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A B S T R A C T

Quantifying and reducing uncertainties in physics-based hydrological model parameters will improve model
reliability for hydrological forecasting. We present an uncertainty quantification framework that combines the
strengths of stepwise sensitivity analysis and adaptive surrogate-based multi-objective optimization to facilitate
practical assessment and reduction of model parametric uncertainties. Framework performance was tested using
the distributed hydrological model Coupled Routing and Excess Storage (CREST) for daily streamflow simulation
over ten watersheds. By identifying sensitive parameters stepwisely, we reduced the number of parameters
requiring calibration from twelve to seven, thus limiting the dimensionality of calibration problem. By updating
surrogate models adaptively, we found the optimal sets of sensitive parameters with the surrogate-based multi-
objective optimization. The calibrated CREST was able to satisfactorily simulate observed streamflow for all
watersheds, improving one minus Nash-Sutcliffe efficiency (1−NSE) by 65–90% and percentage absolute re-
lative bias (|RB|) by 60–95% compared to the default. The validation result demonstrated that the calibrated
CREST was also able to reproduce observed streamflow outside the calibration period, improving 1−NSE by
40–85% and |RB| by 35–90% compared to the default. Overall, this uncertainty quantification framework is
effective for assessment and reduction of model parametric uncertainties, the results of which improve model
simulations and enhance understanding of model behaviors.

1. Introduction

Hydrological models have become indispensable tools for both op-
erational applications such as flood forecasting and water resource
management decision support, and scientific research to understand
hydrological processes (Kavetski and Clark, 2010). The accuracy of
model predictions is greatly influenced by uncertainties such as data
errors and model deficiencies (Renard et al., 2010). Prediction un-
certainties are mainly due to model parameters, if model structures are
supposed to be correct and input data and observed data are assumed to
be error-free (Gupta et al., 2005; Gourley and Vieux, 2006; Matonse and
Kroll, 2013). Appropriate calibration could reduce these parametric
uncertainties to enable the models to better represent the real systems
and thus provide faithful predictions (Vrugt et al., 2003; Duan et al.,
2017; Sikorska and Renard, 2017).

Model parameters are calibrated by tuning parameter values to
minimize differences between simulated and observed variables (Duan
et al., 1992). Practical experience suggests that since model calibration
problem is inherently multi-objective, a set of non-commensurate cri-
teria measuring different aspects of the system should be considered
simultaneously (Gupta et al., 1998; Khu and Madsen, 2005; Moussa and
Chahinian, 2009). The multi-objective calibration of hydrological
models is often time-consuming and requires many model runs to de-
termine optimal sets (Efstratiadis and Koutsoyiannis, 2010). The com-
putational burden is further increased by the growing complexity of
hydrological models, which include more sub-physical processes and
represent spatial heterogeneities of various hydrological processes
(Fatichi et al., 2016). In addition, complex models include more para-
meters, but still are calibrated on limited observational data, which has
led to an “over-parameterization” problem (Jakeman and Hornberger,
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1993). Furthermore, the highly nonlinear and complex interactions of
the hydrological processes result in many acceptable parameter sets
that produce equal model performances, known as “equifinality”
(Beven, 2006; Stedinger et al., 2008), which also increases the difficulty
of finding the optimal sets. Therefore, the efficient calibration of com-
putationally-intensive distributed hydrological models under a multi-
objective framework is a difficult exercise with great uncertainty
(Zhang et al., 2009a; Shi et al., 2014).

One way to alleviate the computational burden and uncertainty
associated with model calibration is to reduce parameter dimension-
ality before calibration. Sensitivity analyses can identify parameters
that dominate model behavior (Gan et al., 2014), which allows models
to be simplified without affecting the reliability of simulation by setting
insensitive parameters at fixed values within their feasible ranges
(Saltelli et al., 2008). Sensitivity analysis methods can be qualitative or
quantitative. The qualitative methods assess parameter sensitivity by
visualization tools such as scatter plots showing the parameter-response
relationships, or by relative simple measures such as the screening
methods. Whereas the quantitative methods quantify each parameter’s
contribution to the response variance using variance-based measures
(Pianosi et al., 2016). A comprehensive evaluation of various qualita-
tive and quantitative sensitivity analysis methods can be found in Gan
et al. (2014). Their comparisons show that the latter are more accurate
and robust but less efficient than the former.

Another way to ease the computational burden is to use surrogate
models to approximate the more expensive hydrological models for
quantitative sensitivity analysis and model calibration. The surrogate
model is constructed based on parameter-response relationships ob-
tained from simulations with the hydrological model (Marie and
Simioni, 2014). The way of using surrogate modeling methods can be
sequential or adaptive-recursive. The sequential framework uses the
globally fitted surrogate model for a fully substitution of the original
model. Whereas the adaptive-recursive framework adaptively update
the globally/locally fitted surrogate model and recursively use the
newly build surrogate model for substitution of the original model
(Razavi et al., 2012). The former is more appropriate for quantitative
sensitivity analysis while the latter is more efficient for parameter op-
timization. A variety of surrogate modeling methods are reviewed and
compared in Villa-Vialaneix et al. (2012) and Razavi et al. (2012).

Most previous studies have used either sensitivity analyses or sur-
rogate models to facilitate model calibration. For example, Muleta and
Nicklow (2005), Foglia et al. (2009) and van Werkhoven et al. (2009)
conducted sensitivity analyses to reduce parameter dimensionality be-
fore model calibration. Wang et al. (2014), Gong et al. (2015), and
Chen et al. (2017) adopted surrogate-based optimization methods to
improve computational efficiency for model calibration. Some studies
have used both sensitivity analyses and surrogate models in the way of
surrogate-based sensitivity analyses (Shahsavani and Grimvall, 2011;
Borgonovo et al., 2012; Daneshkhah and Bedford, 2013).

We combined the strengths of the state-of-the-art methods for multi-
objective calibration in a systematic stepwise way: (1) qualitative sen-
sitivity analysis for parameter screening of a high-dimensional model;
(2) sequential surrogate-based quantitative sensitivity analysis for
identifying the most sensitive parameters of the dimension-reduced
model; and (3) adaptive surrogate-based optimization for calibrating
the most sensitive parameters. This stepwise way would save con-
siderable computational budget for assessment and reduction of para-
metric uncertainties. We conducted hydrological simulation experi-
ments to construct surrogate models that can be used both to facilitate
quantitative sensitivity analysis for parameter reduction and to provide
reliable information for promising regions of the global optimum. This
reuse of the hydrological simulation experiments would greatly reduce
computational cost, since the majority of the computational budget for
surrogate modeling is the original simulation model run.

The main objective of this study is to assess and reduce parametric
uncertainties for the distributed hydrological model Coupled Routing

and Excess Storage (CREST) (Wang et al., 2011) with a systematic
uncertainty quantification framework. Using this framework, we de-
monstrate a method to improve daily streamflow simulation effectively
in the presence of parametric uncertainties, for the CREST over ten
representative watersheds with varying hydroclimatic, soil, and vege-
tation conditions. During this process, we also try to understand model
behaviors for heterogeneous spatial domain across these watersheds.

2. Model, experimental data and setup

2.1. CREST model

CREST was jointly developed by the University of Oklahoma
(http://hydro.ou.edu) and National Aeronautics and Space
Administration (NASA) SERVIR (named for the Spanish verb “to serve”)
Project Team (http://www.servir.net), to simulate the spatiotemporal
variation of land surface and subsurface water fluxes and storages
(Wang et al., 2011). Its main features include: (1) coupling between
distributed rainfall-runoff generation and cell-to-cell routing processes
via three feedback mechanisms; and (2) scalability by a representation
of subgrid soil moisture variability and routing processes. Further
model details can be found in Wang et al. (2011). CREST has been
successfully implemented in a variety of multiscale hydrological studies
(Khan et al., 2011; Wu et al., 2012; Xue et al., 2013; Tang et al., 2016)
and several flood warning systems including the Flooded Locations And
Simulated Hydrographs Project (FLASH; http://blog.nssl.noaa.gov/
flash/) and the Global Flood Monitoring System (GFMS; http://eos.
ou.edu).

Although CREST has been widely used, its parametric uncertainties
have not yet been analyzed and its model behaviors across watersheds
have not been fully understood. Previous works on the calibration of
CREST are often performed for all parameters, which takes a high
computational cost for this distributed hydrological model (Khan et al.,
2011; Wu et al., 2012; Xue et al., 2013). Consequently, we would like to
identify the most important parameters of CREST and simplify it for
future use. Moreover, almost all calibration works of CREST are per-
formed with single-objective for the watersheds outside of China, ex-
periences from which are insufficient and nontransferable for its use in
China domain. Therefore, we would also like to make a systematic
multi-objective calibration of the most important parameters for re-
presentative watersheds in China. The latest version CREST v2.1 was
used in this study to evaluate the impact of model parameters on
streamflow simulation across watersheds over the China domain at a
0.125-degree latitude-longitude grid.

2.2. Experimental data

2.2.1. Study area and evaluation data sets
We selected one representative watershed for each of the ten large

river basins in China, which span different hydroclimatic, soil, and
vegetation conditions. Fig. 1 shows the geographic location, elevation,
and streamflow gauging station of each representative watershed. At
these stations, observed daily streamflow discharge data from 1 Jan-
uary 2008 to 31 December 2012 were acquired from the hydrological
yearbooks published by the Ministry of Water Resources of China.
Table 1 summarizes the station and watershed characteristics, as well as
watershed-averaged mean daily precipitation (P), potential evapo-
transpiration (PET), and station mean daily streamflow discharge (SD)
for the observation period.

2.2.2. Hydrography data
The digital elevation model (DEM) was obtained from the 30 arc-

second HydroSHEDS (Hydrological data and map based on SHuttle
Elevation Derivatives at multiple Scales) product (available at http://
hydrosheds.cr.usgs.gov/) (Lehner et al., 2008). The raw data were ag-
gregated by neighborhood averaging onto a 0.125-degree grid, and
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then corrected by algorithms such as stream burning and sink filling.
Based on the corrected DEM data, a drainage direction map followed by
a flow accumulation map were generated using the eight-direction (D8)
flow model (Jenson and Domingue, 1988). A river network map was
extracted by considering the grids with flow accumulation values (in
number of grids) greater than or equal to 50 using the raster calculator
tool.

2.2.3. Forcing data
A gauge-satellite merged precipitation product with a daily

0.25 deg×0.25 deg resolution was used to drive CREST (available at
http://data.cma.cn/). It was generated using hourly rain gauge data at
more than 30,000 automatic weather stations in China, in conjunction
with the Climate Precipitation Center Morphing (CMORPH) precipita-
tion product (Shen et al., 2014). The daily 1 deg×1 deg global PET
product was acquired from the Famine Early Warning Systems Network
(FEWS NET; available at http://earlywarning.usgs.gov/fews). It was
estimated by the Penman-Monteith equation using climate data ex-
tracted from Global Data Assimilation System (GDAS). Both precipita-
tion and PET data covering the period from 1 January 2007 to 31 De-
cember 2012 were remapped onto the 0.125 deg× 0.125 deg study
domain by bilinear interpolation.

2.3. Experimental setup

The control version CREST with default parameter values was run
for a spin-up period of six years (2007–2012) at a daily time step to
achieve an equilibrium state. All subsequent experiments were in-
itialized from this state at the end of the spin-up. The experiments for
qualitative and quantitative sensitivity analysis as well as parameter
optimization were run from 1 January 2007 to 31 December 2010,
while those for validation were run from 1 January 2010 to 31
December 2012. To minimize the influence of initial conditions, the
first year’s outputs of all experiments were excluded from subsequent
analyses.

3. Uncertainty quantification framework

An uncertainty quantification framework that combines the
strengths of stepwise sensitivity analysis and adaptive surrogate-based
optimization was designed to assess and reduce parametric un-
certainties of CREST at low computational cost. Fig. 2 breaks down the
four key steps of the uncertainty quantification framework. More de-
tailed information regarding the qualitative sensitivity analysis and
surrogate-based quantitative sensitivity analysis can be found in Gan
et al. (2015). A detailed description of the adaptive surrogate-based
optimization is presented in Wang et al. (2014).

3.1. Problem specification

The first step of the uncertainty quantification framework is to
specify the uncertainty quantification problem, including the choice of
model parameters and objective functions. Table 2 lists the twelve
CREST parameters, whose ranges were determined according to phy-
sical meanings and previous literature (Xue et al., 2013, Xue et al.
2015). All parameters were assumed to follow a uniform distribution.
Following McCuen et al. (2006), two objective functions – relative bias
(RB) and Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) –
were used to evaluate the goodness-of-fit for streamflow simulation.
The former metric is the model bias normalized with respect to the
observed mean, while the latter is the root mean square error normal-
ized with respect to the observed variance. The equations of both sta-
tistics are given in appendix A.

3.2. Qualitative sensitivity analysis

Qualitative sensitivity analysis methods reflect the relative im-
portance of model parameters, and aim to screen out insensitive para-
meters using a small number of model evaluations. We adopted the
Latin Hypercube-based One-At-a-Time (LH-OAT) method (van
Griensven et al., 2006) for qualitative sensitivity analysis. It combines
the robustness of Latin hypercube sampling, which ensures that the
parameter space has been fully explored, with the precision of one-at-a-
time sampling, assuring that changes in the response in each model run

±
5765.6

2870.1

19.6

Fig. 1. Model domain showing geographic location, elevation, and streamflow gauging station of the representative watershed over ten large river basins of China.
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can be unambiguously attributed to the parameter that was changed.
Overall and interaction effects of each parameter can be represented
respectively by the mean and standard deviation of its elementary ef-
fects. The former is the overall influence of the parameter on the re-
sponse, while the latter is the ensemble of the parameter’s higher order
effects (Campolongo et al., 2007).Ta
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Fig. 2. Flowchart of the uncertainty quantification framework.

Table 2
Description of CREST model parameters and their feasible ranges.

No. Parameter Description Range Default

P1 RainFact Multiplier on the precipitation field 0.5–1.2 1.00
P2 Ksat Soil saturated hydraulic conductivity

(mm/d)
1–1000 2.84

P3 WM Maximum water-holding capacity (mm) 1–500 129.95
P4 B Exponent of the variable infiltration curve 0.05–1.5 0.48
P5 IM Impervious area ratio 0–0.2 0.07
P6 KE Multiplier on the potential

evapotranspiration
0.1–1.5 0.85

P7 coeM Overland flow velocity coefficient 1–150 58.89
P8 expM Overland flow velocity exponent 0.1–2 0.25
P9 coeR Multiplier used to convert overland flow

speed to channel flow speed
0.2–3 0.73

P10 coeS Multiplier used to convert overland flow
speed to interflow flow speed

0.001–1 0.63

P11 KS Overland reservoir discharge parameter 0–1 0.41
P12 KI Interflow reservoir discharge parameter 0–1 0.22
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3.3. Surrogate-based quantitative sensitivity analysis

Quantitative sensitivity analysis methods estimate the percentage of
response variance each parameter is responsible for, due to the para-
meter’s first-order effect and interaction effects with other parameters.
We used the Sobol’ (1993,2001) method, which performs ANOVA
(Analysis of Variance)-like decomposition of model response variance
and measures the specific order sensitivity index of a parameter by
attributing all relevant variances. The total sensitivity index can be
estimated by adding up all the sensitivity indices containing the para-
meter. Sobol’s method is model independent and can be used for non-
linear and non-monotonic models. Its main drawback is that calculating
higher-order terms is prohibitive, especially when parameter di-
mensionality is large. We adopted the total sensitivity index proposed
by Homma and Saltelli (1996) as a measure of the total effect of a given
parameter at reasonable cost, by subtracting all sensitivity indices not
related to this parameter from 1.

Even though the calculation of total sensitivity indices is practical, a
large number of samples are still needed to get reliable results. We
employed Multivariate Adaptive Regression Splines (MARS) (Friedman,
1991) to construct a surrogate model for computing Sobol’ first-order
(Sobol’-1) and total (Sobol’-t) sensitivity indices. Several other methods
such as Gaussian process, radial basis functions, and support vector
machines can also be considered. The selection of surrogate modeling
methods depends on the purpose of the research, the applicability of the
method, and the complexity of the simulation model. We chose MARS
because we need a globally accurate surrogate model that can be used
not only for sensitivity analysis but also for providing reliable in-
formation for the promising regions of the global optimum, and MARS
is particularly competitive in accuracy and efficiency (Jin et al., 2001;
Chen et al., 2013; Gan et al., 2014).

Quasi-random LPτ (LPTAU) sequence sampling (Sobol', 1967) was
adopted to generate deterministic and uniformly distributed samples,
because it allows the addition of more points to the initial samples with
the same uniformity characteristics (Tong, 2005). The idea of LPTAU is
to generate uniformly distributed quasi-random sequence within the
n-dimensional hypercube =I [0, 1]n n. Unlike random sequence, the
position of sample points of the quasi-random sequence is deterministic.
A finite sequence of points in In is called a Pτ net if it contains =N 2k

points and every dyadic box of volume −2τ k contains exactly 2τ points of
the sequence, where k and τ are integers and >k τ (Niederreiter, 1978).
Other sampling methods such as Monte Carlo, Latin hypercube, and
orthogonal array-based Latin hypercube can also be considered. A
comparison of different sampling methods and surrogate modeling
methods for surrogate-based sensitivity analysis can be found in Gan
et al. (2014).

We employed the k-fold cross-validation strategy (Meckesheimer
et al., 2002) to assess the fidelity of MARS. Namely, N parameter-re-
sponse pairs X Y( , )j j for = ⋯j N1, 2, , were split into k subsets of
approximately equal size, and the MARS was fitted k times, each time
leaving out one of the subsets from training and using the omitted
subset to compute the coefficient of determination (R2, see Appendix
B). A tenfold cross-validation scheme as suggested by Zhang et al.
(2009b) was employed to obtain the average R2-values assessing the
accuracy of MARS. Additional model runs were made to increase the
accuracy of MARS when R2 is less than a predefined value (e.g., 0.85),
and the refitted MARS was assessed again using the enlarged para-
meter-response pairs. This trail-and-error process was repeated until we
trained a reliable surrogate model.

3.4. Adaptive surrogate-based multi-objective optimization

The multi-objective optimization seeks a compromise solution from
a set of Pareto solutions that represent the tradeoffs among different
objectives. We employed the adaptive surrogate-based optimization
framework presented in Wang et al. (2014) for multi-objective

optimization of the most sensitive parameters, and used the LPTAU
sampling, MARS surrogate modeling, and SCE-UA optimization
methods for corresponding processes. The entire adaptive surrogate-
based multi-objective optimization procedure is as follows.

(1) Objective function transformation

To make the two objective functions of streamflow discharge com-
parable in variability range and direction, we took the transformations

=F RBX( ) | |1 and = −F NSEX( ) 12 , and expressed the multi-objective
optimization problem as:

= = = −Y F F F RB NSEX X Xmin min ( ) min( ( ), ( )) min(| |, 1 )1 2 (1)

The two objective functions were then transformed into a Euclidian
distance function following Madsen (2000):

∑= +
=

F FX X( ) [ ( ) A ]agg
j

j
1

2

j
2

(2)

where F X( )j is the jth objective function, and Aj is the transformation
constant to make +F AX( )j j have the same distance to the origin. Aj
can be determined through LPTAU experiments inherited from surro-
gate-based quantitative sensitivity analysis by:

= − =A F F F jmax{ , } , 1, 2j j1, min 2, min , min (3)

If ⩾F F1, min 2, min, =A 01 and = −A F F2 1, min 2, min; or else,
= −A F F1 2, min 1, min and =A 02 .

(2) Surrogate model reconstruction

To improve the optimization search efficiency, MARS was re-
constructed to approximate the relationship between the sensitive
parameters and the aggregated objective function Fagg using the para-
meter-response pairs of the simulation model (i.e., CREST). We took the
LPTAU experiments inherited from surrogate-based quantitative sensi-
tivity analysis as the initial samples to construct a globally accurate
surrogate model, which can provide reliable information for promising
regions of the global optimum in the parameter space. It is unlikely,
however, that the surrogate would be sufficiently accurate in the region
of the optimum. A succession of infill samples at the predicted optimum
were therefore added to enhance the accuracy of the surrogate in the
promising region to find the optimum efficiently.

(3) Surrogate-based optimization

We employed the global optimization method Shuffled Complex
Evolution (SCE-UA) (Duan et al., 1992) to search the minimum Fagg
value and corresponding optimal parameter set of the surrogate model.
For effectiveness and efficiency, the SCE-UA method must properly
specify a few algorithmic parameters. In particular, the number of
complexes (p) is primarily determined by the dimensionality of the
calibration problem (i.e., the number of model parameters to be opti-
mized), and a value equal to two or larger is sufficient for a six-di-
mension problem (Duan et al., 1994). We set p to four, since the di-
mensionality of our calibration problem would be smaller than twelve
after the parameter reduction. Other algorithmic parameters and the
stop criteria were assigned to the default values as suggested by Duan
et al. (1994).

(4) Simulation model evaluation and stop criteria check

The simulation model (CREST) was run using the optimal parameter
set of the surrogate model to find the corresponding Fagg value. The
optimal parameter set and corresponding Fagg value were used to update
the parameter-response pairs, and steps 2–4 were continued until the
Fagg value of the simulation model converged to a constant.
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4. Results and discussion

4.1. LH-OAT-based parameter screening

The range for each of the 12 CREST parameters was evenly divided
into 20 levels. Thus, 260 (=20× (12+ 1)) LH-OAT samples were
generated from the 12-dimensional parameter space. Fig. 3 shows the
relative parameter sensitivities to overall effects and interaction effects
of the ten watersheds for two objective functions (RB and NSE). Para-
meter rankings varied among watersheds as well as among objective
functions even for the same sensitivity index. However, certain domi-
nant patterns were evident. Overall, P2, P3, P4, and P5 can be regarded
as insensitive parameters, while the other eight parameters can be
classified as sensitive. All the insensitive parameters are physically
based and related to specific subprocesses of runoff generation and
routing, while the sensitive parameters are conceptually based and re-
lated to a collection of aggregated hydrological processes (Madsen,
2003; Wagener et al., 2003). The former can be determined from the
physical characteristics of watersheds, while the latter cannot (Madsen,
2003).

The two objective functions find similar parameter sensitivities
across watersheds, with a few exceptions. The most obvious difference
is that in watershed W4, RB identifies P1 with a low overall effect (top
row of Fig. 3a), while NSE identifies it with a high overall effect (top
row of Fig. 3b). Another distinct difference is that in watershed W8, RB
identifies P11 with a high interaction effect (bottom row of Fig. 3a),

while NSE identifies it with a low interaction effect (bottom row of
Fig. 3b). This variance of parameter sensitivities between objective
functions was also found in several previous studies (Tang et al., 2007;
van Werkhoven et al., 2008; Gan et al., 2015), since different objective
functions measure different aspects of model behaviors.

The number of sensitive parameters per watershed varies from two
(W9 and W10) to eight (W1) for RB, and from two (W9 and W10) to
seven (W1) for NSE. These sensitive parameters may be explained by
characteristics of the specific watersheds. For example, watersheds W9
and W10 have very similar hydroclimatic, soil, and vegetation condi-
tions, and both are sensitive only to P7 and P8, which influence the
overland flow velocity. In these sparsely vegetated small semi-arid
watersheds, infiltration-excess overland flow contributes most to the
total runoff. Variation of overland flow velocity leads to alterations in
the timing of runoff delivery from slopes to streams (Holden et al.,
2008). Meanwhile, humid watershed W7 is also sensitive to P7 and/or
P8, because saturation-excess overland flow constitutes a major part of
the total runoff. Watersheds W1, W2, and W3 have similar hydrocli-
matic conditions, and are sensitive to P1, P6, P8, P10, and P12. The first
three parameters reflect the influence of vegetation type, resulting in
different throughfall, evapotranspiration, and overland flow velocity,
respectively. The latter two parameters reflect the influence of soil
texture, and control the flow speed and discharge of interflow, re-
spectively. For humid watersheds W1, W2, W3, W5, W6, and W8, P10
and P12 show strong overall effects, suggesting the importance of in-
terflow, and P9 yields a significant sensitivity, indicating the

Fig. 3. Relative parameter sensitivities to overall effects (top row) and interaction effects (bottom row) of ten watersheds for (a) RB and (b) NSE of streamflow
discharge.

Y. Gan et al. Journal of Hydrology 564 (2018) 697–711

702



importance of channel flow. In some cases a parameter with a low
overall effect (e.g., P7 in watershed W4 for RB) may have a significant
interaction effect, and thus should also be regarded as a sensitive
parameter (Gan et al., 2014).

4.2. Construction and validation of MARS model

Four parameters (P2, P3, P4, and P5) identified as insensitive by LH-
OAT screening were set to their default values as shown in Table 2, and
the other eight parameters that govern the hydrological response of
CREST were selected for further analysis. We designed five sets of
LPTAU samples, equally spaced between 200 and 1000 with an incre-
ment of 200, to investigate the effect of training sample size on the

performance of MARS in approximating CREST. Fig. 4 shows that
MARS’s performance is substantially affected by the training sample
size. It can well approximate CREST at a low sample size for most of the
watersheds. For example, The R2 values are greater than 0.80 for all
watersheds except W4, W6, and W8 when the sample size equals to
200. The surrogate model trained with more samples tended to perform
better, but had higher computational cost. Although the ranges of R2-
values varied across watersheds and objective functions, the overall
performance of MARS with 1000 samples was sufficient in all cases,
indicating that the surrogate model mimics the performance of CREST
fairly well. The R2-values with 1000 training samples range from 0.884
to 0.997, which are close to those reported in previous studies obtained
by support vector machine and artificial neural network (Johnson and

Fig. 4. The average R2-values obtained by MARS with tenfold cross-validation scheme and different training sample sizes across ten watersheds for (a) RB and (b)
NSE of streamflow discharge.
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Rogers, 2000; Zhang et al., 2009b).
We then used the MARS trained with 1000 samples as a pseudo

simulator of CREST to ensure that it is globally accurate not only for
sensitivity analysis but also for providing reliable information for the
promising regions of the global optimum. For the purpose of efficient
sensitivity analysis, MARS trained with a small sample size (e.g., 200)
can even be used for most of the watersheds. Moreover, other efficient
methods such as the Gaussian process-based probability sensitivity
analysis (Oakley and O'Hagan, 2004; Daneshkhah and Bedford, 2013)
could also be considered. However, the surrogate model trained with
much less samples for surrogate-based sensitivity analysis may easily
miss the global optimum when it is reused for surrogate-based opti-
mization (Razavi et al., 2012). The efficiency of the surrogate model
could be better improved by comparing different surrogate modeling
methods and sampling methods against the research purpose (Gan
et al., 2014; Wang et al., 2014).

4.3. MARS-based Sobol’ sensitivity indices

The eight parameters (P1, P6, P7, P8, P9, P10, P11, and P12) that
play important roles in explaining the uncertainty of streamflow si-
mulation were tested for their sensitivities. Using the pseudo simulator,
we designed 100,000 LPTAU samples to estimate Sobol’ sensitivity in-
dices for each objective function in each watershed. Fig. 5 presents
Sobol’ first-order and total sensitivity indices of ten watersheds for RB
and NSE of streamflow discharge. The residual between Sobol’ total and
first-order sensitivity indices represents the interaction of a specific
parameter with other parameters at all orders. Parameter sensitivities
vary across objective functions and watersheds, and are mainly domi-
nated by interactions. The significant parameter interactions indicate
that CREST may be overparameterized, or its model structures are in-
correct (Bastidas et al., 2006; Saltelli et al., 2008; Rosero et al., 2010).
In addition, all watersheds exhibit higher parameter interaction for NSE
than for RB, suggesting that the functional relationship is more complex
for the former than for the latter.

It should be noted that the surrogate-based sensitivity indices,
especially the interactions we obtained may differ from the true indices
that would have been obtained had we been able to carry out the
sensitivity analysis on the simulation model (O'Hagan, 2006). The
Gaussian process-based probability sensitivity analysis method provides
us a way of presenting variance-based sensitivity indices with un-
certainty ranges at low computational cost (Oakley and O'Hagan, 2004;
Daneshkhah and Bedford, 2013). This method is especially attractive
when the simulation model is computationally expensive and its re-
sponse surface is smooth. The uncertainty ranges of the sensitivity in-
dices decrease as more samples are used to approximate corresponding
sensitivity indices (Daneshkhah and Bedford, 2013). Although no un-
certainty ranges are given here along with the MARS-based Sobol’
sensitivity indices, the sensitivity categories based on the total sensi-
tivity indices should be reliable since the accuracy of the surrogate
model has validated to be acceptable (Shahsavani and Grimvall, 2011).

In general, all parameters are sensitive in at least one watershed,
except that parameter P11 (overland reservoir discharge parameter) is
insensitive in all watersheds for all objective functions. In most wa-
tersheds, the most sensitive parameters are P6 (multiplier on potential
evapotranspiration), P8 (overland flow velocity exponent), and P12
(interflow reservoir discharge parameter) for RB, and P1 (multiplier on
the precipitation field), P6, and P12 for NSE. P1 and P6 are the major
driving parameters in runoff generation, and thus are expected to be
highly sensitive. The high sensitivity of P12 indicates the important role
of interflow to the total runoff in CREST. Meanwhile, the low P11
sensitivity and the high P8 sensitivity suggest that the velocity of
overland flow influences the streamflow situation more than its
amount.

4.4. Adaptive MARS-based multi-objective optimization

4.4.1. Feasibility of calibration
We systemically checked the feasibility of calibration to determine

whether the actual observations could be captured by the ensemble
ranges of the 1000 LPTAU experiments (Hou et al., 2012; Huang et al.,
2013), which were inherited from the surrogate-based quantitative
sensitivity analysis and would be used to construct surrogate models for
adaptive surrogate-based optimization. Fig. 6 depicts boxplots of mean
daily streamflow discharge for the ensemble experiments in ten wa-
tersheds. The boxplots present the streamflow simulation uncertainties
by five-number summaries (i.e., the minimum, first quartile (25%),
median (50%), third quartile (75%), and the maximum) of the en-
semble experiments. Generally, the control experiment underestimates
discharges, particularly for the summer months, whereas the ensemble
ranges contain the observations. The result suggests that the parameter
space is adequately represented by the samples of model parameters
with reasonable physical bounds. It also indicates the necessity and
possibility of calibrating parameters using observations.

4.4.2. Model calibration
Seven sensitive parameters (P1, P6, P7, P8, P9, P10, and P12) were

Fig. 5. Sobol’ sensitivity indices of ten watersheds for (a) RB and (b) NSE of
streamflow discharge.
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selected as the calibration parameters, while other insensitive para-
meters were set to their default values. The 1000 LPTAU experiments,
used in constructing MARS for quantitative sensitivity analysis, were
taken to obtain the transformation constants A1 and A2 for |RB| and
1−NSE, respectively. The parameter-response pairs of these experi-
ments were used to reconstruct MARS to approximate CREST for
searching for the optimal solution. The newly found optimal parameter-
response pair was appended to the parameter-response pool to adap-
tively update MARS. This adaptive surrogate-based optimization pro-
cedure was continued until the best compromise solution was found.
Sample sizes needed to find such solutions for watersheds W1 to W10
were 240, 310, 340, 280, 265, 289, 210, 236, 198, and 180, respec-
tively.

Fig. 7 presents the searching route in the objective function space
across different watersheds, including the initial, intermediate, and
final optimal solutions. A significant tradeoff between |RB| and 1−NSE
is observed in all watersheds except watershed W10, indicating that a
parameter set that gives small percentage volume bias results in a poor
hydrograph shape, and vice versa. This result is in line with the findings
of Madsen (2003) and Bekele and Nicklow (2007), who have conducted
automatic calibration of hydrological models involving multiple ob-
jectives. The significant tradeoff between different criteria may be due
to unresolved errors in the model structure (Fenicia et al., 2007;
Pokhrel et al., 2008) and/or measurement errors in the model data. The

relatively nonobvious tradeoff between |RB| and 1−NSE for watershed
W10 means both percentage volume bias and hydrograph shape can be
improved simultaneously. The absence of significant tradeoff indicates
that the model structure is generally well conceptualized and the most
relevant hydrological processes are taken into consideration for this
watershed (Schoups et al., 2005). The disassociation of the final optimal
solutions from clusters of the intermediate solutions for W1, W7, and
W9 indicates that the response surfaces for these watersheds are pretty
rough and the adaptive MARS-based SCE-UA successfully found the
global optimal solutions but spent many experiments on the local op-
timum regions. The final optimal solutions, which compromise the
Pareto outcomes, perform significantly better than those of the initial
solutions, reducing 1−NSE by 5–50% and |RB| by 20–95%.

Fig. 8 shows variations in the parameter sets, which have been
normalized to the feasible bounds in Table 2 so that all range from 0 to
1. The parametric uncertainties have been significantly reduced by the
adaptive surrogate-based multi-objective optimization. In particular, in
watersheds W6 and W8, most parameters have variation ranges smaller
than 30%, so they were very precisely determined. On the other hand,
in watersheds W1 and W5, most parameters have larger variability
ranges and indistinct trends, so parameter sets with high variability
could give equally good simulations. Some parameters show obvious
trends when moving along the searching route of the optimal solutions.
For example, P1 values are small in watershed W3 but large in

Fig. 6. Boxplots for mean daily streamflow discharge of the 1000 LPTAU ensemble experiments across ten watersheds. The red circles denote observations and the
blue boxes denote the outputs of the control experiment using default parameter set.
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watersheds W6 and W8, whereas P6 values are large in watershed W3
but small in watersheds W6 and W8. This is because increases in P1
result in increased precipitation and thus greater streamflow discharge,
while increases in P6 result in increased evapotranspiration and thus
smaller streamflow discharge. That is, larger P1 and smaller P6 lead to
larger streamflow discharge, which is consistent with the observation
that the peak flows are much higher in watersheds W6 and W8 than in
watershed W3 during the calibration period.

Fig. 9 compares simulated and observed streamflow discharge at
different watershed outlets. The uncertainty intervals show that CREST
produces a range of simulated hydrographs corresponding to the
“equally good” parameter sets along the Pareto front. The final optimal
solutions not only closely reproduce the timing and magnitude of the
peak flows, but also well represent the shape of the recession curves.
The simulation results of the default solutions tend to underestimate
streamflow by about 70–100% in all watersheds, while the optimal
solutions show significant improvement, reducing 1−NSE by 65–90%
and |RB| by 60–95%. For watersheds W3, W6 and W8, where stream-
flow data contain many extended periods of low flow values or extreme
high peaks, it is relatively more difficult to obtain a reliable calibration.
The relatively poor ability for the model to simulate the recession curve
(e.g., watersheds W1, W6, and W8) indicates that the groundwater

module could be better improved. The tendency for the model to un-
derestimate spring peaks (e.g. watersheds W1, W2, and W3) could be
attributed to the lack of a snowmelt module in CREST. It should also be
noted that human activities such as reservoir regulation and water di-
version can affect the observed streamflow discharge, which inevitably
lead to disagreement between simulated and observed streamflow.

4.4.3. Model validation
We validated the calibrated model for streamflow simulation out-

side the calibration period. Fig. 10 presents the validation results for
streamflow simulations over the ten watersheds. The calibrated model
simulation showed a large improvement over the default simulation,
reducing 1−NSE by 40–85% and |RB| by 35–90%, although some
performance indices remain unsatisfactory. Since the parameters were
calibrated to simulate intense flood events, the model performance
decreases during the validation period when rainfall rates are lower,
and vice versa (Moussa et al., 2007; Zhang et al., 2009a). For example,
the calibration period for the watershed W3 is characterized by three
dry years which causes low peak flows (less than 150m3/s), while the
validation period is characterized by high rainfall rates during the year
2012 which causes high peak flows (more than 3000m3/s). In addition,
the relatively short duration (three years) of the observational data used

Fig. 7. Searching route in the objective function space showing streamflow |RB| versus 1−NSE across ten watersheds. Blue squares represent initial optimal
solutions, orange stars denote intermediate optimal solutions, and red dots indicate final optimal solutions of the adaptive surrogate-based multi-objective opti-
mization.
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in calibration could also lead to unsatisfactory validation results
(Sorooshian and Gupta, 1995; Muleta and Nicklow, 2005). Further-
more, the model limitations in representing the spatial heterogeneity of
watershed may cause unstable model performance (Bekele and
Nicklow, 2007).

5. Summary and conclusions

We presented an uncertainty quantification framework that com-
bines the strengths of stepwise sensitivity analysis and adaptive surro-
gate-based multi-objective optimization to facilitate practical assess-
ment and reduction of model parametric uncertainties. The framework
was tested over ten watersheds using the distributed hydrological
model CREST for daily streamflow simulation during the period
2008–2010. This generated optimal sets of sensitive parameters, which
were used to improve CREST with validation against the daily
streamflow simulation during the period 2011–2012.

Parameter sensitivities vary across watersheds and objective func-
tions, but clearly demonstrate dominant patterns. Of the twelve para-
meters tested, we identified four that had little effect on streamflow
simulation in any watershed. They were physically-based and de-
termined by the physical mechanisms of runoff generation and routing
processes and thus the physical characteristics of the watersheds. The

remaining eight parameters were all conceptually-based and related to
aggregated hydrological processes, and thus generally cannot be de-
termined from the physical characteristics of the watersheds but need to
be calibrated (Madsen, 2003). Of these, we identified that the con-
tribution of the overland reservoir discharge parameter to the response
variances is also negligible, indicating that more accurate quantitative
evaluation of parameter sensitivities is needed after a qualitative
parameter screening. Generally, the stepwise sensitivity analysis effi-
ciently reduced the number of parameters needing calibration from
twelve to seven, and thus constrained the dimensionality of calibration
problem and enhanced the efficiency of parameter calibration.

The calibration exercise satisfactorily reproduced observed stream-
flow for all watersheds. The optimal solutions significantly improved
streamflow simulation over the default, reducing 1−NSE by 65–90%
and |RB| by 60–95%. The validation exercise also indicated a large
improvement of the optimal simulation over the default, reducing
1−NSE by 40–85% and |RB| by 35–90%, although some performance
indices were still not satisfactory as noted in other distributed hydro-
logical models (Muleta and Nicklow, 2005; Zhang et al., 2009a; Sun
et al., 2017). Even after calibration, there are potentially large un-
certainties because no simulation model is capable of representing all
physical processes, and observational data are likely incomplete. Ad-
ditionally, the optimal parameter sets are realistic only for the same

Fig. 8. Normalized parameter sets along the searching route across ten watersheds. Long blue dashed lines represent initial optimal solutions, orange solid lines
denote intermediate optimal solutions, and short red dashed lines indicate final optimal solutions of the adaptive surrogate-based multi-objective optimization.
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watershed under similar meteorological conditions. A comprehensive
evaluation is necessary to transfer the optimal parameter sets from one
watershed to another with “similar” watershed properties and hydro-
climatic conditions (Zhang et al., 2009a; Kumar et al., 2013; Gan et al.,
2015), or even to the same watershed with greatly different meteor-
ological conditions.

Overall, our uncertainty quantification framework is effective for
multi-watershed multi-objective parametric uncertainty quantification,
and provides useful information to understand the model behaviors and
improve the model simulations. The framework designs various simu-
lation experiments to reduce parameter dimensionality, and thus is well
suited for calibrating high-dimensionality problems requiring sys-
tematic quantification of parametric uncertainties. The qualitative or
even quantitative sensitivity analysis could be discarded for the cali-
bration of low-dimensionality problems.

We considered only streamflow simulation due to the lack of ob-
servational data for other variables. In addition, the duration of the
observed streamflow data is relatively short. The capability of this
framework, as well as the behavior of CREST, could be more effectively
tested with more observational data for multiple variables in multiple
watersheds. Further improvements of the framework and its application

to some of the more sophisticated models such as the Conjunctive
Surface-Subsurface Process (CSSP) (Choi et al., 2013) and Noah mul-
tiparameterization (Noah-MP) (Niu et al., 2011) land surface models
are still ongoing. The results of these works will be reported in due
course.
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Fig. 9. Comparison of observed and simulated hydrographs for the calibration period across ten watersheds. For each subfigure, the long blue dashed curve
corresponds to the hydrograph simulated by default solution (def), the short red dashed curve corresponds to the hydrograph simulated by final optimal solution
(opt), the light red band corresponds to the uncertainty interval simulated by Pareto optimal solutions, and the black solid curve corresponds to the observed
hydrograph.
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Appendix A. Objective functions

Relative bias (RB) and Nash-Sutcliffe efficiency (NSE) are defined as follows to measure the overall water balance and the overall shape of the
hydrograph, respectively
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where Si andOi are simulated and observed values at time i, respectively;O is the mean of observations; and N is the total number of observations (or
simulations). RB ranges from minus infinity to plus infinity with lower absolute value indicating better agreement, while NSE ranges from minus
infinity to 1.0 with higher value indicating better agreement.

Fig. 10. Comparison of observed and simulated hydrographs for the validation period across ten watersheds. For each subfigure, the long blue dashed curve
corresponds to the hydrograph simulated by default solution (def), the short red dashed curve corresponds to the hydrograph simulated by final optimal solution
(opt), the light red band corresponds to the uncertainty interval simulated by Pareto optimal solutions, and the black solid curve corresponds to the observed
hydrograph.
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Appendix B. k-fold cross-validation measure

The k-fold cross-validation measure used in this study is the coefficient of determination R2, which is calculated as
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where ̂Yp j, and Yp j, are the predicted and actual response values of the jth sample point of the pth subset, respectively. ̂Y and Y are mean values of ̂Yp j,
and Yp j, , respectively.
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