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Abstract: Dual factors of climate and human on the hydrological process are reflected not 
only in changes in the spatiotemporal distribution of water resource amounts but also in the 
various characteristics of river flow regimes. Isolating and quantifying their contributions to 
these hydrological alterations helps us to comprehensively understand the response mecha-
nism and patterns of hydrological process to the two kinds of factors. Here we develop a 
general framework using hydrological model and 33 indicators to describe hydrological pro-
cess and quantify the impact from climate and human. And we select the Upper Minjiang 
River (UMR) as a case to explore its feasibility. The results indicate that our approach suc-
cessfully recognizes the characteristics of river flow regimes in different scenarios and quan-
titatively separates the climate and human contributions to multi-dimensional hydrological 
alterations. Among these indicators, 26 of 33 indicators decrease over the past half-century 
(1961–2012) in the UMR, with change rates ranging from 1.3% to 33.2%, and the human 
impacts are the dominant factor affecting hydrological processes, with an average relative 
contribution rate of 58.6%. Climate change causes an increase in most indicators, with an 
average relative contribution rate of 41.4%. Specifically, changes in precipitation and reservoir 
operation may play a considerable role in inducing these alterations. The findings in this study 
help us better understand the response mechanism of hydrological process under changing 
environment and is conducive to climate change adaptation, water resource planning and 
ecological construction. 
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1  Introduction 

In recent years, with the increase in carbon emissions, climate warming has been observed, 
and even a more extreme warming condition is projected for the future by climate models at 
both global and regional scales (Zhou et al., 2014; Sun et al., 2015; Donat et al., 2016; Wu 
et al., 2016). On the other hand, with increasing water demands, human activities have sig-
nificantly altered the natural river flow condition in various ways, such as dam and reservoir 
construction (Li et al., 2010; Yang et al., 2011), water withdrawal (Liu et al., 2014), 
land-use change (Shrestha and Htut, 2016) and groundwater pumping. As a key link among 
the atmosphere, hydrosphere and biosphere, there is ample evidence that the hydrological 
process is being affected by dual factors from climate and human. For example, more ex-
treme rainfall events can cause more extreme floods (De Luca et al., 2019). The spatiotem-
poral patterns of river discharge may be affected by dam construction and reservoir opera-
tion (Talukdar and Pal, 2019). All these changes are reflected not only in changes in total 
water storage (Liu et al., 2012) but also in multiple dimensions of river flow regimes (Mittal 
et al., 2016). Moreover, these changes may cause huge effects on river ecosystems (Kun-
dzewicz, 2008). Therefore, systematic assessment of hydrological alterations must adopt 
multiple indicators instead of one single indicator at the watershed scale. So as to better 
serve decision-makers to develop better strategies and policies for climate change adaptation, 
ecosystem protection and integrated watershed management. 

In general, there are two factors (climate and human) that cause the change of land sur-
face hydrological process. Many case studies and methodological discussions have been 
carried out by researchers at various watersheds and time scales (Ma et al., 2010; Ma et al., 
2014; Xin et al., 2019). Three kinds of methods are widely used, namely, empirical models, 
climate elastic models, and hydrological modelling-based approaches. The empirical method 
is used to establish the statistical relationship between climate variables and runoff, and to 
quantify the natural and human contributions by comparing the differences of this relation-
ship in different periods, and analyses of these models include linear regression model, 
time-variant analyses, and the double cumulative curve. For example, Zhao et al. (2014) 
attributed the annual streamflow changes using the linear regression model, and the results 
indicated that climate change, especially the decrease in rainfall, caused a decrease in runoff. 
Climate elastic models are mainly based on the various solutions of the Budyko hypothesis 
(Wu et al., 2016). The hydrological modelling-based approaches abstract complicated phys-
ical mechanisms into mathematical equations to simulate the land surface hydrological pro-
cess. By simulating the runoff process under different meteorological or underlying surface 
conditions, the relative contribution of climate change and human impacts can be estimated. 
For example, a geomorphology-based hydrological model (GBHM) was used in the Miyun 
Reservoir, and the results revealed that the factor of climate and human accounted for 55% 
and 18% for the decrease in reservoir discharge, respectively (Ma et al., 2010). Some re-
searchers also compared these different methods. Theoretical analysis including methodolo-
gies, assumptions and preconditions, and a series of calculations and applications by using 
different methods were discussed and conducted (Wang, 2014; Dey and Mishra, 2017; Wu et 
al., 2017). The common conclusion from all these studies is that although the hydrological 
model has some structural errors and needs to be further improved, the method by using the 
hydrological model has more advantages than other methods because of its physical mecha-

 



1104  Journal of Geographical Sciences 

 

nism. What’s more, it can also be used in the context of a changing environment. And the 
hydrological modelling-based approach is required as such an approach can generate 
time-series data for multiple hydrological variables. Therefore, it is considered to be the 
most promising approach among the various methods. In this study, the hydrological model 
is used to simulate the natural river flow condition during the altered period at the daily 
scale and can therefore satisfy our demand to assess the hydrological alterations at multiple 
dimensions. However, most previous studies mainly focused on total water storage or dis-
charge at annual or seasonal scales (Jiang et al., 2017). Changes in natural flow regime 
characteristics have not been fully investigated. 

Among the metrics for describing the various characteristics of flow regimes, the indica-
tors of hydrological alterations (IHA) method has been commonly used and further devel-
oped to assess hydrological alterations in the context of watersheds that are disrupted by 
different anthropogenic influences and climate change scenarios (Yang et al., 2017). Wang 
et al. (2017) took four different watersheds as a case study and addressed the IHA method to 
comprehensively analyze hydrological alterations using Coupled Model Intercomparison 
Project Phase 5 (CMIP5) climate scenarios. On the other hand, the hydrological impacts 
caused by large dam construction were also studied and quantified by the IHA method 
(Yang et al., 2008; Zhao et al., 2012). In addition, the small hydropower-developed region 
such as Jiulong River basin was examined, and cumulative effects of intense small dam con-
struction were quantified by the IHA method (Lu et al., 2018). However, these studies only 
concentrated on quantitatively assessing changes in the river flow regimes under one single 
factor of climate or human. There are relatively few studies on the simultaneous quantifica-
tion of the dual impacts and their contributions. 

To solve the issues mentioned above, here we propose a framework using hydrological 
model and 33 indicators to describe hydrological alterations and quantify the impact from 
climate and human. As an important tributary of the Yangtze River, Minjiang River also ex-
perienced dual impacts from climate and human. In particular, the obvious stage of human 
activities development occurred in the Upper Minjiang River (UMR) (Hou et al., 2018), 
which meets our research needs. Therefore, we take the UMR as an example and use a dis-
tributed time-variant gain (DTVGM) hydrological model to explain the feasibility of our 
proposed framework and explore the ongoing hydrological alterations at the watershed scale. 
The information of the UMR and data are introduced in section 2. The proposed research 
framework, quantitative method, DTVGM hydrological model, and IHA parameters are pro-
vided in section 3. The results regarding the dual effects and the changes of IHA parameters 
are presented in section 4. An attribution analysis and possible ecological impacts of hydro-
logical alteration are discussed in section 5. The conclusions follow at the end of this article. 

2  Study area and data 

2.1  Study area 

As a part of the Chengdu Plain, the Minjiang River is located between the Sichuan Basin 
and the Qinghai-Tibet Plateau, China. And it is one of the primary tributaries of the Yangtze 
River. Here we select the Upper Minjiang River as a study area (Figure 1). The Upper Min-
jiang River (UMR) refers to the area between the headwaters of the Minjiang River and 
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Dujiangyan Irrigation System and stretches from 102°45′E–103°96′E to 30°80′N–33°20′N. 
The UMR spans 341 km, with a total area of approximately 22,722 km2 and significant vari-
ation in elevation from north to south (from 5578 m to 726 m).  

The UMR, the major water supply source, is an important ecological barrier in the 
Chengdu Plain. Affected by the subtropical monsoon, the mean annual precipitation (MAP) 
in the UMR is 987 mm with significant seasonality. The average, maximum, and minimum 
daily temperature are 11.3℃, 40℃, and 0℃, respectively. And the mean annual evaporation 
is 300 mm. As the control station of the UMR, the Zipingpu (ZPP) hydrological station has 
an annual average streamflow of 457 m3/s. Water for human activities includes agricultural 
irrigation and domestic and industrial production in the Chengdu Plain. The construction of 
hydroelectric power plants has altered the streamflow significantly (Zhang et al., 2012; Hou 
et al., 2018).  

 

 
 

Figure 1  Location and attributes of the Upper Minjiang River 
 

2.2  Data 

The data mainly includes the following three categories for this research. The data sources 
and acquisition are summarized in the section of Data availability after the main text. 

1) Meteorological forcing. A gridded daily precipitation data (spatial resolution: 0.5°×0.5°) 
generated from 2472 rain gauges, which has been commonly applied for various studies in 
recent years (Wu et al., 2016; Lu et al., 2017). Wind speed, maximum and minimum tem-
perature were collected from six national weather stations in the UMR or nearby areas (Fig-
ure 1). The time period of these data is from 1961 to 2012. For hydrological modelling, the 
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precipitation and temperature data were further interpolated into each sub-basin by using the 
inverse distance weighting (IDW) method (Xu et al., 2018). The wind speed data was also 
interpolated into each sub-basin using the synergistic mapping (SYMAP) algorithm (Shep-
ard, 1984). 

2) Streamflow data. Daily (1961–2012) and monthly (1938–2012) streamflow records for 
the ZPP hydrological station were collected and used for long-term mutation diagnosis and 
model verification.  

3) Watershed attribute information. Digital elevation model (DEM) data (~90 m), land use 
(~1 km) and soil type (~1 km) were collected and used to describe the spatial variability of 
the underlying surface of the watershed.  

3  Methodologies 

Our framework is briefly illustrated in Figure 2. First, observed streamflow data were col-
lected and mutation diagnosis was carried out to segregate the study period into two periods 
(baseline and altered). Second, the DTVGM was set up, calibrated and verified in the first 
period, and natural streamflow during the altered period was reconstructed. Then, the change 
rate of IHA parameters and the climate and human contributions were calculated by com-
paring the observation and simulation during the baseline and altered periods. Finally, at-
tribution analysis and the possible ecological impacts of hydrological alterations were dis-
cussed.  
 

 
 

Figure 2  Framework of this study 
 

3.1  Mutation diagnosis and study period division 

To conduct our study, the first task is to detect the “change point” and define a “reference” 
period and a “change” period. Because the changes caused by human relatively larger than 
climate, the “change point” is often attributed to intense human activities, such as dam con-
struction. During the baseline period, we assume that the hydrological alterations are mainly 
aroused by climate change while neglecting the human impacts. During the altered period, 
the hydrological alterations can be attributed to the dual effects of human and climate. There 
are two widely used methods to identify a “change point”. The first one is “human-     
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designed”, in which the “change point” is identified artificially by data investigation and 
field investigation. The second one is to use a statistical test to distinguish hydrological var-
iation, including the Mann–Kendall test (M-K test), the Pettitt test, and the double-mass 
curve test.  

The M-K test (Mann, 1945; Kendall, 1948) is a nonparametric test method, which is easy 
to operate and widely used. Therefore we use this approach to catch the “change point” and 
verify its rationality through data investigation. 

Given a hydrological streamflow record X with n samples, we are going to denote the X = 
x1, x2, …, xn; And then, the rank statistic S of the M-K test can be conducted by Equations 
(1)-(3). And the expectation and variance of S can be calculated by Equations (4) and (5). 
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Assuming that the time series is random and independent, we further define the statistics 
UFj by Equations (6) and (7). 
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At a specified significance level α, if |UFj| is greater than Ua, the original hypothesis is 
accepted, and when UFj is greater (or smaller) than 0, there exists an increasing (or decreas-
ing) trend. On the contrary, if |UFj| is less than Ua, the original hypothesis is rejected, that is 
no trend existing in sequences. 

Similarly, we calculate the statistics UBj using the reversed X. We plot UF and UB curves 
in the same coordinate system. If there is an intersection between UF and UB, and the inter-
section falls in 95% confidence interval, the corresponding time of the intersection is the 
change time (Wan et al., 2020). 

3.2  Distributed hydrological model 

Combining hydrologic mechanisms with nonlinear system theory, Xia et al. (1991, 2003) 
proposed the time-variant gain hydrological nonlinear system model (TVGM). After more 
than 20 years of development, the TVGM has been further extended to the distributed 
time-variant gain hydrological model (DTVGM) (Wang et al., 2002; Xia et al., 2005), which 
can be forced by remote-sensed and digital geographic information (Ye et al., 2010) and has 
been verified in various watersheds (Wang et al., 2009; Ye et al., 2014, 2015). 
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Given a threshold, we use the drainage network extraction method introduced by Du et al. 
(2017) to spit the whole basin into several sub-basins. In each sub-basin, the runoff process 
is operated with the water balance equation (Equation (8)).  
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where t is the current time step; Pt is the precipitation (mm); Ep,t is the potential evapotran-
spiration (mm); AWt and AWt+1 represent the soil moisture (mm) at current and next time 
step, respectively; WM is the field soil moisture (mm); subscript u and g represent the upper 
and lower values of the variable; Ke, Kr, and Kg are the coefficients of evapotranspiration, 
interflow runoff and groundwater runoff, respectively; g1 and g2 are factors describing the 
nonlinear process of runoff; and C is the land cover parameter. For routing calculation, the 
kinematic wave equation is used. Detailed model structure and description can be found in 
Ye et al. (2006, 2013). In this study, we used the DTVGM to simulate hydrological process-
es at a daily scale. 

Table 1 lists the evaluation criteria and their formulas for model performance, including 
the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970); Pearson correlation coef-
ficient (PCC); Percent Bias (PBIAS) (Gupta et al., 1999); and root mean square error 
(RMSE). 

To improve simulation accuracy, we manually calibrated the model parameters during the 
calibration period (1961–1965). NSE and PBIAS were selected as main objective functions, 
with constraining the NSE>0.7 and PBIAS between ±10%. Firstly, we adjusted Ke (0<Ke<1) 
to reduce the overall PBIAS of simulation, then turned Kr (0<Kr<1), Kg (0<Kg<1), g1 
(0<g1<1) and g2 (g2>0) to increase NSE, and finally fitted the flood peak time by changing 
different n (0.001<n<0.15). 

 

Table 1  Formulas and description of the selected assessment criteria 
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3.3  Multi-dimensional hydrological alteration parameters 

Richter et al. (1996) proposed the indicators of hydrological alteration (IHA) approach, 
which is a very popular method for quantifying hydrological regime changes from various 
aspects, including the magnitude, timing, frequency, duration and rate of change. Many pre-
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vious studies have used IHA parameters to examine the impacts from climate and human on 
hydrological alterations and relevant ecological impacts (Akbari and Reddy, 2019). Thir-
ty-three parameters are typically used in the IHA approach to describe the hydrological time 
series. Among them, zero-flow days were not considered here because no such situation oc-
curred. Instead, we added the parameter of annual mean flow into group 1 to investigate the 
annual flow changes. The definition of the IHA parameters and abbreviations used in the 
text can be found in Table 2. 
 
Table 2  Definition of IHA parameters and abbreviations used in the text (modified from Richter et al., 1996) 

Groups and ID IHA parameters Abbreviations 

G11 Mean value of annual flow Annual 

G12-G113 Mean value of 12 months Jan-Dec 

G21 Annual 1-day minima QN1D 

G22 Annual 3-day minima QN3D 

G23 Annual 7-day minima QN7D 

G24 Annual 30-day minima QN30D 

G25 Annual 90-day minima QN90D 

G26 Annual 1-day maxima QM1D 

G27 Annual 3-day maxima QM3D 

G28 Annual 7-day maxima QM7D 

G29 Annual 30-day maxima QM30D 

G210 Annual 90-day maxima QM90D 

G211 Base flow index Base flow 

G31 Julian date of each annual 1-day maxima Date max 

G32 Julian date of each annual 1-day minima Date min 

G41 Number of low pulse Lo pulse # 

G42 Number of high pulse Hi pulse # 

G43 Mean duration of low pulse Lo pulse L 

G44 Mean duration of high pulse Hi pulse L 

G51 Rising rate Rise rate 

G52 Falling rate Fall rate 

G53 Number of hydrological reversals Reversals 
 

3.4  Quantitative analysis of change rate and relative contributions  

Based on the hydrological simulations of the baseline (bp) and altered period (ap), we can 
calculate the relative contributions from climate and human on hydrological alterations. 

To better compare the changes of different indicators, we normalized all indicators in the 
same way. For example, for a certain parameter I of IHA, the normalization can be imple-
mented by Equation (9). Further, we calculated the mean value to represent the average flow 
condition in each period, and the total change rate can be calculated by Equation (10). 

 min
norm

max min

I II
I I

−
=

−
 (9) 
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 , ,( ) 100%norm ap norm bp c hI I I I I∆ = − × = ∆ + ∆                 (10) 

where Inorm is the normalized value of parameter I, Imax is the maximum of parameter I, and 
Imin is the minimum of parameter I, I∆ is the total change rate of parameter I, cI∆ is the 

change rate resulted from climate change, hI∆ is the change rate resulted from human activ-

ities, and , norm apI and ,norm bpI are the average of the observed parameter during the altered 

period and baseline period, respectively. 
Then we used Equation (11) to calculate the relative change of climate by comparing the 

difference between observation and simulation during the altered period. 

 
, ,( ) 100%c

c norm ap norm bpI I I−∆ = ×  (11) 

where ,
c
norm apI is the mean value of normalized parameter I using the simulated hydrological 

time series. 
Here, we neglected the interaction effects between climate and human. Once I∆ and 

cI∆ were estimated, then we used h cI I I∆ = ∆ − ∆ to obtain the change resulted from human 

impacts. The climate ( cη ) and human ( hh ) contributions can be estimated by Equations (12) 
and (13). 
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4  Results 

4.1  Identification of change year 

The long-term annual streamflow data were calculated from the monthly data for 1938–2012 
at the ZPP hydrological station (Figure 3a). We used the nonparametric M-K test to analyze 
the abrupt change point, and the results are displayed in Figure 3b. The light red shadow 
represents the 95% confidence interval. The intersection of the red (UB) and blue (UF) lines 
between the confidence interval reflected a change point in 1969 for the ZPP station, which 
is consistent with an earlier study (Zhang et al., 2012). Actually, Yingxiuwan, located at the 
upstream of ZPP station, was the first hydropower station with a large installed capacity and 
a control area of 19,020 km2. It was started in September 1965 and completed in May 1972. 
And the year of 1969 was the peak period of the increase in the number and installed capac-
ity of hydropower stations in the UMR. In addition, intensive forest harvesting also occurred 
during the period of 1955–1962, after which there may exit a delayed hydrological response 
(Zhang et al., 2012). Therefore, for the ZPP station, the entire study period (1961–2012) was 
divided into a baseline period (1961–1969) and an altered period (1970–2012). 
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Figure 3  Annual streamflow (a) and Mann-Kendall mutation diagnosis (b) at the ZPP station during 1938–2012. 
UF and UB in (b) are statistics calculated by sequential and inverse streamflow records, respectively 

 

4.2  Hydrological modelling and performance assessment 

The datasets for the model setup, calibration, and verification procedures include meteoro-
logical forcing data, DEM data, land-use and soil data, and streamflow data. Firstly, by using 
the 90-m DEM data and a threshold of 100 km2, the UMR was split into 85 sub-basins, and 
geographic information for each sub-basin was extracted (Du et al., 2017). Then, the mete-
orological data were interpolated and corrected into each sub-basin using the IDW and their 
elevation information. The parameters related to soil types and land use for each sub-basin 
were calculated by area percentage. The observed and simulated daily streamflow processes 
are demonstrated as Figure 4. The NSE, PCC, PBIAS and RMSE are 0.73, 0.86, 1.51%, 
177.35 and 0.72, 0.85, 5.94%, 183.46 during the calibration and verification period (Table 3). 
In general, the model showed satisfactory performance. Therefore, the calibrated parameters 
were considered to be suitable for simulating natural streamflow during the altered period.  

4.3  Quantification of human and natural contributions to multi-dimensional hydro-
logical alteration 

Based on the observation and simulation of daily streamflow and Equations (9)-(11), we can 
 
Table 3  Model performance for daily discharge simulations at the ZPP station. Detailed description of these 
criteria can be found in Table 1 

  NSE PCC PBIAS RMSE 

Calibration (1961‒1965) 0.73 0.86 ‒1.51% 177.35 

Verification (1966‒1969) 0.72 0.85 5.94% 183.46 
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Figure 4  Observation and simulation of streamflow at the ZPP station during the calibration period (1961–1965) 
and verification period (1966–1969). (NSE: Nash-Sutcliffe efficiency; PCC: Pearson correlation coefficient) 
 
obtain the total change rate of each IHA parameter in the altered period relative to that in the 
baseline period as well as the impacts from climate and human on the hydrological altera-
tions, as shown in Figure 5a. For the total change in annual streamflow, which is similar to 
an earlier study (Hou et al., 2018). The water resource amount in the UMR decreased over 
the past half-century (1961–2012). In addition, for the multi-dimensional IHA parameters 
introduced in our study, 26 out of the 33 indicators also present a decreasing trend, and the 
change rates of all indicators are within the 40% range. From the perspective of climate 
change, 19 out of the 33 indicators present an increasing trend, and the remaining 14 indica-
tors present a decreasing trend. On the basis of the impact of human activities, 22 of the 33 
indicators express a decreasing trend, and the remaining 11 indicators express an increasing 
trend. Moreover, 31 of the 33 indicators present opposite trends, and only 2 indicators have 
the same trend. 

Figure 6a displays the joint distribution of cI∆ and hI∆ for all groups of IHA parameters. In 
general, climate and human have opposite effects on the changes of IHA parameters, with 
scatter points falling in the second and fourth quadrants. Similarly, cI∆ and hI∆ in different 
groups of IHA parameters fall in different quadrants. Detailed results for each group of IHA 
parameters can be found in Figures 6b-6f, and the corresponding values are shown in Table 4. 

The IHA parameters in group 1 (Figure 6b) describe the annual and monthly discharge. 
With baseline as a reference, due to human contributions, the monthly and annual flows in 
all months show a decreasing trend (ranging from 1.7% to 27.4%), except in June and July, 
which indicates the increasing water demand during the dry season. However, the climate 
impact on the monthly average flow varies with seasons. The decreasing trend (ranging from 
2% to 16.1%) is mainly concentrated in June, July and September. In other months, climate 
change plays a role in increasing streamflow. To a certain extent, these patterns reflect the 
climate effects on the seasonality of river discharge. 

In group 2 (Figure 6c), there are 11 parameters that display the degree and extent of an-
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nual extreme flows. All these parameters for the altered period present a decreasing trend. 
Human activities contribute to the occurrence of extremely low flow (ranging from 13.8% to 
21%). Under the impact of climate change, QX1D, QX3D, QX7D, QX30D and QX90D show 
a decreasing trend (ranging from 5.5% to 16.3%), which may indicate the weakening trend 
of extremely heavy rainfall events in the UMR, and the corresponding extreme high dis-
charge also decreased. 

In group 3 (Figure 6d), there are two parameters to describe the time of occurrence of 
minimum discharge (Date min) and maximum discharge (Date max). From the perspective 
of human activities, Date min moved earlier by 4.8%, while Date max was postponed by 
11.9%. This indicated that reservoir regulation and flood control can change the time of oc-
currence of minimum and maximum discharge. However, climate change, especially the 
temporal distribution of extreme precipitation, also affected the time of occurrence of ex-
treme runoff. 

According to the change rate in IHA indicators for the remaining two groups (Figures 6e 
and 6f), the Lo pulse #, the Hi pulse #, the Fall rate and Reversals show an increasing trend 
(ranging from 4.2% to 17.5%), while the Lo pulse L, the Hi pulse L, the Rise rate present a 
decreasing trend (ranging from 9.6% to 33.2%). Considering the single impact of climate  

 

 
 

Figure 5  Relative changes (a) and relative contributions (b) for all IHA parameters induced by climate change 
versus those induced by human activities. The vertical dashed line indicates five groups. 
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change, the Hi pulse L and the Fall rate show an increasing trend, while other indicators 
show a decreasing trend. As for human activities, the Hi pulse L, the Rise and Fall rates 
show a downward trend, while other indicators show an upward trend. The construction and 
operation of hydropower stations changed the water level of the river, the high and low pulse 
and hydrological reversals change accordingly. 

Using the Mann-Whitney U test (M-W U test) (Nachar, 2008), we marked the significant 
change parameters in Table 4. Bold numbers show a significant difference in the altered pe-
riod compared to that in the baseline period. Furthermore, according to Equations (12) and 
(13), we calculated the cη  and hh  to the change in IHA parameters (Figure 5b). Among 
these parameters, 23 out of the 33 indicators are dominated by the human impacts, including 
the monthly flow during the dry season, extremely low flow, time of occurrence of extreme 
flow, counts of low and high pulses, high-pulse duration and number of hydrological rever-
sals. The other 10 indicators are dominated by the effects of climate change. Although a de-
creasing or increasing trend in a certain indicator may be dominated by the effects of a sin-
gle factor, the influence of another factor cannot be ignored. 
 

 
 

Figure 6  Joint distribution of the change rate for each group of IHA parameters induced by climate change 
( )cI∆ versus those induced by human activities ( ).hI∆  The horizontal axis in the figure represents the change rate 

of IHA parameters caused by climate, and the vertical axis represents the change rate of IHA parameters caused 
by human. 

5  Discussion 

5.1  The effects of climate change 

Climate change mainly refers to variations in precipitation (P), temperature (T) and evapo-
transpiration (ET) in this study. To better attribute the climate impacts on the hydrological 
alterations, we calculated the changes in climate variables and streamflow at a monthly  
scale during the altered period with respect to their values during the baseline  
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Table 4  IHA results, relative change and contributions calculated at the ZPP station. Bolded numbers indicate 
significant differences in the IHA indicators between two periods according to M-W U test at a significance level 
of 0.05. Mean (+) and mean (–) are the average values of increased and decreased parameters, respectively. 

Index obsbp obsap simap obsnorm,bp obsnorm,ap simnorm,ap I∆ (%) cI∆ (%) hI∆ (%) c∆η (%) h∆h (%) 

Annual 452.1 418.6 456.4 0.478 0.352 0.494 –12.6  1.6  –14.2  10.1  89.9  

Jan 163.0 159.1 182.9 0.213 0.198 0.292 –1.5  7.9  –9.4  45.7  54.3  

Feb 143.2 140.5 153.3 0.235 0.221 0.284 –1.4  4.9  –6.3  43.8  56.3  

Mar 164.2 154.6 189.8 0.306 0.266 0.413 –4.0  10.7  –14.7  42.1  57.9  

Apr 246.7 257.4 397.6 0.185 0.205 0.464 2.0  27.9  –25.9  51.9  48.1  

May 539.8 533.1 543.2 0.408 0.396 0.413 –1.2  0.5  –1.7  22.7  77.3  

Jun 684.4 774.5 613.6 0.393 0.517 0.295 12.4  –9.8  22.2  30.6  69.4  

Jul 914.2 755.7 735.9 0.506 0.363 0.345 –14.3  –16.1  1.8  89.9  10.1  

Aug 689.3 602.1 716.3 0.425 0.325 0.456 –10.0  3.1  –13.1  19.1  80.9  

Sep 754.1 640.6 738.9 0.568 0.417 0.548 –15.1  –2.0  –13.1  13.2  86.8  

Oct 592.6 524.5 603.1 0.461 0.350 0.478 –11.1  1.7  –12.8  11.7  88.3  

Nov 325.3 283.4 356.8 0.486 0.343 0.593 –14.3  10.7  –25.0  30.0  70.0  

Dec 209.2 197.6 245.7 0.410 0.344 0.618 –6.6  20.8  –27.4  43.2  56.8  

QN1D 136.9 112.6 138.7 0.596 0.400 0.610 –19.6  1.4  –21.0  6.3  93.8  

QN3D 137.7 115.1 140.0 0.584 0.404 0.602 –18.0  1.8  –19.8  8.3  91.7  

QN7D 138.9 118.6 142.5 0.566 0.409 0.593 –15.7  2.7  –18.4  12.8  87.2  

QN30D 142.2 132.2 150.8 0.375 0.302 0.439 –7.3  6.4  –13.7  31.8  68.2  

QN90D 158.3 152.2 180.2 0.346 0.312 0.470 –3.4  12.4  –15.8  44.0  56.0  

QX1D 2014.3 1868.7 1657.0 0.509 0.442 0.346 –6.7  –16.3  9.6  62.9  37.1  

QX3D 1711.8 1602.3 1538.0 0.450 0.393 0.359 –5.7  –9.1  3.4  72.8  27.2  

QX7D 1411.2 1338.8 1329.7 0.425 0.376 0.369 –4.9  –5.6  0.7  88.9  11.1  

QX30D 1091.5 1003.2 979.7 0.410 0.322 0.298 –8.8  –11.2  2.4  82.4  17.6  

QX90D 891.4 811.7 821.20 0.558 0.424 0.440 –13.4  –11.8  –1.6  88.1  11.9  

Base flow 0.29 0.27 0.3 0.531 0.460 0.570 –7.1  3.9  –11.0  26.2  73.8  

Date min 56.7 72.5 56.5 0.077 0.124 0.076 4.7  –0.1  4.8  2.0  98.0  

Date max 203.8 199.6 214.4 0.418 0.384 0.503 –3.4  8.5  –11.9  41.7  58.3  

Lo pulse # 2.1 2.6 1.9 0.302 0.369 0.276 6.7  –2.6  9.3  21.8  78.2  

Lo pulse L 57.9 34.3 30.8 0.423 0.250 0.225 –17.3  –19.8  2.5  88.8  11.2  

Hi pulse # 11.3 12.0 10.2 0.431 0.473 0.367 4.2  –6.4  10.6  37.6  62.4  

Hi pulse L 5.0 3.8 5.7 0.231 0.135 0.281 –9.6  5.0  –14.6  25.5  74.5  

Rising rate 36.6 23.3 26.9 0.714 0.381 0.472 –33.3  –24.2  –9.1  72.7  27.3  

Fall rate –18.1 –15.7 –13.2 0.415 0.545 0.676 13.0  26.1  –13.1  66.6  33.4  

Reversals 107.8 129.5 87.6 0.289 0.463 0.126 17.4  –16.3  33.7  32.6  67.4  

Mean (+) – – – – – – 8.6  8.3  9.2  
41.4 58.6 

Mean (–) – – – – – – –10.2  –10.8  –14.3  
 

period to explore whether the changes in these variables are consistent. From this, we can 
obtain the climatic factors that dominate the changes of monthly runoff. 

The comparison between precipitation and streamflow (Figure 7a) illustrates a result sim-
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ilar to the patterns described above. The changes in IHA parameters are more closely related 
to climate change in the wet season (especially June to September). The increase or decrease 
in discharge is consistent with the changes in precipitation, but such consistency is declining 
in the dry season. The changes in temperature and the variation in discharge are almost ir-
relevant. Meanwhile, evapotranspiration is mainly controlled by precipitation, which shows 
good consistency. Therefore, the annual and monthly streamflows in the wet season are 
mainly affected by changes in precipitation. 

For other IHA parameters, we try to cluster the types of IHA parameter changes using the 
correlation between them, and finally we can use precipitation changes to attribute changes 
in these factors. The results (Figure 7b) indicate that the mean monthly discharges in the dry 
season (especially from January to March) closely correlate with the QN1D, QN3D, QN7D, 
QN30D, QN90D, and the base flow index. Similarly, there are moderate correlations be-
tween the monthly discharge in the wet season (especially in June and July) and the QM1D, 
QM3D, QM7D, QM30D, QM90D. For the other IHA parameters, the correlation analysis did 
not express a significant relationship. 

Based on Figure 7, we have gained a rough understanding of the multi-dimensional hy-
drological alterations from the perspective of climate change. Results conclude that the 
monthly and extreme indicators describing the river discharge in IHA are mainly affected by 
changes in precipitation, especially its seasonal distribution and magnitude. But for more 
complex indicators in IHA (e.g., high and low pulses and the number of hydrological rever-
sals), which change frequently in river flow, more systematic analyses are required in future 
studies. 

5.2  The effects of human activities 

Human impacts on the UMR mainly refer to dam construction and water withdrawal (Li et 
al., 2015). The different functions of reservoir projects include flood control, hydroelectric 
generation, water withdrawal and agricultural irrigation. Reservoirs with different functions 
have various impacts on hydrological process.  

In the dry season, although the precipitation shows an increasing trend, the mean flow 
still shows a decreasing trend. This may be mainly attributed to more and more water with-
drawal projects. According to statistical yearbook data (http://tjj.sc.gov.cn/), the population 
of Chengdu has increased by about 60% since the end of the 20th century, reaching 16 mil-
lion in 2018. Moreover, the irrigated area reaches more than 1 million ha. In the wet season, 
reservoirs with flood regulation functions can reduce peak discharge. However, the changes 
related to the number of hydrological reversals and high- and low-flow may be attributed to 
reservoirs with the function of power generation. The types of hydropower stations on the 
UMR were mainly small-scale and rural hydropower stations, accounting for 82% of the 
total. In addition, there were 29 medium-scale hydropower stations and four large-scale hy-
dropower stations (Li, 2014). According to the operation rules, both hydropower stations and 
flood control reservoirs needed to adjust the water level continuously, thus the number of 
hydrological reversals increases (Magilligan and Nislow, 2005). The construction and regu-
lation of large reservoirs reduced flood peaks during high flow conditions and stored water 
to meet water demand in low flow conditions. (Graf, 2006; Gao et al., 2012; Räsänen et al., 
2017). 
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Figure 7  Comparison of different climatic variables and discharge (a) and Pearson correlation coefficient be-
tween different IHA parameters (b). In Figure 7(a), bpP and apP are the mean precipitation in the baseline and 

altered periods, respectively; bpT and apT are the mean temperature in the baseline and altered periods, respec-

tively; bpET and apET are the mean evapotranspiration in the baseline and altered periods, respectively; 

and bpQ and apQ are the mean discharge in the baseline and altered periods, respectively. 
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5.3  Related impacts on river ecosystem 

Although the streamflow analysis of the ZPP station did not show the phenomenon of ze-
ro-flow days, numerous studies showed that the construction of hydropower stations would 
cause the river reach to dry up and seriously damage the continuity of the river (Liang and 
Ding, 2004; Nakayama, 2011). The low flow trend of the ZPP station during the dry season 
also indicated that the river bed may dry up in the upper reaches, which damaged the integ-
rity and posed a threat to the river ecosystem (Zhai et al., 2010; Wang et al., 2018). The de-
crease in high flow conditions may slow down the flow velocity and cause much sediment 
accumulation, which affects the chemical reaction of the water environment and ultimately 
threatens water safety (Chen et al., 2003; Yang et al., 2012). The magnitude of monthly dis-
charge is closely related to water resource planning and management (Yang et al., 2008). 
The magnitude and duration of flow less than 25th percentile and those greater than the 75th 
percentile indicate the specific drought or flood conditions. Soil moisture, drought stress of 
plants and aquatic organic organisms will also be affected by the long-term drought of river 
flow (Graf, 2006). The decreased high- and low-pulse durations may reduce the hydraulic 
connectivity of river systems (Zhao et al. 2014). The rising rate, falling rate and number of 
hydrological reversals may be tied to amphibian migration (Wei et al., 2013; Chen et al., 
2004).  

6  Conclusions 

We develop a DTVGM-IHA-based framework to evaluate the dual effects of climate and 
human on hydrological alterations in the UMR. The change rate and relative contribution are 
estimated by comparing the observed and simulated streamflow during the altered period, 
and possible reasons for these alterations are discussed. According to the results, we mainly 
conclude as follows: 

(1) The DTVGM-IHA-based framework we proposed can meet the demand to assess 
multi-dimensional hydrological alterations. At the same time, it can be used to quantitatively 
estimate the climate and human contributions to these changes in the IHA parameters. 

(2) Among the IHA parameters, 26 out of the 33 indicators present a decreasing trend 
(average –10.2%). The rising rate decreased significantly during the altered period. From the 
perspective of climate change, 19 out of the 33 indicators present an increasing trend (aver-
age 8.3%), and the remaining 14 indicators present a decreasing trend (average –10.8%). 
The average flow in April increased significantly due to climate change. As for human im-
pacts, 22 of the 33 indicators show a decreasing trend (average –14.3%), and the remaining 
11 indicators show an increasing trend (average 9.2%). The number of hydrological rever-
sals changed most significantly due to human activities. 

(3) Among the IHA parameters, the effects of human activities dominated the changes in 
hydrological alterations, with an average relative contribution rate of 58.6% and an average 
relative contribution rate of climate change of 41.4%. The scales of water withdrawal pro-
jects, the capabilities of the reservoir and hydroelectric plant are important factors that affect 
the degree of hydrological alteration. Changes in precipitation are the main forcing variable 
affecting hydrological alterations with respect to climate change. 

(4) Practically speaking, the seasonal distribution of precipitation determines the seasonal 
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distribution of river discharge. Extreme precipitation leads to more extreme river discharge. 
Meanwhile, reservoir regulation reduces the peak of river flow during the flood season and 
maintains the base flow in the dry season. The changes of low and high pulse, and the num-
ber of hydrological reversals bring more hydroelectric energy. Studying the changes in hy-
drological alterations is helpful to the integrated management of water resources, so as to 
achieve sustainable development. 

Data availability 

The gridded daily precipitation data and gauge-based meteorological data can be obtained 
from the National Climate Centre of the Chinese Meteorological Administration (CMA-NCC, 
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html); 
Daily and monthly streamflow records for the ZPP hydrological station were collected from 
the Hydrological Yearbook of the Bureau of Hydrology, Yangtze River Water Resources 
Commission, in China; Digital elevation model (DEM) data with a spatial resolution of 3 
arc-seconds were downloaded from NASA’s Shuttle Radar Topography Mission website 
(SRTM, http://srtm.csi.cgiar.org/); The land use data were provided by the National Earth 
System Science Data Center, National Science & Technology Infrastructure of China 
(http://www.geodata.cn); The soil types data can be downloaded from the world soil data-
base (Harmonized World Soil Database version 1.2, http://www.fao.org/soils-portal/soil- 
survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/). 
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