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Abstract High-resolution modeling became popular in recent years due to the availability of multisource
observations, advances in understanding fine-scale processes, and improvements in computing facilities.
However, modeling of hydrological changes over mountainous regions is still a great challenge due to the
sensitivity of highland water cycle to global warming, tightly coupled hydrothermal processes, and limited
observations. Here we show a successful high-resolution (3 km) land surface modeling over the Sanjiangyuan
region located in the eastern Tibetan plateau, which is the headwater of three major Asian rivers. By
developing a new version of a Conjunctive Surface-Subsurface Process model named as CSSPv2, we
increased Nash-Sutcliffe efficiency by 62–130% for streamflow simulations due to the introduction of a
storage-based runoff generation scheme, reduced errors by up to 31% for soil moisture modeling after
considering the effect of soil organic matter on porosity and hydraulic conductivity. Compared with
ERA-Interim and Global Land Data Assimilation System version 1.0 reanalysis products, CSSPv2 reduced
errors by up to 30%, 69%, 92%, and 40% for soil moisture, soil temperature, evapotranspiration, and terrestrial
water storage change, respectively, as evaluated against in situ and satellite observations. Moreover,
CSSPv2 well captured the elevation-dependent ground temperature warming trends and the decreased
frozen dates during 1979–2014, and significant increasing trends (p < 0.05) in evapotranspiration and
terrestrial water storage during 1982–2011 and 2003–2014 respectively, while ERA-Interim and Global Land
Data Assimilation System version 1.0 showed no trends or even negative trends. This study implies the
necessity of developing high-resolution land surface models in realistically representing hydrological
changes over highland areas that are sentinels to climate change.

1. Introduction

Climate change influences Earth’s energy cycle through altering cloud distributions and atmospheric radia-
tion, and consequently affects terrestrial water cycle. In a warming climate, the increases in precipitable water
and evapotranspiration (ET) result in higher chance for floods and droughts (Dai, 2013; Milly et al., 2002). The
fifth Assessment Report of the Intergovernmental Panel on Climate Change suggests that heavy precipitation
events are very likely to increase over most of themidlatitude regions and wet tropical regions, and the inten-
sity and duration of droughts are likely to increase over presently dry regions (Intergovernmental Panel on
Climate Change, 2013). The changing climate and the increasing risk of extremes impose an urgent need
to assess the changes in terrestrial hydrology for water and food security, as well as for a sustainable manage-
ment of the environment. However, there are great challenges in simulating and projecting the hydrological
cycle and extremes (Prudhomme et al., 2014) due to the uncertainty in land surface models (LSMs), especially
over mountainous areas that are the sentinels of climate change.
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Through five decades of development, LSMs have been augmented from simple bucket models (Manabe,
1969) to comprehensive Earth systemmodels that simulate water cycle, energy cycle, carbon cycle, and even
nutrient cycle (Oleson et al., 2013; Tian et al., 2016). Besides developing a very complicated system that is
expected to consider as many biogeophysical and biogeochemical processes as possible, another direction
is to make LSMs useful for applications (Wood et al., 2011), for example, water resources management
(Wada et al., 2014), flood/drought early warning (Wing et al., 2017), and detection and attribution of hydro-
logical changes (Yuan et al., 2018). The latter direction requires developing high-resolution LSMs that can
provide locally relevant information (Bierkens et al., 2015). As LSMs go into high or even hyper resolution
(Wood et al., 2011), many hydrological processes that are neglected in coarse resolution Earth systemmodels
may have significant influence on the simulations (Melsen et al., 2016), such as the lateral flows, overland
flow, ponding, and surface-subsurface interactions (Ji et al., 2017; Maxwell & Condon, 2016; Niu et al., 2014).

For the mountainous region, phenomena including snowmelt runoff (Cuo et al., 2013), frozen soil (Li et al.,
2012), effects of organic matters and minerals on soil hydrothermal dynamics (Chen et al., 2012), and
elevation-dependent warming (Pepin et al., 2015) make the land surface modeling more difficult especially
in a changing climate. In addition, the resolution of meteorological forcings and land surface data is also
critical for a successful simulation (Ji et al., 2017; Wood et al., 2011). This would be a challenge for the model-
ing of terrestrial hydrology over mountainous regions due to sparse in situ measurements, as well as large
uncertainty in radar and satellite retrievals.

Located in the eastern part of the Tibetan plateau (TP; Figure 1), the Sanjiangyuan region is the headwaters of
the Yellow River, the Yangtze River, and the Lancang-Mekong River. The Sanjiangyuan region is called as the
China Water Tower because it provides resources for the freshwater supply, hydropower, industry,

Figure 1. Study domain and observational station locations over the Sanjiangyuan region. Shaded is topography. Orange
triangles represent China Meteorological Administration (CMA) stations, and cyan dots are those stations where monthly
soil temperature observations are provided. Four hydrological stations with monthly streamflow and two observation
networks with daily soil moisture and soil temperature are shown by red pentagrams and green dots, respectively.
Headwaters of the Yellow River basin, the Yangtze River basin, and the Lancang-Mekong River basin are shown by purple
lines, with black lines showing main channels.
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agricultural, and environment sustainability over downstream areas. A warming and drying climate during
1980s–1990s, combined with intensive adverse human activities, resulted in a decrease in water resources,
grassland degradation, and even desertification. Since the beginning of the 21st century, China has launched
the Sanjiangyuan Region Reserve project, including the Graze for Grass, ecological migration, etc. After the
environment protection for several years, the Sanjiangyuan region is experiencing an increase in the areas
of grassland and lake, and an increase in the streamflow. Meanwhile, the drying climate also switched to a
wetting climate at the beginning of the 21st century (Jiang & Zhang, 2016; Liu et al., 2014). Therefore, whether
the climate change or the land cover change has more significant influence on the hydrological changes over
the Sanjiangyuan region remains unknown.

As the first paper of a two-part series, this paper introduces a high-resolution LSM developed over the
Sanjiangyuan region and validates it with multisource observations including streamflow observations at
hydrological gauges over the headwaters region, in situ soil moisture and soil temperature measurements
from two densely distributed networks, and ET and terrestrial water storage estimations from satellite data.
Specifically, we not only assess the model’s performance in terms of simulating hydrological variations from
daily to monthly time scales but also evaluate its ability in capturing long-term changes in the terrestrial
hydrology over the Sanjiangyuan region. Building upon the confidence of the high-resolution land surface
modeling, attribution of the changes in the hydrological cycle with respect to anthropogenic and natural cli-
mate change, and land cover change, will be illustrated in a companion paper, using LSM simulations driven
by a set of Coupled Model Intercomparison Project phase 5 models under different forcings (Ji & Yuan, 2018).

2. Model, Data, and Experimental Design
2.1. The Conjunctive Surface-Subsurface Process Model

The LSM used in this study is the Conjunctive Surface-Subsurface Process (CSSP) model (Ji et al., 2017; Liang
et al., 2012; Yuan & Liang, 2011). The CSSP model was developed from the Common Land Model (Dai et al.,
2003, 2004), but it has better representations in lateral surface and subsurface hydrological processes and
their interactions (Choi et al., 2013). Generally, CSSPmodel includes a quasi-three-dimensional subsurface soil
water transport model (Choi et al., 2007), a one-dimensional diffusive surface water model (Choi, 2006), and a
one-dimensional groundwater model (Yuan & Liang, 2011). The lateral surface and subsurface flows were
found to be nontrivial for high-resolution land surface modeling (Ji et al., 2017).

The runoff generation in the CSSP model includes surface and subsurface runoff (Choi & Liang, 2010; Yuan &
Liang, 2011). Surface runoff (Rs, mm/s) is calculated as the sum of Hortonian (rainfall rate exceeds infiltration
rate) and Dunnian (rainfall occurs at saturated area) runoff:

Rs ¼ 1� F imp
� �

max 0; Qw � Imax½ � þ F impQw ; (1)

where Fimp is the impermeable area fraction that includes saturated and frozen parts, Qw (mm/s) is the total
available water supply rate that consists of rainfall, dewfall, and snowmelt rates. The Imax (mm/s) is the max-
imum infiltration rate defined as

Imax ¼ F liq 1ð ÞKsz 1ð Þ 1þ ψs 1ð Þb1
d1

wu 1ð Þ � 1ð Þ
� �

; (2)

where the index (1) means the top soil layer and Fliq is the unfrozen parts. Ksz (mm/s) and ψs (mm) represent
the saturated hydraulic conductivity and saturated suction head, respectively. The wu is the soil wetness for
the permeable unsaturated area, and b1 is pore size distribution index, which is determined by soil clay con-
tent. The node depth of top layer is denoted by d1 (mm). The CSSP model predicts subsurface runoff as the
sum of saturation excess, baseflow, and bottom drainage. The saturation excess runoff is calculated by
removing supersaturated water from the entire soil column. Baseflow (Rsb, lat, mm/s) calculation is the water
table-based scheme proposed by Niu et al. (2005):

Rsb;lat ¼ Rsb;maxe
�fz∇ ; (3)

where Rsb, max = 4.5 × 10�3 mm/s is the maximum subsurface lateral runoff and f is the exponential decay
factor. The z∇ (m) represents water table depth. Rsb, lat is extracted from each saturated layer in proportion
to its local hydraulic conductivity without exceeding the available liquid water mass. The bottom drainage
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was dropped in this study because of the consideration of recharge rate between the lowest soil layer and the
unconfined aquifer (Yuan & Liang, 2011). The river transport model (Oleson et al., 2013), which is similar to the
linear reservoir model, was used to route surface and subsurface runoff from each grid cell to its downstream
neighboring grid cell, where water flow velocity and river water stored within the grid cell were used to cal-
culate the flux of water leaving the grid cell.

2.2. CSSP Model Development

In order to reasonably simulate energy and water cycle over headwater region, we have updated the CSSP
model in a few aspects, including the runoff generation, soil organic matter and thermal parameterizations,
and dynamical memory allocation suitable for high-resolution simulations. The new model is named as CSSP
version 2 (CSSPv2).
2.2.1. Incorporating the Storage-Based Runoff Scheme
For runoff generation, Zheng et al. (2017) compared four different schemes over upper Yellow River in the TP
and found soil water storage-based runoff parameterizations outperformed water table-based runoff
schemes for the seasonally frozen and high-altitude rivers. Thus, we incorporated the Variable Infiltration
Capacity (Liang et al., 1994) runoff parameterization into CSSP following Oleson et al. (2013). The saturated
area fraction in CSSPv2 is now parameterized as

f sat ¼ 1- 1-wtop=ws;top
� �1= 1þbð Þ

; (4)

where wtop (mm) and ws, top (mm) are the sum of actual and saturated soil water for the upper six soil layers,
respectively. The parameter b determines the shape of infiltration curve. The actual (i, mm) and saturated (im,
mm) soil moisture holding capacity of each grid cell are calculated as

i ¼ im 1� 1� f satð Þ1=b
� �

im ¼ ws;top 1þ bð Þ;
(5)

and the maximum soil infiltration rate becomes

Imax ¼
ws;top � wtop
� �

=Δt i þ QwΔt≥ im

ws;top � wtop
� �� ws;top� 1� max 1;

iþQwΔt
im

� 	1þb
" #

=Δt i þ QwΔt < im

8>><
>>: ; (6)

The baseflow is parameterized as

Rsb;lat ¼ DsDsmax

wsws;bot
wbot þ max 0;

wbot � wsws;bot

ws;bot � wsws;bot

� 	
Dsmax � DsDsmax

ws

� 	� �
; (7)

where Dsmax (mm/s) is the maximum subsurface flow rate, Ds is a fraction of Dsmax,wbot (mm) andws, bot (mm)
are actual and maximum soil water content for 7–9 soil layers, and ws is a fraction of ws, bot.
2.2.2. Considering the Soil Organic Matter in Soil Hydraulic Properties
Considering the high soil organic content for the alpine grassland, CSSPv2 uses parameterizations for hydrau-
lic properties as follows (Oleson et al., 2013):

θs;i ¼ 1� f om;i
� �

θs;min;i þ f om;iθs;om
Bi ¼ 1� f om;i

� �
Bmin;i þ f om;iBom

ψs;i ¼ 1� f om;i
� �

ψs;min;i þ f om;iψs;om;

(8)

where the index i represents a specific soil layer and θs, i, θs, min , i, and θs, om are mean porosities for actual soil,
pure mineral soil, and organic matter. The fom, i means soil organic matter fraction, Bi is a parameter that will
be used in hydraulic conductivity, and ψs, i (m) is a saturated soil suction head.
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2.2.3. Introducing a Modified Soil Thermal Parameterization
CSSP calculates soil thermal conductivity (λ, W·m�1·K�1) as

λ ¼ Ke λsat � λdry
� �þ λdry; (9)

where λsat (W·m�1·K�1) and λdry (W·m�1·K�1) are the saturated and dry thermal conductivity, respectively,
and Ke is the Kersten number, which is a function of soil wetness (Sr) and the phase of the water:

Ke ¼
log Srð Þ þ 1; unfrozen soils

Sr ; frozen soils



: (10)

The saturated thermal conductivity (λsat) is a combination of mineral (λm, W·m�1·K�1), ice (λice, W·m�1·K�1),
and water (λw, W·m�1·K�1) conductivity:

λsat ¼ λ1�Fliq�Fice
m λFiceice λ

F liq
w ; (11)

where Fice and Fliq are the frozen and liquid volume fractions, respectively. The mineral conductivity is deter-
mined by soil sand (%sand) and clay (%clay) fractions as

λm ¼ 8:8 %sandð Þ þ 2:92 %clayð Þ
%sandð Þ þ %clayð Þ : (12)

Chen et al. (2012) compared the performance of three different soil thermal conductivity schemes in four
alpine grassland stations and found that they overestimated thermal conductivity, but the scheme from
Yang et al. (2005) outperformed others. Following Yang et al. (2005), parameterizations for λm and Ke in
CSSPv2 are now as follows:

λm ¼ λqqλ
1�q
o

Ke ¼
exp kT 1� 1=Srð Þ½ �; unfrozen soils

Sr ; frozen soils

(
;

(13)

where λm is determined by thermal conductivity of the quartz content (λq, W·m�1·K�1) and other minerals (λo,
W·m�1·K�1), and Ke is expressed as an exponential form. Following Chen et al. (2012), the quartz content (q)
was estimated as a half of sand fraction.

2.3. Study Area and Validation Data

In this study, we implemented the CSSPv2 model over the Sanjiangyuan region (Figure 1), which covers
31°29´N–36°12´N and 90°36´E–103°24´E, with a total area of about 28.1 × 104 km2. It is mainly controlled
by East Asianmonsoon in summer and westerlies in winter (Yang et al., 2014). The eastern part has a relatively
warmer and wetter climate with about 770-mm annual precipitation and 4.2-°C mean temperature, while the
western part is cold and arid where the annual precipitation and temperature are only 260 mm and �5.4 °C,
respectively (Xu et al., 2011). As a result, the eastern and southeastern parts are dominated by grassland and
the northwestern part is barren or sparsely vegetated.

Daily ground temperature (TG) observations from 73 China Meteorological Administration (CMA) stations
(orange triangles in Figure 1) were collected in this study, with eight stations including daily soil temperature
observations at depths of 5, 10, 15, 20, and 40 cm (cyan dots in Figure 1). These temperature observations
were averaged into monthly means. Monthly streamflow from four hydrological stations (red pentagrams in
Figure 1), including the Jimai (JM), Maqu, Tangnaihai (TNH) stations in the Yellow River, and the Zhimenda
(ZMD) station in the Yangtze River, was provided by the local authorities (Yuan et al., 2017). Data periods
are 1979–2001 for the JM and Maqu stations, 1979–2010 for the TNH station, and 1980–2008 for the
ZMD station.

Two soil temperature and soil moisture observation networks (Figure 1) are located in the study domain (Su
et al., 2013; Yang et al., 2013). They were widely used in studies for hydrological cycle over TP (Bi et al., 2016;
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Chen et al., 2013; Dente et al., 2012; Qin et al., 2013; Zeng et al., 2016). Lying in the east of the study domain,
the Maqu network consists of 20 stations with soil moisture and soil temperature measurements from the
depths of 5 to 80 cm, recorded every 15 min during 13 May 2008 to 29 June 2012 (Su et al., 2013). These sta-
tions are distributed in the valley of Yellow River headwaters and its surrounding hills, with main vegetation
types being woodland and grassland. Climate in the Maqu network is featured by a humid and warm summer
and a dry and cold winter. The Naqu network is located at the southwestern part of the study area where the
climate is arid and cold. Fifty-six stations were set up in the Naqu network at three spatial scales (1.0°, 0.3°, and
0.1°) to observe soil moisture and soil temperature from the depths of 5 to 40 cm every 30 min from 2 August
2010 to 31 December 2014. As the highest soil moisture observation network above sea level in the world,
elevations of the Naqu network vary from 4,470 to 4,950 m and the terrain is relatively smooth with rolling
hummocks and hills (Yang et al., 2013). Alpine grassland is the main vegetation for the Naqu network.
Both Maqu and Naqu networks have a typical freeze-thaw cycle, and only the liquid water can be observed.

The ET is a vital variable in the hydrological cycle and the climate system (Jung et al., 2010). Although tremen-
dous progresses have been made in extending ET observations globally, they are limited over TP. Here the
ensemble mean of Model Tree Ensemble evapotranspiration (MTE_ET; Jung et al., 2009) and the Global
Land Evaporation Amsterdam Model evapotranspiration (GLEAM_ET; Miralles et al., 2011) version 3.1a was
used. The MTE_ET data set was developed by using a machine-learning algorithm that integrated ET mea-
surements at the FLUXNET stations (Baldocchi et al., 2001) to spatial grids according to surface meteorologi-
cal data and remote sensed geospatial information (Jung et al., 2009). This data-driven estimation was
validated by using flux tower observations, simulations from 16 LSMs and ET estimated from 112 catchments
based on the water balance approach, and the MTE_ET estimations were quite satisfactory (Jung et al., 2010).
The resolution of the MTE_ET data is 0.5° × 0.5°, and the data coverage is 1982–2011 (https://www.bgc-jena.
mpg.de/geodb/projects/Data.php). For the GLEAM_ET data, observed precipitation and reanalysis data were
first used to calculate potential ET. Then, a vegetation fraction-dependent, multiplicative stress index was
used to convert potential ET into actual ET (Martens et al., 2017). The resolution of GLEAM_ET is
0.25° × 0.25°, and the data coverage is from 1980 to present (https://www.gleam.eu/#datasets). Both the
MTE_ET and GLEAM_ET products were first interpolated into 3-km resolution through the inverse distance
weighting interpolation method, and an ensemble of them was then calculated during 1982–2011.

The Gravity Recovery and Climate Experiment (GRACE) satellite provides a reliable estimation for the terres-
trial water storage change (TWSC, Landerer & Swenson, 2012). There are three different processing centers
releasing monthly GRACE data including the Geoforschungs Zentrum Potsdam, the Center for Space
Research at University of Texas, Austin, and the Jet Propulsion Laboratory. These three data centers used dif-
ferent solutions when processing the GRACE TWS anomaly data, and the ensemble of them was suggested
by the National Aeronautics and Space Administration (https://grace.jpl.nasa.gov/data/choosing-a-solution/).
For more details, readers are kindly referred to the website (ftp://podaac-ftp.jpl.nasa.gov/allData/tellus/L3/
land_mass/RL05/).

Besides validating CSSPv2 by comparing with multisource observations, simulations from Global Land Data
Assimilation System version 1.0 (GLDAS1) reanalysis data (Rodell et al., 2004) and European Center for
Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim, Dee et al., 2011) were also used for
model intercomparisons. GLDAS1 provides data at 1° × 1° resolution at 3-hourly time scale, and
ERA-Interim provides products at 0.75° × 0.75° resolution at daily scale.

2.4. Experimental Design

In this paper, both the CSSP and CSSPv2 models were run at 3-km resolution over the Sanjiangyuan region
(Figure 1) with 420 × 220 grid points generated from the Lambert map projection centered at (33.5°N,
96.7°E). All simulations were conducted for two cycles from 1979 to 2014 at half-hourly time step, with the
land surface conditions at the end of the first cycle being used for the initial conditions for the simulations
in the second cycle. So the simulations in the first cycle were regarded as model spin-up for a more stable
initial conditions, and the results in the second cycle were used for analysis.

The digital elevation model data at 90-m resolution was obtained from U.S. Geological Survey website (http://
hydrosheds.cr.usgs.gov) to calculate topographic characteristics (e.g., slopes and their standard deviations)
for the CSSP and CSSPv2 model simulations. The slopes were used to compute terrain-driven lateral
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surface and subsurface flows, while the standard deviations were used to derive the covariance between soil
moisture and terrain slopes (Choi et al., 2007). High-resolution (1 km) land surface data sets including soil
sand, clay, and organic matter fractions were provided by Dai et al. (2013). Normalized Difference
Vegetation Index (NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS) at 8-km
resolution during 1982–2000 (Pinzon & Tucker, 2014) and the Moderate Resolution Imaging

Table 1
Performance for Streamflow Simulations Assessed at Four Hydrological Stations Over the Sanjiangyuan Region

Periods

CC NSE KGE

CSSP CSSPv2 CSSP CSSPv2 CSSP CSSPv2

TNH Calibration (2000–2010) 0.83 0.95 0.55 0.89 0.74 0.88
Validation (1979–1999) 0.80 0.93 0.52 0.84 0.74 0.82

ZMD Calibration (2000–2008) 0.68 0.95 0.41 0.83 0.65 0.77
Validation (1980–1999) 0.62 0.93 0.37 0.84 0.56 0.88

JM Validation (1979–2001) 0.80 0.89 0.31 0.70 0.50 0.76
Maqu Validation (1979–2001) 0.83 0.93 0.37 0.85 0.56 0.88

Note. The metrics include correlation coefficient (CC), Nash-Sutcliffe efficiency (NSE), and Kling-Gupta efficiency (KGE, Gupta et al., 2009). CSSP = Conjunctive
Surface-Subsurface Process; CSSPv2 = Conjunctive Surface-Subsurface Process version 2; JM = Jimai; TNH = Tangnaihai; ZMD = Zhimenda.

Figure 2. Observed and simulated monthly streamflow (a–d) and their annual cycles (e–h) at Jimai (JM), Maqu, Tangnaihai
(TNH), and Zhimenda (ZMD) hydrological stations. Black lines are observations; blue and red lines are simulations by CSSP
and CSSPv2, respectively. CSSP = Conjunctive Surface-Subsurface Process; CSSPv2 = Conjunctive Surface-Subsurface
Process version 2.
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Spectroradiometer (MODIS) at 0.05° resolution during 2001–2014 (LP-DACC, 2007) were merged. This is
because MODIS data have a higher resolution, and Zhang et al. (2013) suggested that GIMMS NDVI data
may be unreasonable during 2001–2006. Indeed, we compared the NDVI trends for the GIMMS, the
MODIS, and the Système Pour l’Observation de la Terre VEGETATION (SPOT-VGT) during 2000–2014 and
found that the GIMMS NDVI showed a decreasing trend, but MODIS NDVI and SPOT-VGT NDVI increased
significantly. Dynamic leaf area index was derived from the merged NDVI using an empirical
transformation (Sellers et al., 1996) and was used to provide surface conditions for the simulations. The
land use data were compiled from the MODIS data at 1-km resolution.

The 0.1° China Meteorological Forcing Dataset (CMFD) from 1979 to 2014 with a 3-hourly temporal resolu-
tion (He & Yang, 2011) was used to generate forcing data over the study domain. The CMFD was produced
by merging a variety of data sources, including observations from 740 CMA meteorological stations,
Tropical Rainfall Measuring Mission satellite precipitation analysis data, GLDAS forcing data, Global
Energy and Water Cycle Experiment-Surface Radiation Budget downward shortwave radiation, and the
Princeton forcing data. Given that CMFD precipitation and temperature were based on 740 station obser-
vations, they were replaced by updated observations from 2,474 CMA stations (Wang et al., 2016) in this
study. All the forcing data sets were bilinearly interpolated into 3-km resolution and disaggregated into
half-hourly time step.

3. Validation of CSSPv2 Over the Sanjiangyuan Region

As the first part of a series investigating hydrological changes over the Sanjiangyuan region, this paper com-
prehensively evaluated the newly developed CSSPv2 model by comparing with its previous version CSSP, as
well as global reanalysis for the simulations of streamflow, soil moisture, soil temperature, ET, and TWSC.

3.1. Streamflow

The CSSPv2 model was calibrated manually against monthly streamflow observations at TNH and ZMD sta-
tions (Figure 1) for the headwaters of Yellow River and Yangtze River, respectively, using the Nash-Sutcliff effi-
ciency (NSE) as the objective function. The CSSP model was minimally calibrated by Yuan and Liang (2011)
over the United States, so the CSSPv2 model was also minimally calibrated (i.e., through a few sensitivity
tests) for the streamflow simulations to allow for a consistent implementation of runoff generation

Figure 3. Observed and simulated climatology of runoff (mm; dots and lines), and observed climatology of precipitation
(OBS_P, mm; gray bars) averaged over the headwaters of Yellow River and Yangtze River. OBS_R, SIM_R, SIM_Rsurf, and
SIM_Rsub represent observed total runoff, simulated total runoff, simulated surface runoff, and simulated subsurface
runoff, respectively. CSSP = Conjunctive Surface-Subsurface Process; CSSPv2 = Conjunctive Surface-Subsurface Process
version 2.
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schemes with other physical parameterizations. Except for the soil layer depths (Yuan et al., 2016) that were
fixed for the CSSPv2 model, the variable infiltration curve parameter b, maximum baseflow velocity Dsmax,
fraction of Dsmax where nonlinear baseflow begins (Ds), and fraction of maximum soil moisture content
above which nonlinear baseflow occurs (ws) were calibrated. Table 1 lists the calibration and validation
periods. Sanjiangyuan region experienced significant land cover change during the period 2000–2010, so
it was selected as the calibration period to fully capture the effects of land cover change on terrestrial
hydrology besides streamflow (e.g., ET and TWSC). The years 1979–1999 were selected as validation period
for streamflow simulations. For the JM and Maqu gauges (Figure 1) within the headwaters of the Yellow
River, the results can be regarded as validation given no direct calibration against their streamflow records.
Again, this treatment is to allow for a fair comparison with the CSSP model to the extent possible.

Figure 2 shows that CSSPv2 simulations captured the observed streamflow variations reasonably well at four
stations, while CSSP overestimated streamflow especially during dry seasons. For the seasonal variations,
double peaks that occurred in July and September at Maqu and TNH stations were also roughly captured
by CSSPv2, while CSSP only simulated a peak streamflow during September (Figures 2f and 2g). For the
ZMD station at the headwaters of the Yangtze River, CSSP failed to capture the timing of the peak streamflow,
while CSSPv2 performed well (Figure 2h). The difference in streamflow seasonal cycle between CSSP and
CSSPv2 was caused by the partitioning of surface and subsurface runoff (Figure 3). For the Yellow River

Figure 4. Evaluation of snow depth simulations over the Sanjiangyuan region. (a) Time series of observed and simulated
December-January-February (DJF) mean snow depths averaged over 34 CMA stations. (b–e) Correlations and root-mean-
square errors calculated over each CMA stations with snow depth observations. RMSE = root-mean-square error;
CSSPv2 = Conjunctive Surface-Subsurface Process version 2; CMA = China Meteorological Administration.
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headwater region, it is found that subsurface runoff dominates the total runoff for CSSP (blue line in Figure 3a),
while both surface and subsurface runoff are important for CSSPv2 (Figure 3b). For the double peaks in annual
cycle (Figures 2e–2g), CSSPv2 simulation shows that both surface and subsurface runoff contributed to the
peak in July, and subsurface runoff contributed to the peak in September (Figure 3b). However, CSSP
missed the peak during July as most precipitation during the start of wet season (May–June) infiltrated
into the soil and increased subsurface runoff (Figure 3a). For the ZMD station, surface runoff is found to be
dominant in CSSPv2 (Figure 3d), while subsurface runoff is dominant in CSSP (Figure 3c). Due to the lag
time between precipitation and water table increase, runoff in CSSP reaches its peaks 2 months later than
the observation (Figures 3a and 3c). The statistics during calibration and validation periods are given in
Table 1. As compared with CSSP simulations, CSSPv2 simulations increased correlations by 11–50% and
increased NSE by 62–130%.

Given that snowmelt runoff is an important hydrological process in many mountainous regions, we validated
the simulation of snow depths by comparing with station observations. The snowmodel of CSSP and CSSPv2
is the same as that used in the Common Land Model (Dai et al., 2003), where the snowpack can have up to
five snow layers depending on the energy and water conditions. As compared with 34 CMA station observa-
tions, the CSSPv2 model simulated the snow depths over the Sanjiangyuan region quite well (Figure 4), with
the correlation for December-January-February mean snow depth reaching 0.81 during 1980–2008
(Figure 4a). The performance of CSSP is similar to the CSSPv2 because they share the same snow module
(not shown). On average, CSSPv2 increased correlation from ERA-Interim by 131% and decreased root-
mean-square error (RMSE) by 31% (Figures 4b–4e). However, the snowmelt is not a significant contribution
to the streamflow due to a monsoonal climate (Cuo et al., 2014) where the rainy season and peak flows
are in the summer (Figure 3).

Figure 5. Observed and simulated daily soil moisture (m3/m3) averaged over Maqu and Naqu regions at the depths of 5
and 40 cm. Black lines are observations; blue and red lines are simulations from CSSP and CSSPv2. Simulations from
GLDAS1/CLM, GLDAS1/Noah, and ERA-Interim reanalysis data sets are also shown by brown, green, and cyan lines.
CSSP = Conjunctive Surface-Subsurface Process; CSSPv2 = Conjunctive Surface-Subsurface Process version 2;
CLM = Community Land Model; GLDAS = Global Land Data Assimilation System.
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The NSE values range from 0.70 to 0.89 at Yellow River stations, which are
better than previous works where NSE values range from 0.49 to 0.85
based on GLDAS1/Variable Infiltration Capacity simulations (Cuo et al.,
2013) and 0.31 to 0.89 based on GLDAS1/Noah simulations (Zheng et al.,
2017). Bai et al. (2016) also evaluated streamflow simulations of GLDAS1
over the TP, and their results showed that Kling-Gupta efficiency values
vary from �0.75 to 0.09 at the TNH and ZMD stations, which are much
lower than those from CSSPv2 simulations (Table 1). In short, the CSSPv2
model reasonably simulated monthly streamflow over the Sanjiangyuan
region and outperformed many other land surface hydrological models
in the literature.

3.2. Soil Moisture

Figure 5 shows the evaluation results for daily soil moisture averaged over
the Maqu and Naqu networks. With improved meteorological forcings,
both the CSSP and CSSPv2 models simulated the variations of soil moist-
ure quite well. The freeze-thaw cycle was also captured owing to the
implementation of the supercooled soil water parameterization proposed
by Niu and Yang (2006). As compared with CSSP, CSSPv2 simulated larger
soil moisture especially at surface layer (Figures 5a and 5c), which is
because of the incorporation of soil organic matter that increased soil por-
osity. The modified soil thermal parameterization with smaller soil thermal
conductivity postponed freezing and thawing times at 40-cm depth,
resulted in more liquid soil water during autumn and less during spring
(Figures 5b and 5d). The correlations and unbiased root-mean-square error
(unRMSE, i.e., the RMSE after removing systematic bias) were calculated
during May to September when the soil is not frozen. The unRMSE for
CSSPv2 ranges from 0.02 to 0.04 m3/m3 at two networks. The correlation
for CSSPv2 ranges from 0.59 to 0.86 at Maqu and from 0.87 to 0.90 at

Naqu. Compared with CSSP, CSSPv2 decreased unRMSE for soil moisture by up to 31% and increased correla-
tion by up to 17%.

During summer, GLDAS1/Noah and GLDAS1/Community Land Model (CLM) underestimated soil moisture,
which is consistent with previous study (Bi et al., 2016), while ERA-Interim overestimated soil moisture espe-
cially at deeper depth (Figure 5). Correlations for two GLDAS1 products range from 0.19 to 0.71 and 0.74 to
0.84 at Maqu and Naqu networks, respectively, while the unRMSE ranges from 0.03 to 0.05 m3/m3 and 0.02 to
0.05 m3/m3. Generally, GLDAS1/Noah showed a better performance than GLDAS1/CLM. For the ERA-Interim
product, correlation ranges from 0.37 to 0.75 and 0.69 to 0.81 at Maqu and Naqu networks, while unRMSE
ranges from 0.03 to 0.05 m3/m3 and 0.02 to 0.05 m3/m3. Compared with three reanalysis products, CSSPv2
increased correlation by up to 206% and 30% at Maqu and Naqu networks and decreased unRMSE by up
to 38% and 42%.

The CSSPv2 improvements are not only based on model updates but also due to the use of high-resolution
forcings. To specify the relative role of model and forcing improvements, we carried out a CSSPv2 simulation
with GLDAS1 meteorological forcings interpolated from 1° to 3 km. Figure 6 shows that CSSPv2 simulation
with coarse forcing information (pink bars) has similar performance to the GLDAS1 products (brown and
green bars) for the soil moisture at depth of 5 cm, suggesting the dominant control of meteorological for-
cings on surface moisture dynamics. However, the former has a better performance than the latter for the soil
moisture simulation at depth of 40 cm, where the correlation increased by 22–137% over Maqu region and by
15–23% over Naqu region, and the unRMSE decreased by up to 16% and 32% over these two regions
(Figure 6). The comparison between CSSPv2 simulations driven by GLDAS1 and high-resolution forcings
(red bars) shows the importance of meteorological forcings in soil moisture simulation (Figure 6). This is also
consistent with our previous study, where gradual improvements were found by incorporating high-
resolution meteorological and surface data information (Ji et al., 2017). In short, high-resolution forcing data
are critical for a successful high-resolution land surface modeling.

Figure 6. Correlation (CC) and unbiased root-mean-squared error (unRMSE;
m3/m3) for model simulated daily soil moisture averaged over Maqu and
Naqu regions at depths of 5 and 40 cm during May–September. Here
GLDAS1-3 km/CSSPv2 represents the CSSPv2 simulations with GLDAS1
meteorological forcings interpolated into 3 km. CSSPv2 = Conjunctive
Surface-Subsurface Process version 2; GLDAS = Global Land Data
Assimilation System; CSSP = Conjunctive Surface-Subsurface Process;
CLM = Community Land Model.
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3.3. Soil Temperature

Figure 7 shows the evaluation results for daily soil temperature, where CSSPv2 captured variations of soil tem-
perature quite well with correlation ranging from 0.95 to 0.99 and unRMSE ranging from 0.94 to 1.96 °C over
two networks. The results for CSSP are similar to CSSPv2 (not shown). For the reanalysis, GLDAS1/CLM over-
estimated soil temperature with correlation and unRMSE being 0.80–0.89 and 3.1–3.8 °C, respectively, while
GLDAS1/Noah and ERA-Interim underestimated soil temperature especially at deeper depths (Figure 7).
Except for low correlation from GLDAS1/CLM, CSSPv2 and the reanalysis simulated soil temperature reason-
ably in terms of variations. However, CSSPv2 decreased unRMSE by 22–69%, indicating the advantages of
high-resolution modeling due to finer surface and forcing data sets.

Besides daily records from Maqu and Naqu networks, annual cycle of monthly soil temperature from eight
CMA stations (Figure 1) at five depths was also used for the evaluation. Figures 8a and 8b show that
CSSPv2 outperformed three reanalysis data sets significantly, except for lower values than observation during
summer. Considering that CMA stations were set up at bare soils while CSSPv2 considered both bare soil and
vegetation, the cold bias in summer may be caused by land covers. Similar to the evaluations over the Maqu
and Naqu networks, GLDAS1/CLM had a warm bias, while GLDAS1/Noah and ERA-Interim underestimated
soil temperature. The probability density functions of bias and unRMSE shown in Figure 8c were derived from
kernel density estimation using data from all stations and all depths. Both warm and cold biases occurred in
CSSPv2 simulations, with more stations showing cold bias. The biases for the three reanalysis data are much
larger than the CSSPv2 (Figure 8c). The unRMSE values for CSSPv2 are less than 2 °C, while larger than 2–4 °C
for the reanalysis. Mean values of unRMSE are 0.6, 1.0, 1.9, and 1.0 °C for CSSPv2, GLDAS1/Noah, GLDAS1/CLM,

Figure 7. The same as Figure 5 but for daily soil temperature (°C) averaged over Maqu and Naqu regions at depths of 5 and
40 cm. The results from CSSP were not shown here due to negligible difference from CSSPv2. CSSPv2 = Conjunctive
Surface-Subsurface Process version 2; CSSP = Conjunctive Surface-Subsurface Process. GLDAS = Global Land Data
Assimilation System; CLM = Community Land Model.
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and ERA-Interim, respectively. Therefore, CSSPv2 consistently outperformed the reanalysis products for soil
temperature simulations based on three independent sources of observations.

3.4. Evapotranspiration

Figure 9 shows spatial distributions of correlation and RMSE between satellite retrieval (average of the
MTE_ET and GLEAM_ET products, see section 2.3 for details) and simulations from CSSPv2 and reanalysis pro-
ducts for ET accumulated during growing seasons (May–September) of 1982–2011. CSSPv2 simulation shows
significant correlations (>0.36) over most areas in the Sanjiangyuan region, with higher correlation occurring
over Yangtze River and Lancang-Mekong River basins than the Yellow River basin (Figure 9a). The RMSE for ET
mostly ranges from 10 to 40 mm (Figure 9b). Correlation and RMSE averaged over the study domain are 0.83
and 9 mm, respectively, for the CSSPv2 ET simulation. The results for previous CSSP model are similar, but the
RMSE increased by 33% as compared with CSSPv2 (Figures 9c and 9d).

Two GLDAS1 products show significant correlations over upper reaches of the Sanjiangyuan region
(Figures 9e and 9g), while ERA-Interim has a high correlation over the eastern parts (Figure 9i). RMSE values
for two GLDAS1 data sets are larger than 40 mm over most regions, where the GLDAS1/Noah has larger RMSE
than the GLDAS1/CLM in the eastern part (Figures 9f and 9h). ERA-Interim has the largest RMSE over the wes-
tern part, which is greater than 120 mm (Figure 9j). On average, correlations are 0.57, 0.7, and �0.16, and
RMSE values are 50, 42, and 115 mm for GLADS1/CLM, GLDAS1/Noah, and ERA-Interim respectively.
Compared with three reanalysis data sets, CSSPv2 increased correlation by 18–46% and decreased RMSE
by 79–92% for the ET simulations over the Sanjiangyuan region during the growing seasons.

Figure 8. Observed and simulated annual cycles of monthly soil temperature at eight CMA stations at depths of 5 and
40 cm (a and b), and probability distribution functions of bias and unbiased root-mean-square error (unRMSE) for
CSSPv2 simulations and three reanalysis data sets validated at depths of 5, 10, 15, 20, and 40 cm (c). Short bars in Figures 8a
and 8b represent one standard deviation, solid and dashed lines in Figure 8c represent bias and unRMSE, respectively. The
results from CSSP were not shown here due to negligible difference from CSSPv2. CSSPv2 = Conjunctive Surface-
Subsurface Process version 2; CSSP = Conjunctive Surface-Subsurface Process; CMA = China Meteorological Administration;
GLDAS = Global Land Data Assimilation System; CLM = Community Land Model.
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3.5. Terrestrial Water Storage Change

Figure 10 shows the correlation and RMSE for monthly TWSC during 2003–2014, as verified against GRACE
TWSC. CSSPv2 simulation shows significant correlations (CC > 0.6) over the Sanjiangyuan region, except
for the lower reaches of headwaters of the Yellow River and Lancang-Mekong River (Figure 10a). CSSP simu-
lation has a little lower correlation than CSSPv2 (Figure 10c). Two GLDAS1 products, however, have low cor-
relations over most areas (Figures 10e and 10g). The ERA-Interim has higher correlation over eastern part

Figure 9. Evaluation of ET simulations over the Sanjiangyuan region. Spatial distributions of correlation coefficient (CC) and
RMSE between satellite retrievals (ensemble mean of the MTE_ET and GLEAM_ET products) and simulations from
CSSPv2 and three reanalysis products for ET accumulated during the growing seasons (May–September) of 1982–2011. For
each grid point, CC and RMSE were calculated based on the time series of May–September mean ET during 1982–2011,
and the numbers in the brackets in the upper-right corner of each panel are the CC and RMSE for the time series for regional
mean ET averaged during May–September. CSSPv2 = Conjunctive Surface-Subsurface Process version 2;
CSSP = Conjunctive Surface-Subsurface Process; GLDAS = Global Land Data Assimilation System; CLM = Community Land
Model; RMSE = root-mean-square error; MTE_ET = Model Tree Ensemble evapotranspiration; GLEAM_ET = Global Land
Evaporation Amsterdam Model evapotranspiration; ET = evapotranspiration.
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(Figure 10i), which is consistent with ET results (Figure 9g). ERA-Interim has the largest errors, while CSSPv2
has the least (Figures 10b, 10d, 10f, 10h, and 10j). Correlation and RMSE for regional mean monthly TWSC
between CSSPv2 simulations and GRACE observations are 0.78 and 10.5 mm, respectively. Compared with
CSSP, CSSPv2 reduced RMSE by 24%. Compared with two GLDAS1 products, CSSPv2 increased correlation
by 34–53% and reduced RMSE by 23%. Compared with the ERA-Interim, although CSSPv2 only increased
correlation by 4%, it reduced RMSE by 40% due to better representation of the actual magnitude of TWSC.

4. Simulation of Hydrological Changes Over the Sanjiangyuan Region

After evaluating the CSSPv2 model at daily to seasonal time scales, this section will assess whether the model
can reproduce the long-term trends for hydrological variables over the Sanjiangyuan region.

Figure 10. The same as Figure 9 but for monthly terrestrial water storage change (TWSC) during 2003–2014. For each grid
point, CC and RMSE were calculated based on the time series of monthly TWSC during 2003–2014, and the numbers in the
brackets in the upper-right corner of each panel are the CC and RMSE for the time series for regional mean monthly
TWSC. Here the reference is ensemble mean of three GRACE satellite data sets. CSSPv2 = Conjunctive Surface-Subsurface
Process version 2; CSSP = Conjunctive Surface-Subsurface Process; GLDAS = Global Land Data Assimilation System;
RMSE = root-mean-square error.
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4.1. Ground Temperature Change

Figure 11a shows time series of annual TG anomalies averaged over 73 CMA stations (Figure 1). CSSPv2 simu-
lated a 0.51 °C/decade warming rate, which is smaller than the observation (0.61 °C/decade). Three reanalysis
data sets showed the same trends as observation before 1997, but they failed to capture the warming trends
afterward (Figure 11a). As a result, their warming trends are less than 0.25 °C/decade during 1979–2014,
which are less than 41% of the observed trend. The unrealistic drop in TG around 2000 for the GLDAS1 mod-
els might be related to the uncertainty in the meteorological forcing data, where different sources of forcings
were used (Figure 11a). To diagnose the failure after 1998 for the reanalysis products, summer and winter TG
anomalies are shown in Figures 11b and 11c. It is obvious that all simulations show increasing trends during

Figure 11. Observed and simulated annual (a), summer (b), and winter (c) mean ground temperature (TG) anomalies
averaged over 73 CMA stations during 1979–2014, and scatterplots of stations’ elevations and their corresponding annual
(d), summer (e), and winter (f) TG trends. Solid lines in Figures 11d–11f are linear regressions between elevation and TG
trends. CSSPv2 = Conjunctive Surface-Subsurface Process version 2; GLDAS = Global Land Data Assimilation System;
CLM = Community Land Model; CMA = China Meteorological Administration.
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summer. Specifically, CSSPv2 produced a warming rate of 0.44 °C/decade, which is close to the observation
(0.48 °C/decade), while two GLDAS1 products overestimated the rate by 46% and ERA-Interim
underestimated by 56% (Figure 11b). During winter, only CSSPv2 shows a 0.6 °C/decade warming trend,
which is consistent with the observed 0.75 °C/decade, while three reanalysis data sets show decreasing
trends (Figure 11c). Figures 11b and 11c also suggest that the uncertainty in GLDAS1 forcings around 2000
mainly exists in cold seasons. This suggests that the Sanjiangyuan region has a faster warming in winter
than summer, which was simulated well by the CSSPv2 model, but global reanalysis products failed to
capture the cold season warming trend.

In addition to the average results among stations, trends for annual, summer, and winter TG for each station
were plotted against their elevations (Figures 11d–11f). For the annual and winter mean TG, there is obvious
elevation-dependent warming (Pepin et al., 2015) over the Sanjiangyuan region, which was simulated by the
CSSPv2 model quite well. However, GLDAS1 failed to capture the relationship, and ERA-Interim presented a
much weaker positive correlation (Figures 11d and 11f). For the summer time, there is no significant correla-
tion between elevations and TG trends, but GLDAS1 produced a negative relation (Figure 11e).

Figure 12. Time series of start and end frozen dates, as well as frozen durations averaged over the Sanjiangyuan region for
CSSPv2, ERA-Interim, and Noah simulations. If the soil temperature are below (above) 0 for five consecutive days, the first
day within the 5 days was regarded as the start (end) frozen date. Red and blue lines represent regional mean values at
depths of 1 and 0.1 m, respectively, with one standard deviations shown by pink and light blue shades. The numbers in
brackets are linear trends (day/decade). CSSPv2 = Conjunctive Surface-Subsurface Process version 2; GLDAS = Global Land
Data Assimilation System.
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4.2. Frozen Soil Change

The warming temperature resulted in significant changes in frozen soils over the Sanjiangyuan region.
Figure 12 shows the start (top rows) and end (middle rows) days for the frozen soil at depths of 10 cm and
1 m, and their frozen durations (bottom rows). The results for GLDAS1/CLM were not shown because there
are hardly any frozen soils in the simulation due to the warm bias. First, both CSSPv2 and ERA-Interim show
decreasing trends for the end frozen date and frozen duration, and increasing trend for the start frozen date
(Figures 12a and 12b, 12d and 12e, and 12g and 12h). GLDAS1/Noah shows some differences due to the
abrupt changes in 1996 and 2000, which might be partly caused by inhomogeneous forcing data. Second,
ERA-Interim has smaller trends compared with CSSPv2. Guo and Wang (2013) did a simulation over the TP
during 1981–2010 and found that start frozen date delayed by 3.8–4.0 day/decade, end frozen date
advanced by 4.6–5.9 day/decade, and frozen duration reduced by 8.6–9.7 day/decade at 1-m depth. Li et al.
(2012) analyzed changes in near surface soil freeze-thaw cycle over TP during 1988–2007 by using remote
sensing data and found that start frozen date delayed by 5 day/decade, end frozen date advanced by
7 day/decade, and frozen duration shorten by 16.8 day/decade. Generally, CSSPv2 simulations are more con-
sistent with previous works than the reanalysis data.

4.3. Streamflow Change

Figure 13 shows that streamflow decreased first and then started to recover over the headwaters of the
Yellow River and Yangtze River basins during 1979–2014, but the recovery time for the Yangtze River was ear-
lier than that for the Yellow River (Figures 13a–13d). During 1979–1997, streamflow at JM, Maqu, TNH, and

Figure 13. Observed and CSSPv2 simulated annual streamflow (m3/s) at four hydrological stations (a–d) and their Mann-
Kendall trends (m3/s/year) during different periods. One dot and two dots are the significances of the trends at the 90% and
95% confidence levels, respectively. CSSPv2 = Conjunctive Surface-Subsurface Process version 2.
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ZMD stations decreased significantly (p < 0.05) at rates of �3.4, �11.6, �20.6, and �12.4 m3/s/year,
respectively. CSSPv2 simulations captured 67–95% of the trends with rates of �3.1, �11.0, �13.8, and
�10.7 m3/s/year (Figures 13e–13h). During 1998–2014, CSSPv2 simulations show significant increases at
JM and ZMD stations while insignificant increases at Maqu and TNH stations. For the whole period (1979–
2014), Yellow River headwater stations do not show significant changes while Yangtze River headwater
station (ZMD) show significant increase in streamflow (p < 0.05).

4.4. ET and TWS Changes

Figures 14a–14b show that CSSPv2 reasonably captured the significant increasing trend (p < 0.05) in annual
ET averaged over the Sanjiangyuan region during 1997–2011. Similar to the frozen soil, two GLDAS1 products
had an abrupt change around 1997 due to forcing data inconsistency (Figure 14a), which resulted in overes-
timated upward trends in ET (Figure 14b). The ERA-Interim generally overestimated the magnitude of ET
(Figure 14a) and showed an insignificant decreasing trend (Figure 14b).

Figures 14c and 14d show that GRACE-measured annual terrestrial water storage anomaly (TWSA) averaged
over the Sanjiangyuan region increased significantly during 2003–2014 (p < 0.05). CSSPv2 captured 93% of
the increasing trend, while ERA-Interim only captured 17% (Figure 14d). Two GLDAS1 products, however, pro-
duced significant decreasing trends in TWSA (Figure 14d), which is associated with the overestimated
increasing trends in ET (Figure 14b).

Figure 14. (a) Observed and simulated annual evapotranspiration (ET) averaged over the Sanjiangyuan region during
1982–2011 and (b) the corresponding M-K trends. (c and d) The same as Figures 14a and 14b but for annual terrestrial
water storage anomaly (TWSA) during 2003–2014. GLEAM=Global Land Evaporation AmsterdamModel; MTE =Model Tree
Ensemble; CSSPv2 = Conjunctive Surface-Subsurface Process version 2; CLM = Community Land Model; GLDAS = Global
Land Data Assimilation System; GRACE = Gravity Recovery and Climate Experiment.
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4.5. Hydrological Changes Over the Sanjiangyuan Region During 1979–2014

After the comprehensive evaluations above, we believe the CSSPv2 model simulated the hydrological cycle
over the Sanjiangyuan region reasonably. Therefore, we conclude by showing trends of regional mean hydro-
logical variables in Figure 15. During 1979–1997, all the land surface hydrological variables showed decreas-
ing trends, with significant trends occurred in runoff and TWSA (p < 0.05). During 1998–2014, increased
precipitation (p < 0.1) and temperature led to significant increase in ET (p < 0.05). However, the rate for
increasing ET is slower than increasing precipitation (Figures 15a and 15b), resulted in increases in runoff
(p> 0.1) and TWSA (p< 0.05) during 1998–2014. For the entire period (1979–2014), the warming andwetting
trends (p< 0.05) over the Sanjiangyuan region led to increased ET (p< 0.05) and insignificant changes in run-
off and TWSA.

5. Conclusions and Discussion

With the influence of climate and land cover change, terrestrial hydrological cycle over the Sanjiangyuan
region in eastern TP experienced significant changes. However, a reliable and systematic analysis on the
changes in different components in the hydrological cycle (e.g., streamflow, soil moisture and temperature,
ET, total water storage) is absent due to sparse observations and large uncertainty in the models and reana-
lysis data. As the first part of a series toward providing a reliable high-resolution land surface modeling and
attribution of hydrological changes over the Sanjiangyuan region during the past few decades, this paper
introduced a few updates to the CSSP (Liang et al., 2012; Yuan & Liang, 2011) model including the storage-
based runoff generation scheme, soil organic matter, and thermal parameterizations, which was named as
CSSPv2. High-resolution (3 km) land surface simulations were carried out over the Sanjiangyuan region
during 1979–2014 and were then systematically evaluated against multisource observations including in situ
measurements and satellite retrievals. They were also compared with GLDAS1 and ERA-Interim
reanalysis products.

Figure 15. Mann-Kendall trends for different hydrological variables during different periods based on CSSPv2 simulation,
with one and two dots showing the significance of the trends at the 90% and 95% confidence levels. CSSPv2 = Conjunctive
Surface-Subsurface Process version 2; TWSA = terrestrial water storage anomaly; ET = evapotranspiration.
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Compared with CSSP, CSSPv2 increased NSE by 62–130% and reduced relative RMSE by 34–51% in stream-
flow simulation, increased correlation by up to 17%, and decreased unbiased RMSE by up to 31% for soil
moisture modeling after considering the soil organic matter. Compared with reanalysis products, CSSPv2
improved correlation by up to 206%, 46%, and 53% for soil moisture, ET, and monthly TWSC, respectively,
and reduced RMSE by up to 30%, 69%, 92%, and 40% for soil moisture, soil temperature, ET, and monthly
TWSC, respectively. CSSPv2 well captured the elevation-dependent TG warming trends, ERA-Interim under-
estimated them, and GLDAS1.0 products showed negative relation. CSSPv2 well simulated decreased frozen
durations with delayed freeze and earlier melt, which were consistent with previous studies. There is a signif-
icant increasing trend (p< 0.05) in satellite-retrieved ET averaged over the Sanjiangyuan region during 1982–
2011, which was captured well by CSSPv2. However, ERA-Interim showed no significant trend and GLDAS1
products overestimated the trend greatly. GRACE TWSA showed a significant increasing trend (p< 0.05) dur-
ing 2003–2014, which was successfully simulated by the CSSPv2, while ERA-Interim showed no significant
trend and GLDAS1 products even showed a falsely decreasing trend.

Although the performance of CSSPv2 is satisfactory, some issues need to be solved in the future. First, con-
sidering the soil organic matter increases soil moisture over the top layers, but there are underestimations
during summer seasons especially at Maqu network that may be caused by other hydrological processes
such as hydraulic conductivity parameterizations (Zheng et al., 2015). Second, the effect of lateral flow pro-
cesses on the high-resolution simulation over the Sanjiangyuan region is not clear. Ji et al. (2017) performed
a hyperresolution simulation over western United States mountainous areas and found that the lateral sub-
surface flow affected the simulations of soil moisture and latent heat significantly at 100-m resolution. Similar
studies could be carried out over the Sanjiangyuan region if the quality of meteorological forcings and sur-
face data sets can be improved for such hyperresolution modeling. Third, the influences of anthropogenic
and natural climate change, as well as land cover change on the land surface hydrological changes over
the Sanjiangyuan headwater region, are still unknown, and they will be analyzed in the second part of the
series (Ji & Yuan, 2018).
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