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ABSTRACT. Parametric sensitivity analysis (SA) aims to select the sensitive parameters that most significantly affect the model output 

variables, which helps to improve model optimization efficiency by adjusting a small number of sensitive parameters instead of all 

adjustable parameters. The qualitative and quantitative SA methods have been commonly used to quantify the sensitive parameters of 

the models. However, the response surface model based quantitative SA method was rarely used. Taking the simulation of a quasi two-

dimensional (quasi-2D) groundwater model as an example, this study systematically assess eight SA methods divided into three cat-

egories (qualitative SA, quantitative SA, and the response surface model-based quantitative SA). The study validates the effectiveness 

of these methods by comparing the parameter sensitivity results, and also demonstrates the efficiency of these methods by determining 

the minimum sample size required. Using the minimum samples means the least number of model runs. The results show that P1 and P2 

are the most sensitive parameters of the quasi-2D model for simulating groundwater table elevation. Except for local method, four global 

qualitative SA methods obtain reasonable parameter sensitivity rankings using 200 samples, but the parameter sensitivity scores fail. For 

obtaining accurate sensitivity scores, at least 2000 samples are required by the quantitative SA methods. However, for the response sur-

face model-based quantitative SA method, 60 samples are sufficient to obtain accurate sensitivity scores, demonstrating that the method 

is an effective and highly efficient, and should be recommended as the primary parametric SA method, especially for the complex models 

with large computational demand. 
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1. Introduction 

Improving the simulation ability of groundwater models 

for water table elevation and soil water content is often achieved 

by tuning model parameter values. Common parameter estima-

tion methods include the a priori inference method and the pa-

rameter calibration method (Duan et al., 2003). The a priori in-

ference method estimates model parameter values using a look-

up table that reflects the relationship between parameter values 

and geographical features (e.g., topography, soil texture, and 

vegetation cover). The parameter calibration method, also 

called the inverse problem-solving method, searches for the op-

timal parameter values that make the simulated results as close 

as possible to the corresponding observed values by repeatedly 

tuning the parameters within their variation ranges. Obviously, 

the latter method can obtain better parameter values to improve 

model simulation results. 

However, parameter calibration methods usually require 

tens of thousands of model runs to determine the optimal values 
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of the adjustable parameters, where the number of model runs 

is usually exponentially related to the number of parameters to 

be optimized. A large number of model runs makes parameter 

optimization difficult to complete, especially for the models re-

quiring an extremely large computational amount. These are 

usually classified as (1) models incorporating many physical 

processes (e.g., run off, evaporation, and groundwater move-

ment etc.). Examples include hydrological models such as the 

Soil and Water Assessment Tool model (Arnold et al., 1993) 

and the Variable Infiltration Capacity model (Liang et al., 

1994); and (2) models incorporating complex resolution algo-

rithms that require high run-times. The Richards’ equation-

based soil water model (Richards, 1931) is one such example. 

The Richards’ equation is a nonlinear partial differential equa-

tion, and therefore its best solution is obtained using a numeri-

cal algorithm; however, numerical algorithms are computation-

ally expensive because they usually require the simulation do-

main to be split into many interconnected grid cells. The differ-

ential equation is then approximated as an equilibrium-type al-

gebraic equation for each grid cell. Because the algebraic equa-

tions for the adjacent grids are interactive, all equations (equal 

to the number of grids) must be solved simultaneously, requir-

ing a high computer memory capacity. This results in high com-

putational cost, especially for domain with more split grids.  
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For the above two types of high-cost model, optimization 

efficiency is very low if all parameters are to be calibrated sim-

ultaneously. Many insensitive parameters are optimized, but do 

not obviously change the simulated results however they are 

tuned. To enhance optimization efficiency, a small number of 

the most sensitive parameters should be optimized, rather than 

all the parameters. Variation in sensitive parameters exerts a 

significant effect on the simulated results, whereas variation in 

insensitive parameters does not. Therefore, how to distinguish 

the sensitive parameters in the set of all adjustable parameters 

is a critical problem for parametric sensitivity analysis (SA).  

Parametric SA mainly investigates how variations in model 

output can be attributed to variations in the input parameters. 

According to their different scopes of action, SA can be divided 

into local SA and global SA. Local SA quantifies only the effect 

of a single parameter perturbation on model output variation 

with other parameters unchanged (Griewank and Walther, 2000). 

However, global SA perturbs all parameters simultaneously 

(Homma and Saltelli, 1996). 

Depending on the computation requirements for model 

runs, global SA methods are divided into qualitative and quan-

titative SA methods. Among the qualitative methods, there are 

three major categories. The first category includes qualitative 

methods based on the gradient principle, such as the Newton 

iteration method (Ortega and Rheinboldt, 1970) and the Morris 

one-at-a-time method (Morris, 1991). The second category in-

cludes qualitative methods based on the nearest-neighbor prin-

ciple, such as the delta test (DT) method (Eirola et al., 2008). 

The third category comprises qualitative methods based on a 

regression response surface, such as the multivariate adaptive 

regression spline (MARS) method (Steinberg et al., 1999), the 

sum-of-trees (SOT) method (Breiman et al., 1984), and the 

Gaussian process (GP) method (Rasmussen and Nickisch, 

2010). Quantitative SA methods measure the contribution of 

parameter perturbations to variation in model output based on 

variance decomposition, which is evidently different from 

qualitative sensitivity methods. Therefore, quantitative SA 

methods can assess not only the effect of each parameter on 

variation in model output, but also the effect of interactions be-

tween parameters on model output variation. The McKay meth-

od (McKay et al., 1998) and the Sobol’ method (Sobol’, 2001) 

are representative of quantitative methods.  

The response surface model-based quantitative SA method 

is another type of SA method. It differs from the common quan-

titative SA method in that it applies the quantitative SA method 

on a statistical response surface model rather than a complex 

physical model. The response surface model is evaluated more 

rapidly than the original physical model. Common regression 

methods used to build a response surface model include multi-

ple linear regression (Navarra and Simoncini, 2010), support 

vector machines (Cortes and Vapnik, 1995), and neural net-

work methods (Bhadeshia, 1999). Note also that the reason-

ableness of the response surface model should be verified be-

fore implementing a quantitative SA on it. 

Many SA methods have been used in various fields. For 

food safety models, Patil and Frey (2004) applied 10 SA 

methods to a draft Vibrio parahaemolyticus food risk assess-

ment model for obtaining sensitive inputs and finally found that 

the mutual information index, scatter plot, and analysis of var-

iance methods were more robust than the others. Confalonieri 

et al. (2010) performed a number of SA methods on a crop 

model of rice growth to obtain sensitivity rankings of crop pa-

rameters. For water quality models, Neumann (2012) com-

bined multiple SA methods and various objective functions for 

a micropollutant degradation model to obtain more robust pa-

rameter sensitivity results. Sun et al. (2012) demonstrated that 

the regional SA method could provide parameter interactions 

and hence is more appropriate for complex water quality mod-

els. For hydrological and land-surface models, Collins and 

Avissar (1994) screened out the important sensible heat and 

latent heat parameters for a land-atmosphere interaction model 

using the Fourier amplitude sensitivity test SA method. Hou et 

al. (2012) evaluated the importance of the parameters in the 

Community Land Model to the hydrologic output variables 

using a generalized linear model. These studies have demon-

strated that these SA methods are appropriate for performing 

parametric SA experiments. However, the efficiency of the SA 

methods was not assessed. 

Although some studies (e.g., Li et al., 2013, Gan et al., 

2014 and Di et al., 2017 in our previous work) referred to the 

efficiency of SA methods, they were incomplete and unsystem-

atic. The main deficiencies include the following: 

(1) Gan et al. (2014) assessed only qualitative and quan-

titative SA methods, but the response surface model-

based quantitative SA method was not reviewed. Ad-

ditionally, low-uniformity sampling methods were 

not applied to the SA experiments, reducing the effi-

ciency of SA methods.  

(2) Li et al. (2013) and Di et al. (2017) assessed only the 

effectiveness and efficiency of qualitative SA meth-

ods using the results of the response surface model-

based quantitative SA method with enough sample 

points. The efficiency of the quantitative SA method 

and the response surface model-based quantitative SA 

method were not assessed. Moreover, the representa-

tiveness of the response surface model with respect to 

the original physical model was not evaluated before 

conducting the quantitative SA method based on a 

response model.  

(3) The previous work referred only analyzed the charac-

teristics of qualitative and quantitative SA methods, 

and did not select a highly efficient SA method for the 

parameter SA of the complex models with expensive 

computation cost, due to lack of comprehensive com-

parison on efficiency of the three types of SA meth-

ods, especially the efficiency assessment of the re-

sponse surface model based quantitative SA method.  

In response to these deficiencies, this study plans to assess 

systematically the three categories of SA methods from effect-

tiveness to efficiency using more uniform samples. Certainly, 

how to build the best response surface model should be also 

discussed. In the present study, a quasi-2D groundwater model 

is used to evaluate the effectiveness and efficiency of parame-

tric SA methods. The reasons for this choice are the following:  
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(1) The quasi-2D groundwater model fully considers the 

movement variations of soil water and groundwater, 

and especially their interaction. The model is a rela-

tively perfect groundwater model, and its practica-

bility has been proved in arid area (Di et al., 2011). 

(2) Each run of the model consists of two nonlinear 

partial differential equations and a relation equation 

that entails high computation cost due to the numeri-

cal algorithm required. The algorithm gives an accu-

rate solution to the nonlinear partial differential equa-

tions, but it involves the simultaneous solution of a 

large number of equations (equal to the number of do-

main grid cells). This requires large amounts of com-

puter memory, thus increasing computation cost for 

domains containing more grids. Because the model is 

nonlinear, the iterative algorithm is also needed in ad-

dition to the numerical algorithm, slowing the speed 

of solution even further. For parameter optimization 

in models with high computation cost, it is very nec-

essary to conduct the SA on the model to filter in ad-

vance the small number of sensitive parameters to be 

optimized.  

(3) The results of sensitive parameters and their optimal 

values for the model change for the different climate 

regions being simulated. Therefore, when the model 

is applied to a large region (e.g., the whole of China), 

the experiments on the parameter SA and optimiza-

tion of sensitive model parameters should be sepa-

rately conducted for the different climatic regions. In 

such a case, using a highly efficient parametric SA 

method for the model greatly reduces the number of 

model runs required to identify the sensitive parame-

ters, and further improves the efficiency of model pa-

rameter optimization. This approach allows the im-

plementation of the model over a large area. 

Taking as an example a simulation of groundwater table 

elevation in the Yingsu section of the lower reaches of the 

Tarim River in China under stream water transfer conditions, 

the present study assesses the effectiveness of the three types 

of SA methods, including the eight SA methods by comparing 

the parameter sensitivity results, and evaluates the efficiency of 

these SA methods by determining the minimum sample size 

required. The aim is to find an effective and highly efficient SA 

method for parameter SA experiments on high-cost computa-

tion models. This paper is organized as follows. Section 2 intro-

duces the methodology, including two sampling methods, eight 

SA methods, and SA experiment design. Section 3 presents the 

assessment results of three types of SA methods, from effec-

tiveness to efficiency. Conclusions and discussions are pro-

vided in the last section. 

2. Materials and Methods  

An integral parametric SA procedure consists of parameter 

sampling, model evaluation, and SA. Parameter sampling pro-

duces randomly perturb parameter values in an adjustable pa-

rameter space. 

The perturbed parameter values are then put into the phys-

ical model by replacing the corresponding default values, and 

the models are then run with perturbed parameter values to 

obtain the corresponding model outputs or simulation errors.  

Finally, the sensitive parameters are selected by the SA 

method based on the sample points consisting of the input per-

turbed parameter values and corresponding model outputs. 

 

2.1. Sampling Methods 

Parameter sampling, also called parameter perturbation, 

produces several random parameter values (i.e., parameter 

samples) over the parameter range. A good sampling method 

should produce evenly distributed samples that effectively fill 

the parameter space using the fewest possible samples. Ac-

cording to previous studies on comparison of sampling meth-

ods (Wang et al., 2014; Gong et al., 2016), the quasi Monte 

Carlo (QMC) sampling method (Caflisch, 1998) is considered 

as a uniform sampling method that could provide better space-

filling capability than the Monte Carlo (MC) or Latin hyper-

cube sampling methods (McKay et al., 2000). Therefore, the 

QMC uniform sampling method is used as a primary sampling 

method in this study. Note also that Sobol’ SA method only pre-

scribes the corresponding Sobol’ sampling method rather than 

other sampling methods, which means that Sobol’ SA does not 

produce parametric sensitivity results from the QMC samples. 

Therefore, both sampling methods are used in this study. 

 

2.1.1. QMC Sampling Method 

The QMC sampling method is a deterministic version of 

the MC method. It produces a low-discrepancy sequence that 

approximates the integral of a function with minimum error. 

The sample locations from the sequence are usually determined 

by base number, construction method, and specified sample 

size (Caflisch, 1998). There are many ways to build the low 

discrepancy sequence of QMC samples, such as the Halton, 

Faure, and Niederreiter sequences (Halton, 1960; Faure, 1982; 

Nieder-reiter, 1988). Here, we select the Halton sequence wide-

ly acknowledged as the result of QMC sampling method. The 

Halton sequence for the n-dimensional parameters is construct-

ed as follows: (1) The first n primes are firstly chosen as the n 

bases; (2) An integer m randomly chosen is then represented as 

a numerical digit with a prime basis in each dimensional para-

meter space, and the different dimensionalities use the different 

prime bases; (3) For each dimensional parameter, the number 

of numerical digit is arranged in reverse order, and the decimal 

value is then obtained by adding a decimal point in front of the 

numerical digit; (4) Let m equal to m + 1, repeating the previous 

steps until the whole sequence is obtained. The fixed QMC 

algorithm produces the fixed sampling sequence, which is 

obviously different from the regular MC method that produces 

a pseudorandom sequence. For approximating a function 

integral, the pseudorandom samples from the MC sampling 

method produce larger errors than the low-discrepancy samples 

from the QMC, demonstrating the uniformity of the QMC 

samples.  
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2.1.2. Sobol’ Sampling Method 

The Sobol’ sampling method is designed to meet the per-

turbation analysis requirements of the Sobol’ SA method. It 

starts with two random r × k sample matrices M0 and Mk+1, 

where r is the number of repeats and k is the dimensionality of 

the input parameters. For each of the r parameter arrays from 

the M0 matrix, the ith (i [1, k]) point is generated from both 

matrices based on the rule that the ith column is replaced by the 

same column of Mk+1, but the other columns are the same as 

M0. The ith column of Mk+1 is also replaced in the same way. 

Finally, by adding the two original matrices M0 and Mk+1, the 

total number of sample points is equal to 2 × (k + 1) × r. 

 

2.2. SA Methods 

Eight representative SA methods are chosen to conduct 

parameter SA for the quasi-2D groundwater model in this 

study. These methods represent the three types of SA methods: 

qualitative and quantitative SA methods, and the response sur-

face model-based quantitative SA method. For the qualitative 

SA methods, one common gradient method is defined as the 

local qualitative SA method, and four global qualitative SA 

methods including DT, SOT, MARS, and GP methods are 

chosen. As representatives of quantitative SA methods, the 

McKay method and the Sobol’ method are selected. In addition, 

the MARS response surface model-based Sobol’ method (RS_ 

Sobol’) is used to evaluate the effect of the response surface 

model-based quantitative SA method on the parameter SA re-

sults. These methods are briefly described in the Appendices. 

 

2.3. SA Experimental Design 

2.3.1. Model Description 

A sketch map of lateral groundwater flow in the river bank 

section is shown in Figure 1. Assuming that the river bank is 

perpendicular to the impermeable layer, a rectangular coordi-

nate system is constructed with the river bank as the z-axis, the 

impermeable layer as the x-axis, and their crossing point as the 

coordinate origin. The positive directions of the x- and z-axes 

are designated as rightward and upward, respectively. The sim-

ulated domain of the right-hand section is H × L, and the 

groundwater table ( G
1
 ) divides the domain into two subdo-

mains of unsaturated soil water and saturated groundwater. In 

general, only the right-hand domain is considered when con-

structing the quasi-2D groundwater model because of the sym-

metry of the river banks.  

For the unsaturated soil water subdomain, conduction of 

soil water flow occurs mainly in the vertical direction due to 

the effect of gravity. For saturated groundwater, the flow is 

slow, and the water potentials in the vertical direction are 

almost equal; therefore, vertical flow is ignored, and horizontal 

flow is assumed. Finally, the simulated domain in the right-

hand section is divided into n vertical soil columns defined as 

d1, d2, …, dn. For each column x di, the vertical unsaturated 

soil water flow is described as: 

 

( )
( ) ,

K
D

t z Z z

  


    
= +     

 ( , )h x t z H           (1)                          

 

where θ is the soil water content; h (x, t) is the groundwater 

table elevation for soil column di at time t; H is the ground 

surface elevation; K(θ) is the hydraulic conductivity of unsat-

urated soil; and D(θ) is the hydraulic diffusivity of unsaturated 

soil. According to the Clapp and Hornberger formulation 

(Clapp and Hornberger, 1978), K(θ) and D(θ) are respectively 

parameterized as:  

 

2 3 2

( ) and ( )

b b

sm s
sm

s s s

bK
K K D

  
 

  

+ +

   −
= =   

   
      (2) 

                      

where Ksm is the hydraulic conductivity of the saturated soil 

column in the vertical direction; θs is the saturated soil water 

content; ψs is saturated matric potential; and b is the slope of 

the retention curve. Because Equation (1) is a nonlinear partial 

differential equation, boundary conditions must be designated 

to solve it. Zero flux and saturated soil water content are desig-

nated as the upper and lower boundary conditions, respectively. 

The continuity equation for saturated groundwater flow in 

the whole simulated domain in the right-hand section H × L can 

be written as: 

 

( , ) ( , ), 0e s z h x t

h h
n K h q x t x L

t x x
=

   
= −   

   
           (3)                        

  

where h (x, t) is the groundwater table elevation; Ks is the hori-

zontal groundwater hydraulic conductivity; ne is the specific 

yield of the soil; and qz = h (x, t) (x, t) is the exchange flux between 

the unsaturated and saturated zones at the groundwater table. 

The left-hand boundary condition of Equation (3) is the time-

varying river stage, and the right-hand boundary condition is 

zero groundwater conveyance flux. 





 
Figure 1. Schematic representation of groundwater  

lateral flow. 
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Combined with Darcy’s law, the two sides of Equation (1) 

are integrated from the groundwater table elevation h (x, t) to 

the ground surface height H along the vertical z-direction. The 

exchange flux qz = h (x, t) (x, t) are obtained: 

 

( , )
( , )

( , ) ( , )
H

z h x t z H
h x t

q x t dz q x t
t


= =


= +

                   

(4) 

 

where qz = H (x, t) is the infiltration (evaporation) flux on the 

ground surface. Finally, Equations (1), (3), (4), and the corre-

sponding initial and boundary conditions are made up the quasi 

-2D groundwater model. The concept and numerical solution 

of the quasi-2D groundwater model are proposed by Di et al. 

(2011), who used the model to simulate variations in the 

groundwater table elevations in the Yingsu section for stream 

water conveyance in the lower reaches of the Tarim River. The 

simulated results have demonstrated the reasonableness of the 

developed model through comparisons between simulation re-

sults and observed data. In this study, the parameter sensitivi-

ties of the quasi-2D groundwater model are analyzed and vari-

ous SA methods are assessed using the same experiments as Di 

et al. (2011). 

 

2.3.2. Study Area 

The Yingsu section is located between the Daxihaizi 

Reservoir and Taitema Lake in the lower reaches of the Tarim 

River (see Figure 2), where the annual precipitation is 17.1 ~ 

42.0 mm (Chen et al., 2010). Due to low precipitation and un-

reasonable usage of water resources in the upper and middle 

reaches, the lower reaches of the Tarim River have dried up, the 

ground-water table is continuously decreasing, and most of the 

natural vegetation along the river bank has died out (Feng et 

al., 2001). To solve this problem, a water conveyance project 

in the lower reaches of the Tarim River has been implemented 

by the Chinese government since May 2000. Seven water 

releases took place from Daxihaizi Reservoir to Taitema Lake 

from 2000 to 2005. For each water release, data on river dis-

charges, river elevations, and the groundwater table for nine 

sections along the river bank are recorded.  

The Yingsu section is the third of nine sections and is 60 

km away from the Daxihaizi Reservoir. In the Yingsu section, 

there are seven groundwater-monitoring wells recording de-

tailed groundwater table elevations, of which four wells (C3 ~ 

C6) are selected for comparison with the simulated groundwa-

ter table. The distances between the river bank and the four 

wells are 150, 300, 500, and 750 m respectively. Data for river 

discharges and river water elevations is recorded once every 

day, but data for groundwater table elevations from the four 

wells is recorded once every five days or every month. The du-

ration of the simulation experiment (i.e., the second water re-

lease) in this study is 81 days (i.e., from 16 November, 2000 to 

4 February, 2001). The objective function used to evaluate sim-

ulated groundwater table elevation is the mean absolute error 

 

Figure 2. Location of nine sections between the Daxihaizi Reservoir and Taitema Lake in the lower reaches of the Tarim 

River and the monitoring wells (C3–C6) in the Yingsu section. 
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(MAE) between the simulated results and the observed data for 

the four wells. The MAE formula is expressed as follows:  

 

1 1

1
MAE

T M
t t

i i

t i

sim obs
MT = =

= −                       (5) 

 

where sim
i

t
 and obs

i

t
 are simulated and observed groundwater 

table elevations at the ith observation well and time t; M is the 

number of observation wells (i.e., equal to 4); and T is the total 

number of days with observation records. In this study, there 

are 12 days observation records from 16 November, 2000 to 4 

February, 2001, and the observation frequency is usually once 

every five days or every month. 

 

2.3.3. Adjustable Parameters 

The parameter ne (specific yield of soil) is defined as the 

change of the volume of water held in the moisture profile 

above the groundwater table for a groundwater table rise or fall 

of unit depth. The value of ne depends on the distribution of 

pores, their shape, and grain size. The method used to estimate 

it has been documented by Taheri Tizro et al. (2012) and 

Durand et al. (2017). The hydraulic conductivity is a measure 

of the capacity of a soil to transmit water. It is divided into 

saturated and unsaturated hydraulic conductivities. The value 

of the unsaturated hydraulic conductivity varies with variation 

of soil water content, and thus it is not classified as a parameter; 

however, the saturated hydraulic conductivity, which describes 

groundwater movement through a saturated medium, has a 

constant value for certain type of soil (Jabro, 1992). In order to 

obtain better simulation results of soil water content and 

groundwater table level, the saturated hydraulic conductivity is 

given different values in the vertical and horizontal directions 

(i.e., horizontal groundwater hydraulic conductivity Ks, and 

vertical saturated hydraulic conductivity Ksm).  

Saturated soil water content θs is the ratio of water volume 

content filling the soil pores to the total soil volume, so it is 

equivalent to porosity. The determination of the saturated soil 

water content is important in agricultural and ecological appli-

cations (Alharthi and Lange, 1987). ψs (saturated matric poten-

tial) and b (slope of the retention curve) are considered as soil 

parameters describing the hydraulic properties and are derived 

by fitting a power function to the moisture retention data (Cosby 

et al., 1984; Chen and Dudhia, 2001). 

In accordance with the 12 global soil classification in the 

Biosphere-atmosphere Transfer Scheme (BATS) model (Dick-

inson et al., 1986) and the latitude and longitude of the study 

area, the properties of the sixth category (sandy clay loam) are: 

θs = 0.48, ψs = −200 mm, Ksm = 0.54 m/d, and b = 6.0. In addi-

tion, ne and Ks are assigned 0.25 and 2.5 m/d respectively ac-

cording to the work of Di et al. (2011). Both the look-up table 

and parameter calibration values show obvious uncertainties in 

the parameter values. The ranges of θs, ψs, Ksm and b are ob-

tained from the values for the adjacent (i.e., fifth to seventh) 

soil texture in the BATS table. Because no guidance is availa-

ble, the maximum values for the parameters of ne and Ks are 

taken to be double their default values, as suggested for param-

eter ranges by Yang et al. (2012). (Note that the saturated matric 

potential ψs has the same value (−200 mm) for the adjacent soil 

texture in the BATS table, and therefore the parameter ψs is not 

adjusted). The ranges of the adjustable parameters are given in 

Table 1. 

 

2.4. Experimental Design 

     Table 1. Model Parameters and Value Ranges 

Number Name Default  Range Description 

P1 ne 0.25 0.15–0.5 Specific yield of soil 

P2 Ks 2.5 0.5–5.0 Horizontal groundwater hydraulic conductivity (m/d) 

P3 Ksm 0.54 0.39–0.77 Hydraulic conductivity of the saturated soil column in the vertical 

direction (m/d) 

P4 θs 0.48 0.45–0.51 Saturated soil water content 

P5 b 6.0 5.5–6.8 Slope of retention curve 

 

     Table 2. Experimental Design for the Various Sensitivity Analysis (SA) Experiments 

SA categories SA method Sampling method Sample size 

Qualitative SA Local QMC(Caflisch,1998) 10 

DT(Eirola et al., 2008) QMC 50/200/500 

SOT(Breiman et al., 1984) QMC 50/200/500 

MARS(Steinberg et al., 1999) QMC 50/200/500 

GP(Rasmussen and Nickisch, 2010) QMC 50/200/500 

Quantitative SA McKay(McKay et al., 1998) QMC 2000 

Sobol’(Sobol’, 2001) Sobol’(Sobol’, 2001) 1200/2400/3600 

Response surface 

model based 

quantitative SA  

RS_Sobol’ (Storlie and Helton, 2008) Sobol’ 60 

QMC 60/2000 
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To obtain more reasonable SA results, the three types of 

parameter SA methods are applied to the quasi-2D groundwater 

model with five adjustable parameters to analyze parametric 

sensitivity to the simulation results for groundwater table ele-

vations. According to the characteristic of the various SA meth-

ods, the different sample sizes are used. The experimental de-

sign used are shown in Table 2. The local method analyzes only 

the gradients between the initial and terminal points of each in-

dependent variable one at a time, and hence 10 sample points 

are determined by five adjustable parameters. For the global 

qualitative SA methods, the uniform sampling method is QMC, 

and the uniform sample size is designed as 500. The smaller 

sample size is used to verify the efficiency of the qualitative SA 

methods. For the two quantitative SA methods, more samples 

are used to obtain reasonable parameter SA results. Therefore, 

2,000 samples taken by the QMC sampling method and 2,400 

samples obtained by the Sobol’ sampling method are applied to 

the McKay and Sobol’ quantitative SA methods, respectively. 

Note that the Sobol’ sampling method is required only for the 

Sobol’ SA method, and therefore the sample size is chosen as 2 

× (5 + 1) × 200 (i.e., equal to 2,400). In addition, 1,200 and 3,600 

samples are used to evaluate the efficiency of the two 

quantitative SA methods. 

For the response surface model-based quantitative SA, the 

RS_Sobol’ SA method is used. Both the QMC and Sobol’ sam-

pling methods are suitable for the RS_Sobol’ SA method. The 

reason for this is that the sample points obtained by the two 

sampling methods are responsible only for constructing the 

MARS response surface model, after which Sobol’ sampling 

and the corresponding Sobol’ SA are automatically conducted 

on the MARS response surface model. Here, the initial sample 

size for the RS_Sobol’ SA methods is chosen as 60 to demon-

strate the advantage of the MARS response surface model for 

quantitative SA. However, the number of Sobol’ samples on the 

MARS response surface is chosen as 12,000 to obtain a more 

accurate quantitative SA score from the response surface mod-

el. Note also that the accuracy of the MARS response surface 

model as a replacement for the original physical model may 

have a significant impact on RS_Sobol’ SA results, especially 

for the specific parameter sensitivity scores. Therefore, it is es-

sential to assess the reasonableness of MARS response surface 

model before implementing a quantitative SA on it.  

3. Results 

3.1. Qualitative Parameter Screening Using Local SA 

Method 

The sensitivity of the local SA method is measured by 

solving the gradient of an individual parameter between its in-

itial and end points, while keeping other parameters at their 

default values. The parameter sensitivities of the quasi-2D 

groundwater model using the local SA method are shown in 

Figure 3. The ordinate represents the gradient of a single pa-

rameter between its initial and end points. It is found that the 

sensitivity ranking order of the five parameters using the local 

method is P4, P1, P2, P3, and P5. The degrees of sensitivity of 

P4 (saturated soil water content) and P1 (specific yield of soil) 

are evidently higher than those of the other parameters. How-

ever, the reasonableness of the results needs to be verified fur-

ther using other SA methods.  

 

3.2. Qualitative Parameter Screening Using the Four 

Global SA Methods 

Besides the local qualitative SA method, global qualitative 

SA methods DT, SOT, MARS, and GP are applied in parameter 

SA experiments on the quasi-2D groundwater model. Multiple 

qualitative SA methods are used with the intention not only of 

obtaining more reasonable parameter sensitivity rankings, but 

also of evaluating these SA methods. For the four global qual-

itative SA experiments, the uniform sampling method is QMC, 

and the initial uniform sample size is set to be 500. To illustrate 

the parameter sensitivities more clearly, the sensitivity scores 

of the five parameters for each SA method are normalized by 

dividing the sensitivity score of each parameter by the maxi-

mum sensitivity score of all parameters. Therefore, the normal-

ized score for the most sensitive parameter is set to 100, and 

the normalized score for the least sensitive parameter is set to 

0. The sensitivity metric of each SA method is described in the 

Appendices. Finally, the normalized sensitivity scores of the 

five parameters for DT, SOT, MARS and GP methods with 

sample size 500 are shown in the form of radar graphs (see Fig-

ure 4a). 

It is found that the parameter sensitivity rankings are con-

sistent for the four SA methods, which identify P2 as the most 

sensitive parameter, P1 as the second most sensitive parameter, 

and the other three parameters as less sensitive. The normalized 

scores of the less sensitive parameters (P4, P3, and P5) for the 

DT method are slightly different from those for the other three 

methods, as shown in Figure 4a. A possible reason is that the 

DT fail to find the completely optimal parameter subset as the 

current sensitivity metric (Li et al., 2013). 

Note that the parametric sensitivity rankings for all four 

qualitative methods are apparently inconsistent with those from 

the local SA method (see Figure 3), especially for the choice of 

the single most sensitive parameter. The most sensitive param-

eter found using the local SA method is P4, whereas for all four 

qualitative SA methods it is P2. There is a distinct bias in the 

 
Figure 3. Parametric sensitivity obtained by the local 

sensitivity analysis (SA) method. 
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choice of the most sensitive parameter, and the consequences 

can be very serious because this directly affects the assessment 

of model parameter importance and may even lead to wrong 

conclusions on model response shape and extreme values. 

Comparing with the parameter SA results from the five quali-

tative SA methods, only the order of parametric sensitivity 

rankings for local SA method is clearly inconsistent with those 

for the other four SA methods, especially for the single most 

sensitive parameter. Therefore, the SA results for the local 

method are considered to be inaccurate.  

To carry out further validation of parameter sensitivity 

results and assess the efficiency of these SA methods, addi-

tional 50 and 200 QMC parameter samples are applied to the 

groundwater model to obtain its responses for conducting the 

new global SA experiments with the DT, SOT, MARS, and GP 

methods (see Figure 4b, c).  

The SA experiments with sample size 50 are found to have 

parametric sensitivity rankings consistent with those with sam-

ple size 500, except for the SOT and MARS SA methods, 

which do not accurately distinguish the sensitivity rankings of 

P4 and P1 for sample size 50, but detect an obvious difference 

for sample size 500. However, the parameter sensitivity scores 

for sample size 200 are consistent with the results with sample 

size 500, demonstrating that a sample size of 200 is enough to 

obtain accurate qualitative SA results for all four SA methods. 

In addition, the consistent sensitivity rankings of the four SA 

methods from Figures 4a, c demonstrate once again the feasi-

bility of these SA methods.  

3.3. Quantitative Parameter SA Using McKay and Sobol’ 

Methods 

It is apparent in Figure 4 that the sensitivity score of a spe-

cific parameter such as P1 varies with the different qualitative 

SA methods used, mainly because of the coarse selection char-

acteristics of qualitative SA, which could be improved by using 

quantitative parameter SA. Therefore, two quantitative SA ex-

periments are conducted to obtain the accurate parametric sen-

sitivity scores for the quasi-2D groundwater model. The first 

experiment involves conducting the McKay SA method on the 

model for a sample size of 2,000 (labeled McKay_2000). The 

second experiment involves conducting the Sobol’ SA method 

on the model for a sample size of 2,400 (labeled Sobol’_2400). 

To provide a better demonstration of the quantitative SA 

results, both the main effect for a certain parameter and the two-

way interaction effect between two parameters are shown as 

contribution percentages. The sum of all parameter effects, in-

cluding main effects, two-way interaction effects between two 

parameters, and higher-way interaction effects between more 

than two parameters, is defined as 100%. The higher the con-

tribution percentage of the main effect for a certain parameter, 

the more sensitive is the parameter. The higher the contribution 

percentage of a two-way interaction effect between two param-

eters, the more sensitive is the joint effect between the two pa-

 
Figure 4. Normalized sensitivity scores of parameters based on global qualitative SA methods with different sample sizes. 
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rameters. 

A comparison of the contribution percentages of the main 

effects of the five parameters for the McKay_2000 and Sob-

ol’_2400 is shown in Figure 5. Obviously, P2 and P1 have 

higher sensitivity scores than the other parameters, which is 

consistent with the conclusions regarding parameter sensitivity 

rankings obtained by the four global qualitative SA methods 

(DT, SOT, MARS, and GP), but conflicts with the results of 

local SA, demonstrating the robustness of the conclusions on 

parametric sensitivity rankings and the reasonableness of the 

four qualitative SA methods. Moreover, the difference between 

the two sensitivity scores for a specific parameter, whether a 

sensitive or insensitive parameter, is less when the McKay SA 

method is replaced by the Sobol’ SA method, indicating that 

quantitative SA methods could obtain accurate sensitivity 

scores in these experiments.  

This observation is distinctly different from the results of 

qualitative SA. In addition, the sensitivity scores for insensitive 

parameters using the SOT, MARS, and GP methods are also 

found to be closer to those obtained using the McKay and Sob-

ol' methods than those obtained using the DT method.  

Compared with the qualitative SA methods, the quantita-

tive SA methods provide not only the main effects of parame-

ters, but also the interaction effects, including two-way effects 

between two parameters and higher-way effects between more 

than two parameters. A comparison of the contribution percent-

ages of the two-way interaction effects between two parameters 

for the McKay_2000 and Sobol’_2400 is shown in Figure 6. 

The strongest two-way interaction effect is found to be that be-

tween P1 and P2 for the McKay method (contribution 4.1%) 

and Sobol’ SA method (contribution 5.3%), demonstrating that 

the two-way interaction effects are basically consistent for the 

two methods. Moreover, the maximum contribution percentage 

of all two-way interaction effects (i.e., 5.3%) is far lower than 

the main effects of P1 (9.7%) and P2 (84.4%), which demon-

strates that the model response to the five parameters relies 

mainly on parameter main effects, excluding interaction effects 

between parameters. A further three interaction effects is found 

(between P2 and P3, between P2 and P4, and between P2 and 

P5) following the highest-contribution interaction effect for the 

two SA methods, with contribution percentages less than 3.6%. 

It is found that the obvious two-way interactions are related to 

P2. This is mainly because P2 (i.e., the horizontal conductivity 

of groundwater) has stronger correlation with the objective 

function of groundwater table (i.e., MAE) than other parame-

ters, which has been proved in Figure 5. Therefore, for all in-

teractions of two parameters, the effect of the interactions in-

cluding P2 on the variance of the simulated groundwater table 

is stronger than other interactions excluding P2. Similarly, the 

maximum interaction occurs between P2 and P1. The ranges of 

the difference in contribution percentages for the three interact-

tion effects between McKay and Sobol’ methods vary from 

0.9% to 1.9%. These low bias values also demonstrate that 

quantitative SA methods can obtain accurate sensitivity scores 

 

Figure 5. Comparison of the contribution percentages of the 

main effects of the five parameters for the McKay SA with 

2000 QMC sample points (McKay_2000) and the Sobol’ SA 

with 2400 Sobol’ sample points (Sobol’_2400). 

 

 
Figure 6. Comparison of the contribution percentages of two-way interaction effects for McKay_2000 and Sobol’_2400. 
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regarding two-way interaction effects in addition to the main 

effects of single parameters. 

To validate the quantitative sensitivity results and assess 

the efficiency of quantitative SA methods, another two Sobol’ 

SA experiments are conducted. In both experiments, the other 

conditions are identical to Sobol’_2400 except for the sample 

sizes, with one being 1,200 and the other 3,600. A comparison 

of the contribution percentages of the main effects of five pa-

rameters for the Sobol’ SA methods using 1,200, 2,400, and 

3,600 Sobol’ sample points is shown in Figure 7. Clearly, the 

Sobol’ SA method using 1,200 sample points (labeled Sobol’_ 

1200) does not obtain sensitivity scores consistent with the 

Sobol’_2400 and Sobol’_3600. Moreover, the parameter sen-

sitivity rankings of the Sobol’_1200 are evidently inconsistent 

with those of Sobol’_2400, and Sobol’_3600. Therefore, the 

1,200 sample points are judged insufficient to obtain reasona-

ble parameter sensitivity results for the quantitative Sobol’ SA 

method. Variations in parameter sensitivity scores for the Sob-

ol’ SA method are smaller when the sample sizes increase from 

2,400 to 3,600, demonstrating that the Sobol’ SA results using 

2,400 sample points are robust and that the smallest sample size 

for Sobol’ SA should be 2,400.  

 

3.4. Quantitative Parameter SA Using RS_Sobol’ Method 

3.4.1. Advantage of a MARS Response Surface Model for 

Quantitative Parameter SA  

A response surface model is constructed by determining a 

relationship between a set of discrete sample points consisting 

of parameter inputs and the corresponding outputs (or output 

errors). If a reasonable regression method is used, the response 

surface model better reflects the patterns of variation between 

the input parameter values and the model outputs compared 

with discrete sample points. Taking 60 Sobol’ sample points, 

for instance, two Sobol’ SA experiments are conducted: one di-

rectly conducting Sobol’ SA on the model for a sample size of 

60 (labeled Sobol’_60), and the other conducting Sobol’ SA on 

the MARS response surface model built by the 60 sample 

points (labeled RS_Sobol’_60). A comparison of the contribu-

tion percentages of the main effects of the five parameters for 

the two Sobol’ SA experiments is shown in Figure 8. In addi-

tion, the results of the previous Sobol’_2400 (see Figure 5) are 

also shown to verify the results of the two Sobol’ SA experi-

ments with 60 sample points.  

Finally, the parametric sensitivity rankings for RS_Sobol’_ 

60 are found to be closer to those for Sobol’_2400, whereas 

Sobol’_60 has not distinguished the sensitivity order of the pa-

rameters, as discussed. The results demonstrate that a small 

number of sample points may be sufficient to obtain reasonable 

quantitative parameter SA results when used in conjunction 

with a response surface model. Note also that the 60 sample 

points on the physical model are used to construct the statistical 

response model, but 12,000 points are sampled on the response 

surface model to conduct Sobol’ SA. For a given number of 

parameter inputs, the solution speed of the statistical response 

surface model is far faster than for the original physical model, 

meaning that the run time for tens of thousands of runs of the 

 

Figure 7. Comparison of the contribution percentages of the 

main effects of five parameters for the Sobol’ SA methods 

using 1200, 2400, and 3600 Sobol’ sample points. 

 

 

Figure 8. Comparison of the contribution percentages of the 

main effects of five parameters for the three Sobol’ SA. Gray 

bars = Sobol’_60; white bars = Sobol’_2400; black bars = 

RS_Sobol’_60.  

 

 

Figure 9. Variance of mean absolute error (MAE) of 

simulated groundwater table elevations with respect to P2 on 

two MARS response surface models and the physical model. 

The two MARS response surface models are constructed 

using 60 Sobol’ and 60 QMC sample points (i.e., 

MARS_Sobol’_60 and MARS_QMC_60).  
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response surface model are negligible.  

 

3.4.2. Evaluation of the MARS Response Surface Model 

Before conducting the RS_Sobol’ SA experiments, the re-

presentativeness of the response surface model with respect to 

the original physical model should be assessed because it di-

rectly affects its quantitative SA results. Here, the representa-

tiveness of the MARS response surface model is assessed from 

the two aspects of sampling methods and sample sizes. The first 

assessment analyzes the effect of the two sampling methods 

(i.e., Sobol’ and QMC) with the same number of sample points 

on the accuracy of the MARS response surface model. Here, 

the uniform sample size is 60. Once the more suitable sampling 

method (i.e., QMC or Sobol’) is determined, the next step is to 

determine the effect of the different numbers of sample points 

(i.e., 60 and 2,000) from the fixed sampling method on the ac-

curacy of the MARS response surface model. 

After adjusting the suitable number of basic functions, the 

two MARS response surface models are built using 60 Sobol’ 

sample points and 60 QMC sample points respectively. Com-

pared with the corresponding sample outputs, the root means 

square errors (RMSE) of the simulated sample outputs using 

the respective MARS response surface model are 5.441 and 

2.848 cm, respectively. This demonstrates that the MARS re-

sponse surface model built using the QMC sample points is 

closer to the true physical model than that built using Sobol’ 

sample points. As shown in Figure 5, P2 is the most sensitive 

parameter, and therefore the responses of P2 in the different 

models are extracted to analyze the difference between the two 

response surface models. With other parameters hold constant 

at their default values, the variances of the MAE of the simu-

 

Figure 10. MARS response surface model built by 60 QMC sample points. 
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lated groundwater table elevations with respect to P2 in the 

three response models, including the two MARS models built 

using QMC and Sobol’ sample points respectively and the real 

physical model, are shown in Figure 9. The results show that 

the MARS response surface model built from 60 QMC sample 

points (labeled MARS_QMC_60) is closer to the physical 

model than that built from 60 Sobol’ sample points (labeled 

MARS_Sobol’_60). This result can be explained by noting that 

the QMC sampling method has a better space-filling capability 

than the Sobol’ sampling method. Therefore, constructing the 

response surface model using QMC sample points rather than 

Sobol’ sample points is recommended.  

As a better statistical response surface model, MARS_ 

QMC_60 is illustrated in Figure 10. In each subplot, only the 

variable parameters (one or two parameters) are shown, where-

as other parameters are held constant at their default values. 

From five subplots reflecting the response to a single parameter 

along the diagonal, it is clear that P2 and P1 have significant 

effects on model response y, P4 has a slight effect on response 

y, and P3 and P5 have basically no effect on response y. These 

findings are consistent with the conclusions of parameter sensi-

tivity rankings over global qualitative and quantitative SA 

methods (see Figures 4a and 5). 

After the QMC sampling method is decided upon, the rep-

resentativeness of the response surface model with the two dif-

ferent sample sizes is also investigated: One MARS response 

surface model is built using 60 QMC sample points (i.e., 

MARS_QMC_60), and the other is built using 2000 QMC sam-

ple points (MARS_QMC_2000). For the two MARS response 

surface model, the variances of the MAE of the simulated 

groundwater table elevations with respect to P2 are shown in 

Figure 11. The response surface model is found to become 

closer to the physical model as sample size increases. Espe-

cially, when the sample size increases to 2,000, there is basi-

cally no difference between the MARS response surface model 

and physical model. However, larger sample sizes greatly in-

crease the number of model runs with the different parameter 

values included. It is found that MARS_QMC_60 has a similar 

 

Figure 11. Variances of the mean absolute error (MAE) of 

simulated groundwater table elevations with respect to P2 for 

two MARS response surface models and the physical model. 

The two MARS response surface models are constructed 

using 60 and 2000 QMC sample points (i.e., MARS_QMC_ 

60 and MARS_QMC_2000). 

 

 

Figure 12. Comparison of the contribution percentages of the main effects of five parameters for three RS_Sobol’ SA 

(RS_Sobol’_60, RS_Sobol’_QMC_60, and RS_Sobol’_QMC_2000). 
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variance pattern with real physical model, therefore, 60 sample 

points may be enough for model parameter SA by the RS_Sob-

ol’ method.   

 

3.4.3. Comparison of RS_Sobol’ SA with the Different QMC 

Sample Sizes Used to Build the MARS Response Surface 

Models 

The MARS response surface model built using QMC sam-

ple points resembles the physical model more closely than that  

built using Sobol’ sample points, as discussed. However, 

whether the corresponding MARS model has a consistent ad-

vantage over the quantitative Sobol’ SA results must also be 

determined. Three RS_Sobol’ SA experiments are conducted 

using RS_Sobol’_60 together with RS_Sobol’ SA with 60 

QMC sample points (RS_Sobol’_QMC_60) and 2,000 QMC 

sample points (RS_Sobol’_QMC_2000) to build the MARS 

response surface models. A comparison of the three RS_Sobol’ 

SA results is shown in Figure 12. Compared to RS_Sobol’_ 

 
Figure 13. Comparison of contribution percentages of two-way interaction effects between two parameters for RS_Sobol’_ 

QMC_60 and RS_Sobol’_QMC_2000. 

 

 

Figure 14. Comparison of the contribution percentages of the five parameter main effects for the four quantitative SA (RS_ 

Sobol’ QMC 60, RS Sobol’ QMC 2000, Sobol’ 2400, and McKay 2000). 
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QMC_2000, RS_Sobol’_QMC_60 has more consistent contri-

bution percentages of the main effects of five parameters than 

RS_Sobol’_60, although RS_Sobol’_60 provided accurate pa-

rameter sensitivity rankings. These results demonstrate that the 

more suitable substitution response surface model would pro-

vide more accurate parameter sensitivity scores.  

Besides the main effect for each single parameter, the two-

way interaction effects between two parameters for RS_Sobol’ 

_QMC_60 and RS_Sobol’_QMC_2000 are compared. A com-

parison of the contribution percentages of two-way interaction 

effects for RS_Sobol’_QMC_60 and RS_Sobol’_QMC_2000 

is shown in Figure 13. From which, some conclusions are 

drawn as for the comparison of McKay and Sobol’ quantitative 

SA methods. The most sensitive two-way interaction effects 

occur between P2 and P1, and the leading four two-way inter-

action effects are related to P2. In addition, the maximum error 

values of all two-way interaction effects between RS_Sobol’_ 

QMC_60 and RS_Sobol’_QMC_2000 are less than 2%, de-

monstrating that RS_Sobol’_QMC_60 obtain relatively con-

sistent sensitivity scores with RS_ Sobol’_QMC_2000 for two-

way interaction effects. Overall, it is apparent from Figures 12 

and 13 that 60 QMC sample points could obtain basically con-

sistent parameter sensitivity scores with 2,000 QMC sample 

 

Figure 15. Convergence results for the model after opti-

mizing the two most sensitive parameters. 

 

 

Figure 16. Comparison of the observed and two simulated water table elevations obtained by the quasi-2D groundwater table 

model with default and optimal parameters for wells C3–C6. 
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points using the RS_Sobol’ SA method. 

Although RS_Sobol’_QMC_60 has basically consistent 

sensitivity scores with RS_Sobol’_QMC_2000, including the 

contribution percentages of parameter main effects and two-

way interaction effects, the difference in parameter sensitivity 

scores between RS_Sobol’_QMC_2000 and the other quanti-

tative SA (i.e., Sobol’_2400, and McKay_2000) is not as-

sessed. Figure 14 shows a comparison of the contribution per-

centages of the main effects of five parameters for the four 

quantitative SA experiments (RS_Sobol’_QMC_60, RS_Sobol’ 

_QMC_ 2000, Sobol’_2400, and McKay_2000). The results 

showe that RS_Sobol’_QMC_2000 has contribution percent-

ages for the five parameter main effects that are consistent with 

the other quantitative SA methods, especially for McKay_ 

2000, demonstrating that the results of parameter main effects 

from RS_Sobol’_QMC_2000 are accurate and furthermore that 

the corresponding results from RS_Sobol’_QMC_60 are credi-

ble. In addition, by a comparison of Figures. 6 and 13, it is also 

found that the contribution percentages of two-way interaction 

effects for RS_Sobol’_QMC_2000 are basically consistent 

with those for McKay_2000, demonstrating that the results of 

parameter two-way interaction effects obtained by RS_Sobol’_ 

QMC_2000 are also accurate and furthermore that the corre-

sponding results from RS_Sobol’_QMC_60 are credible. Over-

all, due to fewer errors in the SA results using RS_Sobol’_ 

QMC_60 and RS_Sobol’_QMC_2000. It is recommended that 

RS_Sobol’ SA method using 60 sample points (i.e., RS_ 

Sobol’_QMC_60) is used to obtain accurate parameter sensi-

tivity scores for the quasi-2D groundwater model.  

 

3.5. Identification of Two Sensitive Parameters 

The sensitive parameters for the model are selected using 

previous SA methods. The results demonstrate that P1 and P2 

are sensitive to the simulation of water table elevations. Based 

on the results of SA analyses, identifying the suitable sensitive 

parameter values facilitates the improvement of model simula-

tion results and thus reduces model uncertainty. Next, the Shuf-

fled Complex Evolution method (Duan et al., 1992) is used to 

optimize the two sensitive parameters of the model, while other 

parameters are held at their default values. The simulation pe-

riod is the same as for SA analysis experiments. The optimiza-

tion results are shown in Figure 15. After 180 searches in the 

parameter space, the optimal simulation results of the water ta-

ble elevation for the quasi-2D groundwater model are found. 

The corresponding MAE of simulated water table elevations 

reduces from 0.832 m using the default parameters, to 0.28 m 

with the optimal parameters, an improvement of approximately 

66%. This implies that the identification of the sensitive param-

eters significantly reduces model simulation uncertainty, and 

that the optimization of the sensitive parameters of the model 

is very efficient. The optimal values for P1 and P2 are 0.494 

and 1.66, respectively. 

Based on the observation data of groundwater table for 

four wells (C3 ~ C6), the simulation results of the quasi-2D 

groundwater model with the default and optimal parameters are 

compared. The variances of the simulated and observed 

groundwater table elevations for four wells (C3 ~ C6) are 

shown in Figure 16. It is found that the simulation results of the 

model with the default parameters are significantly higher than 

the observations for wells C3 ~ C6, which implies the model 

should be calibrated to close to the observed values. After opti-

mizing the two sensitive parameters, the simulation results of 

the model with the optimal parameter values are basically con-

sistent with observations. It demonstrates that the optimization 

for the sensitive parameters of the model is very effective. 

 

3.6 Physical Interpretation and Verification of the 

Parameter Sensitivity Results 

The reasonableness of the sensitive parameters obtained 

by various SA methods should also be verified by explanations 

of parametric physical meanings. Parameter P1, the specific 

yield of soil, is one of the most sensitive parameters for simu-

lation of groundwater table elevation. When a certain amount 

of river water is poured into unsaturated soil of a river bank, 

the smaller the value of specific yield of soil (i.e., P1 value), 

the higher the groundwater table rises. This occurs because the 

increase in groundwater table elevation is mainly the results of 

filling the pores in unsaturated soil. Parameter P2, which is re-

lated to horizontal hydraulic conductivity, is another highly 

sensitive parameter for simulation of groundwater table eleva-

tion. In stream water conveyance, the hydraulic potential dif-

ference between river water and an unsaturated soil column is 

greater than that between unsaturated soil columns. Darcy’s 

law states that a larger horizontal hydraulic conductivity (i.e., 

P2) with a constant hydraulic potential difference will inject 

more river water into the unsaturated soil column. However, 

there is no vertical downward flow in the vertical groundwater 

section due to the equal potentials in the vertical direction, and 

therefore the added water mainly serves to elevate the ground-

water table.  

4. Conclusions and Discussions 

In this study, three types of parametric SA methods are 

systematically assessed for their effectiveness and efficiency: 

qualitative SA, quantitative SA, and the response surface 

model-based quantitative SA. According to the requirements of 

SA methods, the suitable and more uniform QMC sampling 

method is used to enhance the representativeness of perturbed 

parameter samples and thus SA efficiency. The assessments are 

conducted on a quasi-2D groundwater model for groundwater 

table elevation simulation at the Yingsu section in the lower 

reaches of the Tarim River in China during the second period 

of river water release (i.e., from 16 November, 2000 to 4 Feb-

ruary, 2001). 

Five common methods of qualitative SA are assessed and 

some general conclusions are drawn:  

(1) The local method may accumulate errors in sensitive 

parameters, because the several parameter samples 

used do not represent the whole parameter space. 

(2) With 500 samples, the parametric sensitivity rankings 
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of four SA methods, DT, SOT, MARS and DT, are 

consistent, demonstrating that all four qualitative SA 

methods are effective. Finally, P2 (horizontal ground-

water hydraulic conductivity) and P1 (specific yield 

of soil) are identified as the most sensitive parameters 

in simulating groundwater table elevation. The para-

meter sensitivity rankings for four SA methods are 

consistent using 200 samples but fail using 50 sam-

ples, demonstrating that a sample size of 200 is enough 

to obtain accurate sensitive parameters. 

(3) For the GP method, 50 samples produce consistent 

parametric sensitivity scores with 500 samples, which 

differs from the other three SA methods. This demon-

strates that GP is a highly efficient qualitative SA 

method. 

For quantitative SA, two variance-based methods are as-

sessed, and the conclusions are drawn: 

(1) With about 2,000 samples, both the McKay and Sobol’ 

quantitative SA methods obtain consistent parameter 

sensitivity rankings with four qualitative SA methods, 

but also basically equal parameter sensitivity scores 

for whatever main effect or two-way interaction ef-

fect, demonstrating that they are as effective as the 

four qualitative SA methods. 

(2) The variation of each parameter sensitivity score for 

the Sobol' quantitative SA method is smaller when the 

sample size increases from 2,400 to 3,600. However, 

scores with 1,200 samples are evidently different 

from those for 2,400 or 3,600 samples, and therefore 

a sample size of 2,400 is enough to obtain accurate 

sensitivity scores. This implies that quantitative SA 

methods require more samples than qualitative SA 

methods for obtaining reasonable sensitivity parame-

ters. 

For the response surface model-based quantitative SA, the 

RS_Sobol’ SA method is assessed. Theoretically the method is 

highly efficient because it combines the strengths of qualitative 

and quantitative SA methods; however, the extent to which the 

response surface model represents the original model is very 

critical to the conducting of a reasonable quantitative SA. 

Therefore, the MARS response surface model should be as-

sessed before using the Sobol’ SA method on it. The main con-

clusions are: 

(1) Using a small number of sample points, the quantita-

tive SA method, in association with a response sur-

face model, obtains reasonable sensitivity parame-

ters. 

(2) The representativeness of the MARS response sur-

face model with respect to the original physical model 

is assessed from the two aspects of sampling methods 

and sample sizes. It is demonstrated that the MARS 

response model using 60 QMC samples produces a 

variance pattern similar to that of the real physical 

model. 

(3) For the RS_Sobol’ SA method, the 60 QMC samples 

obtain basically consistent parameter sensitivity scores 

with 2,000 QMC samples for both main effect and 

two-way interaction effect. Additionally, the param-

eter sensitivity scores are consistent with those ob-

tained by common quantitative SA methods (e.g., 

Sobol’ and Mckay) using at least 2,000 samples. For 

the RS_Sobol’ SA method, 60 samples are found to be 

enough to obtain accurate sensitivity scores compara-

ble with the quantitative SA method using 2,000 sam-

ples, demonstrating that it is effective and efficient. 

Overall, our assessments for the three types of parametric 

SA methods are very practical. It examines the effectiveness of 

these SA methods by comparing parameter sensitivity results 

and demonstrates the efficiency of these SA methods by deter-

mining the minimum sample size required. Finally, the re-

sponse surface model-based quantitative SA method is demon-

strated to be both effective and highly efficient. This provides 

a basis to enable other researchers to conduct more efficient 

parametric SA methods on physical models, to quickly screen 

the sensitive parameters of the model. This is also useful for 

enhancing parameter optimization speed, especially for com-

plex physical models requiring with extremely large computa-

tional demand.  

This work focuses on the assessment of SA methods, and 

therefore the case study is located in a small region (i.e., the 

river bank in an arid region). If the quasi-2D groundwater 

model is applied to the larger region (e.g., the whole of China), 

it not only increases computational time for a model run com-

pared to current simulation, but also requires separate experi-

ments on the parameter SA and optimization of sensitive model 

parameters for the different climatic regions to obtain accurate 

simulations of groundwater table elevation. In this case, the 

most highly efficient SA method is very important in enhancing 

the efficiency of parameter optimization by quickly screening 

out a small number of sensitive parameters to be optimized us-

ing as few model runs as possible. Subsequent work will incor-

porate the RS_Sobol’ quantitative SA method and the highly 

efficient parameter optimization method into the model to sim-

ulate the variation of groundwater table in larger regions such 

as the whole of China or a global region. 
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