008 to 2013 were simulated to constrain and verify 
the optimal WRF model parameters. Each event spanned 
2 days. The TS metric was used to evaluate the precipita-
tion simulation results during optimization and validation.

The optimization results showed that precipitation 
forecasting can be significantly improved by optimizing 
the WRF model parameters using ASMO, especially for 
areas of high precipitation. Moreover, 127 adaptive sam-
ples achieved convergence of the total normalized TS of 
the precipitation event simulations during the calibration 
period, which demonstrates that the ASMO method is very 
highly efficient. The WRF model with the optimal param-
eters calibrated by optimizing precipitation simulations for 
2008–2010 was also used to simulate precipitation events 
for 2011–2013. The results show that the optimized param-
eters can significantly improve the precipitation results 
over the simulated results of the WRF model with default 
parameters, which has been demonstrated by various met-
rics (TS and SAL). So, the optimal parameters were suit-
able to WRF precipitation simulations for other years. With 
the boundary conditions replaced, the optimal parameters 
can still improve precipitation simulations. Three reanaly-
sis data including CFSR data, NCEP-FNL data, and ERA-
interim data were used to drive the WRF precipitation 
simulations from 2011 to 2013, respectively. For each rea-
nalysis data as boundary conditions, the optimal parameters 
had demonstrated their superiority for WRF precipitation 
simulations compared to default parameters, which shows 

Fig. 18  Comparison of normal-
ized values for three sets of 
parameters
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that the optimal parameters are independent of boundary 
condition. With the spatial resolution varied, the optimal 
parameters can still improve precipitation simulations. Two 
sets of optimal parameters were obtained from the WRF 
simulation with 3 and 9-km spatial resolutions, respec-
tively. Not only had the optimal parameters from WRF 
simulation with 3-km resolution proved their superiority to 
default parameters for WRF simulation results with 9-km 
resolution in the Greater Beijing Area, but also the optimal 
parameters from WRF simulation with 9-km resolution 
had proved their superiority to default parameters for WRF 

simulation results with 3-km resolution over the region. 
The comparison showed that the optimal parameters are 
independent of spatial resolution for WRF simulations. 
Although the optimal parameters were obtained by con-
straining precipitation simulations alone, the simulations of 
other output variables such as temperature and wind speed 
were also improved using the optimal parameters, espe-
cially for high-precipitation regions. These assessments of 
the optimal parameters not only fully prove the reasonable-
ness of the optimal WRF model parameters for improving 
summer precipitation simulations over the Greater Beijing 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 19  Spatial comparisons of simulated temperature (left) and wind speed (right) using optimal and default parameters for the calibration 
events from 2008 to 2010
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Area, but also the feasibility of the ASMO method for 
optimizing the parameters of the large and complex WRF 
model.

However, certain limitations remain on parameter opti-
mization in this study. First, the model setup did not fully 
conform to operational settings. For instance, to reduce 
input errors, the initial and boundary values in the opera-
tional model were assimilated by merging the observed 
data once every 6  h. Moreover, more than three layers 
nested simulations were used to obtain more accurate 
forecasting for the innermost layer. The two-layer nested 
simulations used in this study were designed out of con-
sideration for available computing resources. These fac-
tors could have caused differences between the optimal 
parameter values of the calibrated WRF model in this 
study and those of the operational WRF forecasting sys-
tem. For this reason, it might be better to recalibrate the 
WRF model parameters for new operational forecasting 
systems using the ASMO method. Second, the objec-
tive function in the WRF model parameter optimization 
dealt only with precipitation magnitude. A better objec-
tive function for optimizing precipitation should also 
constrain other variables related to precipitation, such as 
planetary boundary layer height, total precipitable water, 
cloud cover, and shallow convective mass fluxes. If more 
variables were simultaneously constrained in the objec-
tive function, this would help to obtain more reasonable 
optimization results for precipitation. To solve such a 
function, a multiple-objective optimization method would 
have to be used to produce the Pareto optimal parameter 
sets. In addition, the spatial correlation coefficient should 
also be added to the set of metrics for objective functions 
in future studies besides the magnitudes (e.g., RMSE, 
TS). Finally, the parameter optimization described here 
reflected local characteristics. If the optimal parameters 
in this study were updated to the WRF model for precipi-
tation simulations over other regions with drier climate 
regimes, such as desert or colder climate regimes, such 
as the South Pole, the superiority of the optimal param-
eters would not be retained. Therefore, parameter screen-
ing and optimization of sensitive parameters for WRF 
model would have to be re-implemented to obtain opti-
mal parameter values over the new region.
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