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Spatial and temporal variations in vegetation coverage
observed using AVHRR GIMMS and Terra MODIS data in the
mainland of China
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Normal University, Beijing, China; bKey Laboratory of Soil Erosion and Prevention of Jiangxi Province, Jiangxi
Institute of Soil and Water Conservation, Nanchang, China

ABSTRACT
Human activities and climate change have changed the vegetation in
China. The analysis of the changes in vegetation that have occurred
over the past 30 years in China remains a great challenge due to
intense human activity and lack of field observations. The use of
various Normalized Difference Vegetation Index (NDVI) datasets to
study vegetation coverage changes has received much attention. In
this paper, we selected the early versions of Advanced Very High
Resolution Radiometer (AVHRR) Global Inventory Monitoring and
Modelling Studies (GIMMS), GIMMS3g (third generation GIMMS
NDVI from AVHRR sensors) and Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI data including the fusion data
(GIMMS+MODIS). We analysed spatial and temporal changes in vege-
tation cover in different ecosystems and basins in the mainland of
China. Different contributions of ecosystems and variations in NDVI
trends exist in different ecosystems in 17 basins. The results show
that different NDVI from different data sources yield different results:
(1) Vegetation increased in 74.62–77.7% of the area of the Chinese
mainland during 1982–2015, mainly in the Yellow River and the
middle reaches of the Yangtze River basin; (2) 2000–2017 MODIS
NDVI in mainland China has increased more area (79.67%). (3)
Farmland and Forest ecosystems were significantly enhanced in the
eastern monsoon region; (4) High-resolution NDVI can provide more
information than domain average NDVI. GIMMS and MODIS NDVI
data have complementary spatial and temporal distributions. Our
study improves the understanding of vegetation dynamics over
long time periods and large areas and, moreover, has potential for
supporting ecological managers in mainland China.
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1. Introduction

In response to the challenges of unquestionable global climate change, the science of
global change based on the overall behaviour of the earth system is rapidly developing
(Bonan 2008; Lenzen et al. 2018; Li et al. 2018; Balato et al. 2008). As a major component of
the terrestrial biosphere, vegetation is a key element of the global water and energy

CONTACT Aizhong Ye azye@bnu.edu.cn State Key Laboratory of Earth Surface and Ecological Resources, Faculty
of Geographical Science, Beijing Normal University, Beijing 100875, China

INTERNATIONAL JOURNAL OF REMOTE SENSING
2020, VOL. 41, NO. 11, 4238–4268
https://doi.org/10.1080/01431161.2020.1714781

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2020.1714781&domain=pdf&date_stamp=2020-01-27


cycles (Li et al. 2013; Guenther 2002; Jamali et al. 2015). Climate change can significantly
affect vegetation activities and terrestrial carbon cycles (Gajewski 2015; Sarkar and Kafatos
2004; Yu et al. 2003). Monitoring the dynamics of regional or global vegetation cover and
assessing the response of vegetation to global climate change are critical (Pan et al. 2018;
Wang et al. 2018; Wu et al. 2015). With the continuous development of remote sensing
technology, increasing amounts of satellite remote sensing data are provided, and the
quality of data in, for example, resolution, precision, and noise reduction is improved. The
technical improvements offer better support for global change studies (Dardel et al. 2014;
Kaufman and Tanré 1996). Vegetation index is a simple and effective metric for surface
vegetation coverage and growth status in the field of remote sensing. NDVI (Huete et al.
1997; Miura 2002), which is generated by remote sensing data, is the most widely used
vegetation indices. NASA developed the Earth Resources Technology Satellite (ERTS), and
became the pioneer of the Landsat satellite. Early sensors had minimal spectral resolution,
tending to red and near-infrared bands (Tucker 1979), which is conducive for distinguish-
ing between vegetation and clouds as well as other targets. (John and David, 2000)
explain the meaning of NDVI and introduce it in terms of values. The NDVI is defined as
near-infrared radiation (NIR) minus visible radiation (VIS) divided by the sum of near-
infrared radiation and visible radiation. The range of NDVI values is from −1.0 to +1.0. The
NDVI is linearly related to vegetation distribution density. Negative values indicate non-
plant surfaces, whereas in areas with vegetation cover, NDVI increases with increasing
vegetation coverage. Very low NDVI values (0.1 and below) correspond to barren areas of
rock, sand, or snow. The median values represent shrubs and grasslands (0.2–0.3), while
higher values represent temperate and tropical rainforests (0.6–0.8) (Myneni et al. 1995).
Many researchers point out that NDVI is easily saturated in areas with high-vegetation
coverage, and the value of NDVI no longer increases with the growth of vegetation, such
as forests, cereals, and broad-leaved crops (Zhao, Liu, and Yang 2012; Gitelson, 2004; Le
Maire et al. 2006; Ferrara et al. 2010). Because NDVI accurately reflects photosynthesis
intensity and vegetation greenness, reflecting vegetation seasons and inter-annual varia-
tions, NDVI trends can be used as an indicator of greening or browning (Dardel et al. 2014;
De Jong et al. 2011; Fensholt et al. 2009; Ju and Masek 2016). Therefore, NDVI has been
widely used in global or continent-scale monitoring of vegetation dynamics (Jarlan et al.
2008; Tian et al. 2016), vegetation classification (Montandon and Small 2008; Wardlow,
Egbert, and Kastens 2007), land cover change (Hill et al. 1999; Lunetta et al. 2006),
phenology monitoring (Butt et al. 2011; Heumann et al. 2007), and so on.

The only AVHRR dataset with global coverage from the 1980s to the twenty-first
century is GIMMS (Tucker et al. 2005). Global coverage of GIMMS data (GIMMS,
1981–2006) was released in 2007. After nearly 10 years, the GIMMS Study Group published
the recently updated GIMMS3g NDVI dataset covering 1981–2015. MODIS NDVI proces-
sing (Huete et al. 2002) is a goal designed for vegetation monitoring, including the most
advanced remote sensing technology. The technology reduces errors from the atmo-
sphere, radiation, etc. and increase radiation sensitivity. Therefore, MODIS NDVI emerged
as a powerful improvement in NDVI products derived from AVHRR sensors. MODIS NDVI
data products began in 2000 and have been updated ever since. All of the above NDVI
datasets are affected by time inconsistencies in trend analysis in different regions of the
world (Gallo et al. 2004; Beck et al. 2011; Fensholt et al. 2012; Zhang et al. 2017) due to
sensor differences and sensor transitions. At present, some conclusions from these studies

INTERNATIONAL JOURNAL OF REMOTE SENSING 4239



are recognized. For example, more consistency exists between GIMMS data and MODIS
data on the temporal trends (Gallo et al. 2004). GIMMS3g data have strong consistency in
time (Tian et al. 2015a), and the quality of AVHRR data is lower than the quality of the data
collected by MODIS (Pettorelli et al. 2005), but GIMMS is a priority for long-term scale
studies. Some studies have merged GIMMS and MODIS data, resulting in long-term
sequence NDVI data, to explore long-term vegetation changes before GIMMS3g was
released (Du et al. 2014; Mao et al. 2012a).

China is located in the eastern monsoon region of Asia, the climate of which is
controlled mainly by the Westerlies. In addition, China has a diverse and distinct natural
environment that covers almost all ecosystems from forest ecosystems to desert ecosys-
tems with tropical to boreal vegetation. Thus, China is well suited and necessary for
comparisons of different NDVI datasets. The previous study areas of vegetation change
were mainly concentrated in arid and semi-arid areas, such as northern China (Dai, Zhang,
and Wang 2010; Liu et al. 2010, 2017; Mao et al. 2012b; Song and Ma 2007; Sun 2012; Zhou
et al. 2001), the Qinghai–Tibet Plateau (Wang and Han 2012; Xin, Xu, and Zheng 2008;
Zhang et al. 2011), and the Loess Plateau (Jiang et al. 2015; Mao et al. 2012a; Xin, Xu, and
Zheng 2008) in China. The arid and semi-arid areas are more sensitive regarding ecology
or human activities. The overall vegetation increased in the 1980s and 1990s in China
(Fang 2004; Piao 2003; Xiao and Moody 2004; Yun-hao et al. 2001). The SPOT VEGETATION
NDVI and AVHRR GIMMS have good linearity in Chinese land surfaces (Song et al. 2010).
The vegetation in China exhibited a significant increasing trend from 2001 to 2011 (Lin
et al. 2013). There have been studies of vegetation changes over longer time series (Li
et al. 2014; Peng et al. 2011; Piao et al. 2015; Xu et al. 2012), and it has been found that the
trend has generally increased over the last three decades, especially in southern China.
Scholars have realized that China’s vegetation changes have staged trend characteristics
(Liu et al. 2015; Peng et al. 2011; Piao et al. 2015), and then they choose their respective
segmentation points to explore the changes in vegetation at different stages.

This study combined GIMMS and MODIS data into a set of fused data. Then compared
GIMMS, GIMMS3g, MODIS and fused data in mainland China in order to reduce the
uncertainty caused by multiple NDVI datasets. On this basis, it also evaluated the reliability
of the fusion data fused by GIMMS and MODIS. We analysed the changes in vegetation
cover in mainland China over the past three decades. Based on the policy of afforestation
in China (Zhang et al. 2017), and the length of time of the NDVI datasets, we selected 2000
as a segmentation point for trend analysis. We have also explored the spatiotemporal
agreement or disagreement of different NDVI datasets at multiple scales, including basin,
ecosystem scales, and national scales.

2. Study area and data

2.1. Study area

The study area is the mainland of China, which excludes all coastal islands (Taiwan Island and
islands such as the South China Sea Islands) except Hainan Island. China belongs to the East
Asian monsoon region and is suffering from the adverse effects of climate change, like
extreme weather, floods, typhoons, droughts, etc. In this study, China is divided into 17
hydrological and climatic regions (Figure 1, Table 1) according to watersheds. The
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classification of climate types in these regions, such as the Koppen–Geiger climate type (Peel,
Finlayson, and McMahon 2007), attempts to ensure that regional climate has nearly uniform
characteristics when zoning. In this paper, 17 hydro-climatic basins are abbreviated as basins.

Figure 1. The 17 large hydro-climatic basins in mainland China and the distribution of mean annual
precipitation (mm) in mainland China.

Table 1. Summary information of 17 river basins in China (Lang et al. 2014; Peel,
Finlayson, and McMahon 2007).
Region Full name Mean annual precipitation (mm) Area (km2)

1 Songhua River 535.5 370,973
2 Liao River 566.1 310,117
3 Hai River 515.9 578,092
4 Inland rivers in Xinjiang 168.3 1,104,104
5 Lower Yellow River 391.0 448,864
6 Upper Yellow River 469.3 504,731
7 Lower Yangtze River 1606.5 324,061
8 Huai River 819.5 415,287
9 Inland rivers in Northern Tibet 199.9 694,413
10 Southeastern River 1705.9 226,496
11 Brahmaputra 876.7 908,881
12 Upper Yangtze River 795.2 399,541
13 Middle and Lower Yangtze River 1276.5 567,237
14 Middle and Upper Yangtze River 1001.1 323,970
15 Pearl River 1700.7 567,520
16 Lancang River 882.2 316,057
17 Inner Mongolia inland river 220.4 1,537,520
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In 17 basins, Inner Mongolia inland river has the largest area of 1,537,520 km2 with cold
semiarid climate and the climate type of Lower Yellow River (448,864 km2) is the same
with it. Southeastern River has the smallest area of 226 496 km2, and the climate type is
warm oceanic climate or humid subtropical climate. In general, the largest climate type in
China is the temperate-continental climate.

2.2. Data

2.2.1. NDVI datasets
MODIS NDVI, GIMMS NDVI, and GIMMS3g NDVI were selected in this paper. GIMMS NDVI
dataset is the global vegetation index change dataset launched by the National
Aeronautics and Space Administration (NASA). The dataset includes global NDVI data
computed from the red and near-infrared bands from July 1981 to December 2006
(Tucker et al. 2005) and with a time resolution of half a month, spatial resolution of
8 km, and Albers-Conic-Equal-Area projection. The GIMMS NDVI dataset was calibrated by
sensors, including NOAA (national oceanic and atmospheric administration) −7, NOAA-9,
NOAA-11 sensors (1981–1999), NOAA-14 sensors (January 1995–November 2000), NOAA-
16 (2000) (November 2000 to December 2003), and NOAA-17 (December). It also improves
the sensor sensitivity to the spectrum and discontinuous changes over time, corrects for
radiation, clouds, the atmosphere, and solar elevation angle (Tucker et al. 2005), and uses
EMD (Empirical Mode Decomposition) to mitigate the drift of satellite orbits. The GIMMS
NDVI archive is considered to be the best dataset available for long-term NDVI trend
analysis (Beck et al. 2011).

The third generation GIMMS AVHRR is the longest-term global vegetation index
product, and has become an important source of data for studying large-scale ecological
processes (Liu et al. 2017; Pan et al. 2018; Pinzon and Tucker 2014; Wang et al. 2017).
GIMMS3g dataset time series has been extended for nearly 35 years (1982–2015). Since
the data has been pre-processed, the accuracy is effectively improved, and the data
quality and spatiotemporal resolution are exceptional. (Pinzon and Tucker 2014). The
data offer a good chance for investigating long-term vegetation cover changes.

The Global MODIS NDVI (Huete et al. 2002) is designed to provide spatial and temporal
information of vegetation conditions. The 1-km spatial resolution MOD13A3 products
from 2000 to 2017 for the mainland of China were obtained from the NASA Reverb
website (http://reverb.echo.nasa.gov/). NDVI images were directly derived from the
MOD13A3 products, which provides a 3-level sinusoidal projection grid product. During
the processing of monthly products, the algorithm absorbs all 1 km of products covering
the entire month for 16 days. If there is no cloud in the atmosphere, the time-weighted
average method is adopted, or the minimum value is adopted to prevent clouding
influence. On the basis of 1B data, the product corrects the edge distortion caused by
the remote sensor imaging process. The MODIS Vegetation Index product V5 has been
confirmed in the third phase (Adami et al. 2018; Sun et al. 2015; Solano et al. 2010).

2.2.2. China’s terrestrial ecosystems
The macro-structure data of 2015 China’s terrestrial ecosystems were used in this study,
and we downloaded that data from the Resource and Environmental Science Data Center
of the Chinese Academy of Sciences (http://www.resdc.cn/). The 1:100,000-scale land use/
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land cover data were obtained by remote sensing interpretation. The macro-structure
data of 2015 China’s terrestrial ecosystems is one of the ChinaEco100-Spatiotemporal
Distribution Dataset of Ecosystem Types in China. ChinaEco100-Spatiotemporal
Distribution Dataset of Ecosystem Types in China is based on Landsat TM/ETM/OLI remote
sensing imagery. After image fusion, geometric correction, image enhancement, and
splicing, it is interpreted by human-computer interaction (Xu et al. 2017). The spatial
resolution of the dataset is 100 metres. Based on the identification and research of various
ecosystem types, the spatial distribution data sets of multi-period China terrestrial eco-
system types are formed through classification. This dataset divides China’s land into
seven major ecosystem types, including farmland ecosystems, forest ecosystems, grass-
land ecosystems, water and wetland ecosystems, desert ecosystems, settlement ecosys-
tems, and other ecosystems (Figure 2).

To further explore the contribution or change of ecosystems in each basin and gather
statistics on the trends of ecosystems, this study attempted to discover the trends of
different NDVI datasets in ecosystems of each unit. The proportions of different ecosys-
tems in the 17 basins are obviously varied (Figure 3). From east to west, the dominant
ecosystem changes from forest ecosystem and farmland ecosystem to grassland ecosys-
tem and desert ecosystem. The greater the proportion of the ecosystem, the greater the
contribution to vegetation changes reflecting the NDVI trend of the basins. The farmland
ecosystem is the main ecosystem of Liao River, Huai River, Hai River, and the Lower Yellow
River, while Songhua River, Southeastern River, Pearl River, and Yangtze River (except

Figure 2. The terrestrial ecosystem types of China.
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Upper Yangtze River) are dominated by forest ecosystems. Grassland ecosystems account
for a large proportion in Inner Mongolia inland river, Upper Yellow River, Upper Yangtze
River, Inland rivers in Xinjiang, Inland rivers in Northern Tibet and Brahmaputra.

2.2.3. Other data
The gridded daily precipitation and temperature observations for 1982–2015 at
a 0.5-degree resolution were obtained from the National Meteorological Information
Center, CMA (http://data.cma.cn/). The information of rural population dataset was from
1982–2015 China Statistical Yearbook, and the 1982–2015 afforestation area was down-
loaded from China Forestry Yearbook. The specific information can be seen in Table 2.

3. Data post-processing and methodology

3.1. Data post-processing

By using the maximum-value composite technique (Holben 2007), 15-day GIMMS NDVI
and GIMMS3g NDVI were aggregated to monthly temporal resolution. We also applied
the same method to GIMMS3g and got monthly GIMMS3g NDVI data. For the purpose of
consistency, the MODIS dataset was resampled to the same spatial resolution of GIMMS
(8 km), as well as making projection transformation before analysis. NDVI values lower
than 0.1 were set to 0.1, which is equivalent to shielding those areas so as not to affect the
detection and to better reflect the changes in vegetation coverage.

In this study, we consider the area where NDVI is greater than 0.6 to be the high-value
area of NDVI, and the area below 0.3 is considered to be the low-value area of NDVI.

Figure 3. The percentage of ecosystems in 17 basins. The abbreviations in the legend represent the
different ecosystems. FL: Farmland; FR: Forest; GL: Grassland; WW: Water and Wetland; SM: Settlement;
DE: Desert; OE: Others. Each bar represents the proportion of each ecosystem in this basin, and the
sum of each bar in one basin is 100%. The number 34 of legend means the value of the histogram with
the height closest to the number.
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Because of the saturation of NDVI, we set 0.8 as the upper threshold of NDVI. Since the
two sets of data are different in many non-ignorable aspects, such as satellite sensors,
spatial resolution, temporal resolution, etc. The two datasets need to be pre-processed
before the two sets of data are fused. To obtain the long-term NDVI composite data
composed of monthly GIMMS and MODIS NDVI, the correlation analysis of the two
datasets had to be checked first. The Pearson correlation coefficient can be expressed
as follows:

r ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp (1)

where the r value is the correlation, x and y are the 2000–2006 monthly average GIMMS
and MODIS NDVI values, cov is the covariance between x and y, and var is the variance
function.

The distribution of correlation coefficients between them is shown in Figure 4. There
are 80.90% of the pixels having a correlation coefficient greater than 0.7. Therefore,
GIMMS and MODIS have a high correlation and meet the requirements of integration.

Linear regression at the per-pixel level was then applied to monthly MODIS NDVI and
GIMMS NDVI (2000–2006) data. Next, using this regression equation, a new MODIS for
2000–2015 is obtained, which is connected with GIMMS before 2000. The new 2000–2015
NDVI data were prolonged through the pixel-by-pixel linear regression equations. Then,
all the NDVI datasets were averaged over the whole study area. The per-pixel linear
regression model can be applied to every pixel, leading to the most accurate regression
equation (Montgomery, Peck, and Vining 2012). The applied formulas are as follows:

Gi ¼ aþ b�Mi þ εi (2)

b ¼ n
Pn

i¼1 MiGi �
Pn

i¼1 Mi
Pn

i¼1 Gi

n
Pn

i¼1 M
2
i � ðPn

i¼1 MiÞ2
(3)

a ¼ �G� b� �M (4)

Parameters in the model are calculated by the least squares. εi refers to a random error. Mi

and Gi represent separately MODIS NDVI and GIMMS NDVI matching the i-th months. n is
the total number of months. �G is the mean of 2000–2006 monthly GIMMS data for the
corresponding pixels. �M represents values under the same conditions for MODIS. In this way,
this new long-time NDVI data can be constructed and prepared for further research.

Table 2. Information of other data for the mainland China.

Data type Spatial resolution
Temporal
resolution Time period Source

Precipitation 0.5 ° (≈55km) Daily 1982 ~ 2015 CMA (http://data.cma.cn/)
Temperature 0.5 ° (≈55km) Daily 1982 ~ 2015
The proportion of Rural
Population

- Yearly 1982 ~ 2015 China Statistical Yearbook

The afforestation area - Yearly 1982–2015 China Forestry Yearbook

‘ – ’ means no data.
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3.2. Linear regression

The linear regression method was used to establish GIMMS and MODIS regression
equations for data post-processing (Section 3.1) and also obtains the trend term of
NDVI in the mainland of China, which was used for indicating the inter-annual variation
of vegetation at the pixel level.

In this study, year is defined as an independent variable, the annual average
NDVI value is defined as the dependent variable, and the least squares method is
used to optimize the slope by minimizing the sum of the squared errors. When
the slope is positive, it indicates that the vegetation cover increases or the
improving vegetation trend; conversely, when the slope is negative, it means
that the vegetation cover decreases and the vegetation dynamic change shows
a downward trend.

The slope of the fitting function can be expressed as follows:

Slope ¼
k
Pk
j¼1

j � NDVIj �
Pk
j¼1

j
Pk
j¼1

NDVIj

k
Pk
j¼1

j2 � Pk
j¼1

j

 !2 (5)

Figure 4. The correlation between MODIS NDVI and GIMMS NDVI.
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where the Slope represents the trend in the NDVI time series, k represents the cumulative
number of years in every period, j represents the number of the year (j = 1,2,3, . . ., k), and
NDVI represents the NDVI value corresponding to the j-th year.

3.3. Mann-Kendall test

The Mann-Kendall (M-K) nonparametric statistical method (Mann 1945; Kendall 1975) is
currently widely used in trend analysis (de Beurs et al. 2004; Zhang et al. 2016; Pouliot,
Latifovic, and Olthof 2009; Neeti et al. 2011). It can effectively distinguish whether
a process is in natural fluctuation or has a definite trend of change. Its advantage is that
it does not require samples to follow a certain distribution and is not affected by a few
outliers. The calculation method is as follows.

The statistic S is calculated using Eqs. (6–8).

S ¼
Xm�1

l¼1

Xm
q¼lþ1

sgn xq � xl
� �

(6)

sgn xq � xl
� � ¼ 1 ðxq � xlÞ> 0

0 ðxq � xlÞ ¼ 0
�1 ðxq � xlÞ< 0

8<
: (7)

E Sð Þ ¼ 0 var Sð Þ � mðm�1Þð2mþ5Þ
18

(8)

where x1; x2; � � �; xmf g is the time-series data, sgn () is a symbolic function, and m is the
number of data points. E (S), var (S) are the mean and variance of the statistic S,
respectively. When m > 10, the standard normal test statistic Z is computed using Eq. (9).

Z ¼
S�1ffiffiffiffiffiffiffiffiffi
varðSÞ

p S > 0

0 S ¼ 0
Sþ1ffiffiffiffiffiffiffiffiffi
varðSÞ

p S< 0

8><
>: (9)

The M-K statistic Z-value of the calculated time series is used to test the significance of
trend statistics. Z-value has a range of (-∞, +∞). A positive Z-value indicates that the time
series (Zhang et al. 2017) has an upward trend, while a negative Z-value indicates
a downward trend. |Z| > Z0.05/2 = 1.96, indicating that the sequence trend changes
significantly.

In the trend analysis, 2000 was picked as our segmentation point. Over-exploitation of
forests in China for more than 50 years has led to serious ecological degradation at the
end of the twentieth century, including soil erosion, desertification, sandstorms, and
flooding, especially the 1998 floods. In response to the damage caused by these disasters
and the serious consequences of the 1998 floods, the Chinese government has taken
many important measures since 1998 to implement sustainable forest management (SFM)
in China (Dai et al. 2011). In 2000 and 2001, the Chinese government established the ‘Six
Major Forestry Projects’ to control soil erosion, reduce floods, protect biodiversity, and
restore degraded ecosystems (Xu et al. 2018). Since the vegetation restoration project has
been widely implemented, the vegetation situation in China has undergone changes. We
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considered choosing a segmentation point in the interval from the end of the twentieth
century to the beginning of the twenty-first century. On the other hand, the MODIS data
started from 2000. In order to better compare different NDVI datasets and can scan the
change process of MODIS NDVI data from the beginning, we chose 2000 as
a segmentation point for this analysis of vegetation cover change in mainland China.

4. Results

4.1. Annual average of NDVI distribution spatial pattern

Figure 5 shows the distributions of the annual average NDVI of the three NDVI datasets
over different periods. It can be concluded that there has been no significant change in
the distribution pattern of high and low NDVI value areas in China during the past nearly
four decades. The three sets of NDVI data give similar results, although the magnitudes of
the values differ.

The NDVI in mainland China presents a low-value spatial distribution pattern in the
northeast, southeast, southwest, and northwest basins. A relatively clear boundary line is
approximately formed at the 400 mm precipitation line in China. The high-vegetation
coverage in Southeast China and the low-vegetation coverage in Northwest China were
confirmed on the NDVI maps. China’s 400 mm precipitation line is also the boundary
between semi-humid and semi-arid regions, forests, and grasslands in China. The dis-
tribution map of China’s vegetation index correlates with the distribution of atmospheric
precipitation (Figure 1). In areas with high-vegetation density, the NDVI values of
GIMMS3g are higher and more obvious than GIMMS and MODIS data. The difference
between high and low GIMMS3g NDVI values is obvious. GIMMS3g can better identify
areas with higher NDVI values.

In Figure 6, there are more consistent and few changes with time in Inland rivers in
Xinjiang, Inland rivers in Northern Tibet, and Inner Mongolia inland river which are regions
with sparse vegetation coverage. Comparing the 1982–2015 GIMMS+MODIS and
1982–2015 GIMMS3g (Figure 6(a)), the two datasets have little difference in the range
of the (0.1,0.3], but the difference in the (0.6,1] is larger, and the proportion of GIMMS3g is
significantly more than GIMMS+MODIS. From Figure 6(b), 1982–2000 GIMMS3g NDVI of
the range of (0.6,1] in Songhua River, Yangtze River, and Huai River is obviously higher
than GIMMS in the same period. The (0.1,0.3] proportion of GIMMS3g in 2000–2015 is
lower than that in 1982–2000, and the proportion of high-value area is higher. The area
without vegetation cover has decreased except for Inland rivers in Xinjiang. The propor-
tion of Huai River in the (0.6,1] increased the most (Figure 6(c)). The percentage of (0.6,1]
of GIMMS3g is larger than that of MODIS (Figure 6(d)). The proportions of each NDVI
interval in 2000–2015 and 2000–2017 MODIS have not changed much (Figure 6(e)). The
(0.6,1] is the interval where the contribution of the increase is relatively large, which is
reflected in the Songhua River, Lower Yellow River, Hai River, and Liao River.

4.2. Trend analysis of NDVI in mainland China

Figure 7 shows that the variations in general trend changes (regression slope values) in
different NDVI datasets are quite similar overall but not partially. The GIMMS+MODIS NDVI
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(Figure 7(a)) increased, and the GIMMS3g NDVI (Figure 7(b)) decreased in the Songhua
River Basin during 1982–2015. That is to say, GIMMS+MODIS NDVI shows revegetation,
and GIMMS3g NDVI shows deterioration in the Songhua River Basin. The variation
between the GIMMS (Figure 7(c)) and GIMMS3g (Figure 7(d)) NDVI trends were more

Figure 5. Annual averages of the different NDVI datasets in mainland China.
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distinct in the basins of the Huai River, Pearl River, Lower Yangtze River, and Southeast
River during 1982–2000. The vegetation change trends were obviously opposite between
MODIS (Figure 7(e)) and GIMMS3g NDVI (Figure 7(f)) during 2000–2015 in the Songhua
River Basin and the southwestern basins (including Lancang River, Upper Yangtze River,
and Brahmaputra). There is an increasing trend in vegetation in Songhua River and the
southwestern basins during 2000–2015 (Figure 7(e)). While in these regions, there is
a noticeable deterioration, overall (Figure 7(f)).

Comparing the spatial distributions of the MODIS NDVI slopes during 2000–2015
(Figure 7(e)) and 2000–2017 (Figure 7(g)), the slopes during 2000–2017 are bigger than
the slopes during 2000–2015. MODIS 2000–2017 is significantly greener than MODIS
200–2015 in Pearl River, Yangtze River (except Upper Yangtze River), Lower Yellow River
as well as the northern part of Songhua River. The results show rapid revegetation during
2015–2017.

The frequency distributions (Figure 8) of the three NDVI data sets’ slopes are relatively
consistent, and most of the pixel values are concentrated between −2 × 10−3 and 2 × 10−3

per year. Concerning the slopes, 63.74%-68.49% of them are greater than zero, showing that
vegetation increased in 63.74%-68.49% of the area of mainland China during 1982–2015
(Figure 8(a)). GIMMS3g NDVI slopes show that vegetation increased in 73.93% of the area of
mainland China during 1982–2000 (Figure 8(b)) and 57.23% of the area of China during
2000–2015 (Figure 8(c)). However, MODIS NDVI slopes show that vegetation increased in
75.03% of the area ofmainland China during 2000–2015 (Figure 8(c)) and 79.67% of the area
during 2000–2017 (Figure 8(d)). Recent MODIS products are considered to have good sensor
calibration and high spatial resolution (Fensholt et al. 2009; Fensholt and Proud 2012). We
combined the trend of GIMMS and GIMMS3g before 2000 and MODIS data after 2000.
Therefore, we confirm that vegetation increased to more than 70% of the area of China
during 1982–2017.

The significant trends of NDVI in different stages (M-K statistic Z-values) as derived from
MODIS, GIMMS, and GIMMS3g data are shown in Figure 9. A general increase in vegeta-
tion is more significant and similar from GIMMS+MODIS NDVI (Figure 9(a)) and GIMMS3g
(Figure 9(b)) in mainland China during 1982–2015, except in the Songhua River Basin. The
prominent revegetation areas are in the Yellow River and the Huai River Basins. The
deterioration of vegetation areas is found mainly in the eastern Songhua River, the

Figure 6. The proportion of four NDVI value intervals in 17 basins under different data sources. The
names of the 17 basins correspond to the number codes referred to in Table1: 1: Songhua River; 2: Liao
River; 3: Hai River; 4: Inland rivers in Xinjiang; 5: Lower Yellow River; 6: Upper Yellow River; 7: Lower
Yangtze River; 8: Huai River; 9: Inland rivers in Northern Tibet; 10: Southeastern River; 11: Brahmaputra;
12: Upper Yangtze River; 13: Middle and Lower Yangtze River; 14: Middle and Upper Yangtze River; 15:
Pearl River; 16: Lancang River; 17: Inner Mongolia inland river. The ‘0.1’ means that a value less than
0.1 is set to 0.1, indicating that there is no vegetation coverage. (a) the comparison between
1982–2015 GIMMS+MODIS and 1982–2015 GIMMS3g, columns with red wireframes represent
1982–2015 GIMMS3g. (b) the comparison between 1982–2000 GIMMS and 1982–2000 GIMMS3g,
columns with red wireframes represent 1982–2000 GIMMS3g. (c) the comparison between 1982–2000
GIMMS3g and 2000–2015 GIMMS3g, columns with red wireframes represent 2000–2015 GIMMS3g. (d)
the comparison between 2000–2015 GIMMS3g and 2000–2015 MODIS, columns with red wireframes
represent 2000–2015 MODIS. (e) the comparison between 2000–2015 MODIS and 2000–2017 MODIS,
columns with red wireframes represent 2000–2017 MODIS.
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Xinjiang northern part, and the southwest regions, including the Pearl River Delta and
Yangtze River Delta regions. GIMMS Z-values (Figure 9(c)) show more partial negative
trends than GIMMS3g Z-values (Figure 9(d)) during 1982–2000 in south China. GIMMS can

Figure 7. Slope in NDVI for mainland China, 1982–2017.
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underestimate the greening trend of vegetation. Most of the MODIS Z-values (Figure 9(e))
are positive, showing upward trends of vegetation during 2000–2015. However, the
GIMMS3g Z-values (Figure 9(f)) show downward trends of vegetation in the southwest,
northwest, and northeast. We added MODIS NDVI data during 2016–2017 and found that
the upward trends of vegetation are more significant (Figure 9(g)).

Figure 10 presents the frequency distributions of M-K Z-value for different times. The
vegetation increased (Z > 0) in 74.62%-77.7% of the area of China’s mainland during
1982–2015 from the GIMMS+MODIS and GIMMS3g Z-values frequency distributions
(Figure 10(a)). This result deviates from the result of the slope (63.74%-68.49%), which we
believe is the bias caused by the different methods. Both methods can reflect the trend of
NDVI change so that they can confirm each other. The vegetation increased (Z > 1.96)
significantly in 41.54%-47.73% of the area of the Chinese mainland during 1982–2015.
GIMMS+MODIS has 6.19% more area with Z- values greater than 1.96 then GIMMS3g.
GIMMS+MODIS shows a larger area of revegetation. The vegetation decreased remarkably
(Z <-1.96) in 6.21%-8.61% of the area of China’s mainland during 1982–2015. The proportion
of vegetation degradation is less than 10%, which we believe is within the controllable
range. The vegetation increased (Z > 0) in 85.99% of the area of China’s mainland during
1982–2000 from GIMMS3g, which is greater than for GIMMS (71.45%) (Figure 10(b)).
However, the vegetation increased (Z > 0) in 69.55% of the area of China’s mainland during

Figure 8. The frequency distributions of NDVI changed slopes at different times; S represents the
Slope. (a) GIMMS+MODIS and GIMMS3g 1982–2015; (b) GIMMS and GIMMS3g 1982–2000; (c) MODIS
and GIMMS3g 2000–2015; (d) MODIS 2000–2015 and MODIS 2000–2017.
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2000–2015 from GIMMS3g, which is less than for MODIS (87.52%) (Figure 10(c)). From 1982
to 2000, the proportion of vegetation increased significantly (Z > 1.96) from 13.60% to
25.04%. Compared with it, the proportion of 2000–2015 vegetation increased significantly

Figure 9. The M-K Z-value of the NDVI variations in mainland China.
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from 26.98% to 42.91%, and it increased by 13.38%-17.87%. The vegetation increased (Z > 0)
in 91.57% of the area of China’s mainland during 2000–2017 fromMODIS (Figure 10(d)), and
the vegetation increased rapidly during 2016–2017.

The results of the Mann-Kendall nonparametric test are similar to those of the linear
regression trend analysis; Mann-Kendall test can not only verify the significance but also
provide evidence of a trend change, eliminating the uncertainty of the analytical method.

4.3. Inter-annual variation of the average NDVI in the mainland of China

To visualize the features of the three NDVI datasets for the mainland of China, Figure 11
shows the inter-annual variation of NDVI averaged over mainland China. Compared to
MODIS NDVI and GIMMS NDVI, GIMMS3g NDVI had the highest annual mean values
intuitively, and GIMMS NDVI is smaller than the MODIS NDVI found in other research
(Zhang et al. 2017; Gallo et al. 2005; Steven et al. 2003). The three datasets all show the
same trend of NDVI in mainland China to prove the greening of vegetation. However, we
can find that before 2000, the trend is stable and that there are no large fluctuations, as
seen from the departure of the coefficient of determination (R2) from 1.

The gentle, positive trends of GIMMS and GIMMS3g are similar before 2000. This
indicates that there is no obvious variation in the overall vegetation of mainland China,

Figure 10. The frequency distributions of M-K Z-value at different times. (a) GIMMS+MODIS and
GIMMS3g 1982–2015; (b) GIMMS and GIMMS3g 1982–2000; (c) MODIS and GIMMS3g 2000–2015; (d)
MODIS 2000–2015 and MODIS 2000–2017.
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and even the growth rate level of GIMMS3g is a bit higher. Since 2000, NDVI datasets have
shown a relatively obvious upward trend. For 2000 to 2015, GIMMS3g has performed
more smoothly than MODIS. By comparing the data fitted by GIMMS and MODIS with
GIMMS3g, the GIMMS+MODIS from 1982 to 2015 may overestimate the trend of NDVI
growth. GIMMS3g and MODIS data show different changes in individual years, such as in
2008–2012. On the whole, the two long time-series datasets can better reflect the
vegetation trends of mainland China. It is also found that the greening trend of vegetation
coverage is distinct in the 2 years from 2015 to 2017, meaning that the vegetation
development in mainland China is optimistic. The vegetation coverage in mainland
China has been improved for the twenty-first century, and the sustainable development
of vegetation cannot be ignored in the future.

On the scale of hydro-climatic partitions and ecosystems, the trends of the three NDVI
datasets were compared; furthermore, the changes on vegetation cover in these basins
are well explained (Figure 12). The NDVI values differ for different basins and data sources.
A few basins have different and even striking opposite trends in some of the individual
time intervals shown in Figure 12(a). For example, the trend of GIMMS3g is positive in the
Lower Yangtze River, Southeastern River, and Pearl River, whereas the trends of GIMMS
are negative, −0.19 × 10−3, −0.39 × 10−3, and −0.54 × 10−3 per year, and the differences in
slope are 1.2 × 10−3, 0.59 × 10−3, and 1.2 × 10−3 per year during 1982–2000. The negative
trend is slight and can be treated as having small fluctuations (tested by M-K method, |Z|
<1.96). The commonality shared by the three river basins is that they are all economically
developed areas, and NDVI values are relatively large. Urbanization in these areas is more
prominent, which is presumed to be related to NDVI vulnerability to population distur-
bances and the land cover changes. In the interval of 2000–2015, GIMMS3g and MODIS
data also show opposite trends in three basins but differ from the previous three basins,

Figure 11. Inter-annual variations of the three NDVI datasets in mainland China. NDVI indicates that
the range of vegetation is [0,1], and the ordinate on the ordinate here is set to [0.28,0.37], which only
indicates the interval in which the average annual NDVI value of mainland China is located.
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namely those of the Brahmaputra River, the Upper Yangtze River, and the Lancang River.
Unlike before, the trends of GIMMS3g are negative, −0.55 × 10−3, −0.39 × 10−3, and −0.42
× 10−3 per year, whereas the trends of MODIS are positive, with corresponding differences
of 0.81 × 10−3, 1.1 × 10−3, and 1.1 × 10−3 per year. The three basins are located in the
southwestern part of China and are also areas with high NDVI values. In other studies, the
vegetation in southwestern China should show a browning trend, indicating that MODIS
data possibly overestimate the greening trends and underestimate the browning trends
in this part of China, and GIMMS3g is more convincing (Pan et al. 2018). However, overall,
the NDVI is not performing well in areas with high-vegetation coverage (Fensholt and
Proud 2012). In the long-term sequence from 1982 to 2015, the overall trend is very
similar, indicating that the fusion data are also possibly reliable. Only the mild trend

Figure 12. The Slope and R2 of NDVI averaged in 17 basins and 7 ecosystems in 7 data sources. The
names of the 17 basins correspond to the number codes referred to in Table 1. The numbers from 1 to
7 correspond to different ecosystems. 1: Farmland ecosystem; 2: Forest ecosystem; 3: Grassland
ecosystem; 4: Water and wetland ecosystem; 5: Settlement ecosystem; 6: Desert ecosystem; and 7:
Other ecosystems. In addition, the data sources represent the contrast of different time intervals for
different NDVI datasets. 1: GIMMS3g 1982–2015; 2: GIMMS+MODIS 1982–2015; 3: GIMMS3g
1982–2000; 4: GIMMS 1982–2000; 5: GIMMS3g 2000–2015; 6: MODIS 2000–2015; 7: MODIS
2000–2017. (a) The Slope of NDVI averaged in 17 basins. (b) The R2 of NDVI averaged in 17 basins.
(c) The Slope of NDVI averaged in seven ecosystems. (d) The R2 of NDVI averaged in seven ecosystems.
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difference in the Songhua River is observed, showing that GIMMS3g is realized as
a negative value, while the GIMMS+MODIS is a positive development. The Songhua
River is a region that is affected strongly by human activities. Therefore, it is difficult to
accurately judge the changes in the trend. The region has experienced a stage during
which the vegetation is getting worse and better, and it is therefore hard to measure or
conclude whether it is restored or improved. However, clearly it is certain that the region
is already developing in the positive direction.

The R2 for Middle and Lower Yangtze River except for those of GIMMS in 2000–1982
were close to 1, and the rest were lower. GIMMS3g has the highest R2 in Lower Yellow
River in 2000–2015, while MODIS only has a lower R2 for the Brahmaputra River and basins
of inland rivers in Inner Mongolia, while the rest are close to 1(Figure 12(b)).

Unlike the river basins, desert and other ecosystems in low-value areas have significant
differences in trends (Figure 12(c)). In terms of ecosystems, the values of the GIMMS
+MODIS NDVI from 1982 to 2015 are larger, and the differences are obvious in desert and
other ecosystems. In 1982–2000, the most obvious difference between the two genera-
tions of GIMMS was the part of the farmland ecosystem; after 2000, GIMMS3g and MODIS
had larger differences than for the farmland ecosystem. The MODIS data of desert
ecosystems show an increasing trend, while GIMMS3g has a flat trend. In other ecosys-
tems, the trend of GIMMS3g declines during the 2000–2015 period, although not
obviously, while the MODIS data are reversed.

Figure 12(d) describes the R2 of ecosystems at every stage. The values for GIMMS
+MODIS from 1982 to 2015 are larger than for GIMMS3g, as obviously shown in desert and
other ecosystems. In 1982–2000, the most significant difference between the two gen-
erations of GIMMS was the part of the farmland ecosystem; after 2000, GIMMS3g and
MODIS had larger differences except for the farmland ecosystem.

From the perspective of R2 (Figure 12(b,d)), the value of MODIS is generally higher, and
GIMMS and GIMMS3g are almost at the same level. On the opposite trendiest parts, the R2

is low, indicating that it is not sensitive to time, and the trend difference exists but is not
so certain. In addition, compared with MODIS for 2000–2015 and 2000–2017, the R2 has
generally increased. The R2 of GIMMS3g was generally lower than that of GIMMS+MODIS
during 1982–2015.

4.4. NDVI trend analysis of ecosystems in the 17 basins

In the main, there is no noticeable browning in the ecosystem matching with universal
cognition (Figure 1). In the long-term sequence from 1982 to 2015, the differences
between GIMMS3g and the GIMMS+MODIS NDVI data are more markedly reflected in
the farmland, forests, water and wetlands, and desert ecosystems in the Songhua River
Basin, as well as desert and other ecosystems of Xinjiang’s inland River Basin (Table 3). In
addition, the opposite trend is present in the forest ecosystem of the Brahmaputra and
other ecosystems of the Lancang River Basin. Before 2000, all ecosystems in the lower
Yangtze River Basin and the Pearl River Basin exhibited opposite trends in GIMMS and
GIMMS3g. The forest ecosystem in the Lancang River Basin faced the same situation, that
is, the GIMMS+MODIS is expressed as negative, while the GIMMS3g is greening. The
opposite was found in forest and grassland ecosystems of the southeast Rivers Basin. It is
recognized that the two datasets together indicated browning in the farmland, water and
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Table 3. The Z-value of the ecosystems in 17 basins in mainland China.

Basin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
G

IM
M

S+
M

O
D

IS
 

19
82

-2
01

5 
FL 1.48  3.56 4.31  3.71  4.15 3.05 1.74 3.96 1.89 1.93 3.43  3.83  2.62  2.13 2.71 
FR 1.48  2.42 4.50  1.44  3.75 3.07 2.51 3.99 2.38 0.70 1.59 2.90  3.00  2.12  1.89 1.88 
GL 1.57  2.96 4.36  1.48  3.60 3.19 2.54 3.80 1.22 2.31 1.60 1.80 3.84  3.05  2.46  1.36 1.71 
WW 1.17  3.52 3.26  1.53  3.87 2.66 0.79 3.26 1.02 1.51 1.74 1.37 2.55  3.09  1.34  1.51 1.83 
DS 1.75  3.07 3.52  3.65 0.27 3.62 0.46 2.87  2.07  1.54  
SM 3.28  3.24 0.57  4.14 2.55 1.10 1.09 2.45 0.38 
OE 0.53  1.99 2.99 1.36 1.49 2.06 1.81 0.11 

G
IM

M
S3

g 
19

82
-2

01
5 

FL -0.88 1.28 3.03  3.26  3.46 2.94 2.27 3.57 1.96 1.39 3.57  3.14  3.29  1.97 1.60 
FR -0.33 1.10 3.27  1.04  3.24 1.52 2.80 3.11 2.33 -0.21 0.99 3.39  2.20  2.80  1.49 0.86 
GL 0.19  0.92 3.20  0.87  3.50 1.72 2.59 3.13 1.02 2.84 0.75 0.70 3.98  1.90  2.68  0.52 0.76 
WW -0.59 1.33 2.03  0.58  3.06 1.35 1.33 2.76 0.51 1.85 0.37 1.35 2.42  2.39  2.64  0.32 1.02 
DS -0.58 0.92 2.55  2.42 1.01 3.23 1.11 2.83  1.44  1.93  
SM 1.48  1.63 -0.26 3.76 1.65 0.60 0.34 1.73 0.92 
OE -0.22 2.84 1.75 1.02 0.52 1.04 -0.02 0.88 

G
IM

M
S 

19
82

-2
00

0 

FL 0.64  1.49 1.58  2.03  0.79 1.04 -0.02 1.11 -0.33 0.38 0.48  0.33  -0.28 0.35 1.59 
FR 0.37  1.10 1.45  1.24  0.38 1.10 -0.43 0.76 -0.40 0.01 0.40 0.05  0.06  -0.51 0.34 0.66 
GL 0.77  1.30 1.45  1.09  0.73 1.13 -0.34 1.03 0.70 -0.48 1.30 0.41 0.24  0.18  -0.26 0.58 1.01 
WW 0.72  1.44 1.07  1.23  1.09 0.99 0.00 0.93 0.70 -0.10 1.15 0.32 0.37  0.43  -0.70 0.53 1.05 
DS 0.84  1.23 1.22  1.01 -0.25 0.97 -0.32 0.48  -0.10 -0.66 
SM 1.10  1.20 0.39  1.49 0.80 0.39 0.41 0.79 0.37 
OE 0.45  0.76 0.88 0.47 0.87 0.55 0.95 0.15 

G
IM

M
S3

g 
19

82
-2

00
0 

FL 0.61  1.87 2.15  2.79  1.39 1.51 1.20 2.31 -0.04 1.25 1.79  1.14  1.14  1.51 1.97 
FR 1.19  1.73 2.03  1.81  1.03 1.47 1.04 1.45 0.24 1.02 1.58 1.61  0.91  0.74  1.63 1.04 
GL 0.75  1.47 1.81  1.39  1.17 1.39 1.09 1.51 1.16 0.44 1.68 1.06 1.73  1.05  0.57  1.28 0.86 
WW 0.69  1.52 1.36  1.07  1.76 1.39 0.75 1.52 0.69 -0.22 1.02 0.91 1.08  0.83  0.83  1.08 1.01 
DS 0.75  1.61 1.77  1.52 0.28 2.18 -0.60 1.43  0.21  0.13  
SM 0.81  1.22 0.31  1.81 1.10 0.45 0.89 1.25 0.41 
OE 0.48  0.89 0.81 0.65 1.14 1.18 1.13 0.31 

G
IM

M
S3

g 
20

00
-2

01
5 

FL 0.35  1.07 1.58  1.82  2.31 2.25 1.03 1.59 -0.04 -0.00 1.37  2.17  2.17  0.42 0.57 
FR 0.15  0.92 2.40  -0.37 2.37 0.55 1.84 1.91 2.22 -0.77 -0.43 1.42  1.40  1.89  -0.00 0.57 
GL 1.08  1.28 2.29  -0.04 2.57 0.71 1.73 1.87 0.01 2.52 -0.32 -0.19 1.91  1.04  1.80  -0.68 0.53 
WW 0.26  1.47 1.33  -0.02 1.80 0.38 0.49 1.41 0.02 2.05 -0.21 0.43 0.79  1.68  2.06  -0.44 0.83 
DS 0.40  0.75 1.25  1.31 0.41 1.27 1.21 0.83  1.29  1.84  
SM 2.06  1.84 -0.24 2.52 0.66 0.36 0.09 0.49 0.56 
OE -0.21 2.07 1.16 0.59 -0.24 -0.13 -1.00 0.57 

M
O

D
IS

 
20

00
-2

01
5 

FL 1.53  2.34 2.39  2.24  3.16 2.50 2.07 2.45 2.36 1.53 2.88  3.25  2.72  2.06 1.23 
FR 1.52  2.00 3.23  0.37  3.49 1.95 3.24 3.03 3.08 1.06 1.21 3.13  2.88  2.61  1.61 1.43 
GL 1.50  2.07 2.99  0.63  3.14 1.64 3.17 2.51 0.77 2.95 0.28 1.21 3.69  2.72  2.71  0.67 1.12 
WW 1.03  2.28 2.12  0.51  2.83 1.22 1.29 2.04 0.54 1.75 0.60 1.45 2.10  2.57  2.21  0.98 1.44 
DS 1.62  2.06 1.89  2.36 0.92 2.18 1.02 2.31  2.05  2.19  
SM 2.56  2.35 0.31  3.12 1.63 0.74 0.39 1.67 0.91 
OE 0.50  2.04 1.66 1.09 0.76 1.41 0.48 0.78 

M
O

D
IS

 
20

00
-2

01
7 

FL 1.87  2.76 2.87  2.78  3.51 2.89 2.39 2.63 2.90 2.10 3.21  3.71  3.33  2.72 1.62 
FR 2.13  2.50 3.74  0.76  3.94 2.29 3.82 3.58 3.65 1.51 1.57 3.69  3.39  3.27  2.20 1.89 
GL 1.48  2.49 3.48  1.12  3.50 1.73 3.67 3.08 1.24 3.51 0.76 1.39 4.11  3.15  3.36  1.13 1.04 
WW 1.28  2.69 2.52  0.83  3.29 1.25 1.50 2.14 0.81 2.29 0.90 1.61 2.28  3.05  2.79  1.36 1.52 
DS 1.93  2.41 2.39  2.80 1.32 2.29 1.51 2.60  2.45  2.74  
SM 2.69  2.79 0.52  3.62 1.62 0.85 0.56 1.72 1.04 
OE 0.78  2.43 1.60 1.26 1.15 1.47 0.82 0.94 

Z≤0 0<Z<1.96 1.96≤Z

A blank indicates that the proportion of the ecosystem in this area is so tiny that it can be ignored. The names of the
basins correspond to the number codes referred to in Table 1. Green represents Z≥ 1.96, yellow represents Z> 0 and Z<
1.96, and light blue represents Z≤ 0. FL: the farmland ecosystem; FR: the forest ecosystem; GL: the grassland ecosystem;
WW: the water and wetland ecosystem; SM: the settlement ecosystem; DE: the desert ecosystem; OE: the other
ecosystems.
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wetland, and desert ecosystems of Southeastern River Basin, illustrating the negative
trend of vegetation in Southeastern River Basin before 2000 and also revealing the major
ecosystems that lead to the NDVI decline. The gap between MODIS data and GIMMS3g
data in Xinjiang after 2000 is mainly due to the negative trend of GIMMS3g in all
ecosystems except farmland. The basins of the inland rivers in northern Tibet, however,
mainly comprise grassland and water and wetland ecosystems. Farmland ecosystems
show differences with those of Southeastern Rivers Basin. The Lancang River Basin, the
Brahmaputra River Basin, and the Upper Yangtze River Basin have the same vegetation
development in the settlement ecosystem, and the rest of the ecosystems have minor
differences. Comparing the 2000–2015 and 2000–2017 changes of MODIS NDVI data, it is
found that the greening is significant and that the farmland and forest ecosystems are
generally outstanding.

The main reasons for the different NDVI trends in different basins and ecosystems are
that the driving impact factors of the vegetation in different regions and different
vegetation types are different. For instance, the main driving force for vegetation change
in North China is the precipitation while for South China, temperature plays the main role
(Piao et al. 2015; Tian et al. 2015b; Bin et al. 2015). In densely populated areas, the impact
of climate change is less evident. The impact of human activities on vegetation variation
cannot be ignored in fast urbanized areas (Gong et al. 2010). The implementation of
ecological engineering in recent decades should be an important driving force for
vegetation restoration in some areas (Liu et al. 2015; Chen et al. 2019).

5. Discussion

The worldwide NDVI datasets currently available are mainly AVHRR NDVI, MODIS NDVI,
and SPOT-VGT NDVI, as well as NDVI data extracted from Landsat data. They have their
own characteristics because of different sensors and different resolutions. In this paper,
we chose the more popular NDVI sets, including the integration of GIMMS and MODIS
data and the research period was established from 1982 to 2015/2017. Adding more NDVI
datasets may better reflect the uncertainty of vegetation change analysis brought about
by the data. The change of vegetation is different between months and seasons. The
sensitivity of different NDVI data sets in different seasons is also different, which is a part
of the research remained to be done. In addition, different NDVI datasets have different
responses to climate change. In this study, different NDVI datasets were used to describe
the spatial distribution of vegetation activities and the different trends of vegetation
change, but their correlation with climate change was not explored.

Different vegetation types respond differently to climate change and human activities
so that the NDVI trends of different ecosystems are different. The same ecosystem’s NDVI
trends also have significant differences in different regions. For instance, according to
1982–2015 GIMMS3g NDVI, forest ecosystems showed a downward trend in Songhua
River and Brahmaputra, but it showed a significant upward trend in Lower Yellow River
and Pearl River. Different NDVI datasets have different performances in the same period
and ecosystem. For example, for the farmland ecosystem in Lower Yellow River from 2000
to 2015, GIMMS3g showed a slight degradation trend, while MODIS NDVI showed
a significant increase.
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With the large-scale urbanization process in the late 1990s in China, cities and buildings
increased, and the cultivated land decreased (Tian, Zhuang, and Liu 2003; Deng et al.
2015; Jiyuan et al., 2012). NDVI shows that the sudden change in vegetation decreased in
the cities of China (Sun 2012). In addition, since the implementation of the project of
returning farmland to forests and grasslands in 1999, the afforestation area in China has
continued to rise, which has greatly promoted the increase of vegetation cover in China
(Liu et al. 2015; Xin, Xu, and Zheng 2008). Studies have shown that China’s afforestation
policy and intensive agriculture have made tremendous contributions to greening in the
world (Chen et al. 2019).

Figure 13(a) shows the increase of NDVI over the past three decades and the tempera-
ture of mainland China has been rising which is the same as NDVI (Figure 13(b)).
Vegetation cover increased as the temperature gradually increased (Kawabata, Ichii, and
Yamaguchi 2001; Eastman et al. 2013) while there is no obvious change trend in annual
precipitation (Figure 13(c)). The proportion of rural population in China shows a sustained
downward trend from 1982 to 2015. In 2011, the proportion of rural population in China
was less than 50% for the first time, reaching 48.7%, which was the first time in history that
urban population exceeded rural population (Figure 13(d)). As the proportion of rural
population decreases, the social and economic pressure on the growth of local vegetation

Figure 13. The 1982–2015 inter-annual variation of (a) NDVI; (b) Annual precipitation; (c) Annual
temperature; (d) The proportion of rural population; (e) Cumulative afforestation area.
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has been alleviated to a certain extent, which can improve the local vegetation coverage.
The increase of NDVI in China is also closely related to China’s afforestation projects
(Wenhua 2004; Gao et al. 2014). In recent years, China’s cumulative afforestation area has
shown a significant upward trend (Figure 13(e)), which is also one of the main reasons for
the increase in vegetation.

Human activities gradually intensify, which has an impact on natural resources and
ecological environment. Greenhouse gases in the atmosphere have increased signifi-
cantly, leading to global warming. Vegetation growth is mainly affected by water and
heat (Richardson et al. 2013). In recent years, the increase of extreme weather in China will
also have a response effect on vegetation in China. Human activities were frequent in
China around 2000. There are great regional differences in vegetation change in China,
and the time of human activities in different regions is also different (Piao et al. 2015). We
selected one segmentation point in 2000 nationwide and may have overlooked regional
differences. The method of mutation point test can be further used. The mutation points
of vegetation change in different areas were detected to better analyse the trend change
of NDVI. This paper only analyses the change of vegetation coverage in China and does
not study the correlation between other meteorological factors or human activities. In the
future, with the increasing impact of climate change and human beings on the Earth, how
vegetation will respond to these related factors remains to be studied.

6. Conclusions

In this study, MODIS NDVI and GIMMS NDVI are fused using linear regression equations to
form 1982–2015 composite NDVI data that are treated as a group with GIMMS3g NDVI,
which is also the case for 1982–2000 GIMMS NDVI and GIMMS3g NDVI, 2000–2015
GIMMS3g NDVI and MODIS NDVI, to which are attached 2000–2017 MODIS NDVI data.
Linear least squares regression trend analysis andM-K trend analysis of annual average NDVI
were used in these groups. To test the performance of the long-term dataset from 1982 to
the present inmainland China, it is assumed that the quality of the updatedMODIS products
is higher. The results show that the trend patterns of the three datasets are different,
reflecting the performances of individual regions.

With 2000 as the dividing point, the trend of vegetation in mainland China has staged
characteristics. GIMMS and GIMMS3g show a more consistent range of regression slopes
before 2000; GIMMS3g and MODIS have generally inconsistent slope values after 2000,
while the greening trend exhibited by MODIS is higher than the positive slope of GIMMS3g.
In the humid and sub-humid areas, which are high-density vegetation areas in mainland
China, the trend of significant differences in regression slope values is more obvious. In the
region of the northeast and southwest basins with high NDVI values, differences are
observed. The low-vegetation coverage of the inner river regions in the northwest also
shows differences, although it is not as obvious as the high-value area. This indicates that
NDVI datasets show greater uncertainty in regions with high- or low-vegetation coverage.
We believe that the combination of GIMMS NDVI and MODIS NDVI has certain advantages.

In general, vegetation activities on the mainland of China have been active and
positive for nearly 40-recent years, only differing in the increasing rates in various basins
and ecosystems and in individual areas in decline. The most obvious greening area is
Yellow River and the middle reaches of Yangtze River, while the areas experiencing
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significant declines are in the Yangtze River Delta and the Pearl River Delta. In terms of
ecosystems, the areas where vegetation activities are significantly enhanced are farmland
and forest ecosystems that are mainly distributed in the eastern monsoon basin. The areas
experiencing declines are the desert and grassland ecosystems of the northwest region,
besides the northeast and southeast forest ecosystems. We can hardly find a tendency to
decline at low resolutions or for averages over larger regions. Therefore, research with
different resolutions and at different scales is necessary.
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