
Machine Learning for Precipitation Forecasts Postprocessing: Multimodel Comparison and
Experimental Investigation

YUHANG ZHANG
a
AND AIZHONG YE

a

a State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal

University, Beijing, China

(Manuscript received 15 May 2021, in final form 27 August 2021)

ABSTRACT: Obtaining high-quality quantitative precipitation forecasts is a key precondition for hydrological forecast

systems. Due to multisource uncertainties (e.g., initial conditions, model structures, and parameters), raw forecasts are

subject to systematic biases; hence, statistical postprocessing is often required to reduce these errors before the forecasts can

proceed to hydrological applications. Machine learning (ML) algorithms are canonical statistical models, and they are

diverse in type and variation. It is important to verify and compare their performance in the same scenario (e.g., precipi-

tation postprocessing). In this paper, we conduct a large-scale comparison study for the major ML models with diverse

model structures and regularization strategies as postprocessors for improving the quality of precipitation forecasts.

Specifically, we compare the efficiency and effectiveness of 21ML algorithms on solving this task. Daily reforecast pre-

cipitation with lead times up to 8 days from the Global Ensemble Forecast System and corresponding observations are

employed to determine the usability of differentmodels in theYalongRiver basin in China. The performance of eachmodel

is validated by a group of carefully designed experiments and statistical metrics. The results reveal that improvements in

model structures are more effective than regularization strategies. Among these algorithms, the optimized extra-trees

regressor exhibits the best performance, effectively reducing overestimation and achieving the best skill in forecasting

precipitation. Eleven ensemble members and a 3-day forward-rolling time window can be used as predictors to obtain the

best model performance. The systematic experiments and findings also offer useful guidelines for other related studies.

KEYWORDS: Numerical weather prediction/forecasting; Postprocessing; Regression analysis

1. Introduction

Obtaining skillful and accurate quantitative precipitation

forecasts (QPFs) is not only a primary goal of operational

prediction centers but also a critical necessity for integrated

hydrometeorological forecast systems (Fritsch and Carbone

2004; Yuan et al. 2015; Ye et al. 2017). There are many un-

certainties in the operation of numerical weather prediction

models (NWPs) (Lorenc 1986; Demargne et al. 2014; Li et al.

2019). It is necessary to develop a statistical postprocessing

model to improve their skill and reliability as much as possible

in both meteorological and hydrological studies (Guan et al.

2015; Ye et al. 2014, 2015). Statistical postprocessing refers to

the establishment of a statistical model between historical

observations and corresponding reforecast pairs (Medina et al.

2019; Li et al. 2017; Piani et al. 2010; Hamill and Whitaker

2006). Machine learning (ML) algorithms are canonical sta-

tistical postprocessing model for precipitation forecast.

Based on statistical learning theory, machine learning (ML)

algorithms extract features from multidimensional data, which

can fit complex linear or nonlinear relationships, and have been

applied to solve or simulate multiple processes or key variables

involved in the hydrological cycle, such as precipitation, air

temperature, wind speed, radiation, evapotranspiration, soil

moisture, and runoff (Oppel and Fischer 2020; Wang et al. 2020;

Ghaith et al. 2020; Zhao et al. 2019; Zhang et al. 2019; Voyant

et al. 2017; Raghavendra and Deka 2014; Nourani et al. 2014).

The advantages of ML methods are as follows: (i) there are

various methods which are easy to implement simultaneously in

one framework (e.g., scikit-learn); (ii) they can map flexible

relationships between input and target variables; (iii) they can

incorporate diverse features and automatically extract useful

information; and (iv) they do not need very strict assumptions as

numerical methods. These characteristics of ML models in

postprocessing have also been confirmed in a few studies. For

example, the neural network has been selected and compared

with the XGBoost algorithm in the postprocessing of extended

range 2-m maximum air temperature (Peng et al. 2020). The

quantile regression forecast (QRF) was investigated and cou-

pled with ensemble copula coupling methods to establish a

station-based postprocessing model for surface temperature

and a gridded postprocessing model for hourly rainfall amounts

in the French national weather service operational forecasting

chain (Taillardat et al. 2016; Taillardat and Mestre 2020). The

QRF method was also used as a benchmark and was compared

with fully connected networks to predict air temperatures in

Germany (Rasp and Lerch 2018). Diez-Sierra and Del Jesus

(2020) applied and compared multiple ML models including

random forests (RF), K-nearest neighbors (KNN), neural net-

works (NN), support vector machines (SVM), and logistic re-

gression to forecast long-term rainfall in Spain. These various

ML models (e.g., KNN, NN, SVM) were also employed to re-

duce the uncertainties of future precipitation and temperature
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projections from global climate models (Sachindra et al. 2018;

Ahmed et al. 2020). Moreover, such ML models expressed im-

pressive performance for both deterministic and probabilistic

streamflow forecasts and postprocessing in large-scale studies.

For instance, Tyralis et al. (2020) proposed a super ensemble

learning framework that weighted 10 individual ML algo-

rithms, and the proposed super ensemble model was used

and compared with individual ML models for daily stream-

flow mean value predictions in 511 basins in the contiguous

United States. Using the same dataset, a series of quantile

regression-based individual and ensemble models for hy-

drological postprocessing successfully modeled the condi-

tional quantiles of a target variable (Papacharalampous et al.

2019; Tyralis et al. 2019). Most of the above studies tend to

compare or combine multiple ML models to fit the rela-

tionship between the simulations (or predictions) and ob-

servations. It not only shows the function of a single ML

model as a base learner but also reveals the performance

improvement of the ensemble method.

Different from the above studies, in this study, we attempt

to enrich the case of machine learning solutions for precip-

itation forecasts postprocessing. Some of these methods

cover more diverse regularization forms and different en-

semble rules. Here, all algorithms we choose are easy to

implement, so as to comprehensively compare their accu-

racy, efficiency, and generalization. Moreover, we test them

as a regional model applied to small or medium-sized wa-

tersheds with complex topography. This is also different from

some previous grid-based or station-based postprocessing

methods for precipitation forecasts. Another focus of this

study is to explore different predictors used for precipitation

postprocessing. Based on the above motivations, we choose the

Yalong River (YLR) basin with complex climatic and topo-

graphic conditions in China and adopt 21 machine learning al-

gorithms to establish postprocessors for precipitation forecasting.

Meanwhile, we compared various experimental configurations to

select a better combination of predictors to improve our model

performance. This paper is organized as follows: section 2 de-

scribes the chosen study area and the data used for the study;

section 3 introduces themethods, including the machine learning

algorithms, data processing, selected evaluation metrics, and

experimental design; and sections 4 and 5 present the results and

discussion, respectively. The final section presents the conclu-

sions of this paper.

2. Study area and data

a. Study area

The Yalong River, located in the southeastern part of the

Qinghai–Tibet Plateau, is the largest tributary of the Jinsha

River, and the latter is a major tributary on the upper

reaches of the Yangtze River in China. (Fig. 1). The YLR

basin spans a wide range of latitudes (268320–338580N) and

longitudes (968520–1028480E) due to its long and narrow

shape. The total area of the YLR basin is approximately

136 000 km2 and the length of the mainstream is approxi-

mately 1571 km. The topography in the basin is complex

and mainly composed of mountains and valleys. Because of

its large elevation differences and latitudinal span (Fig. 2a),

the climate in the YLR basin varies with location. The

upper area has a continental climate, which is relatively

cold and dry. Affected by a subtropical climate, the middle

and lower reaches have relatively high temperatures and

large rainfall amounts (Fig. 2b).

To facilitate the following comparison between ML methods

applied in different climate types, as well as their efficiency in a

whole basin, we selected two typical grid cells, as shown in

Figs. 2c and 2d. Grid cells 5 and 39 represent the relatively dry

and humid climate conditions, respectively.

FIG. 1. The location of the Yalong River (YLR) basin.
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b. Data

1) FORECAST DATA

The raw precipitation forecast data were obtained from the

Global Ensemble Forecast System reforecast version 2 (GEFSv2)

operatedby theNationalCenters forEnvironmental Prediction of

National Oceanic and Atmospheric Administration. This dataset

consists of one control forecast and 10 perturbed member fore-

casts. The model forecasts precipitation for the next 14 days be-

ginning at 0000 UTC from December 1984 to the present. In this

study, we downloaded the first 8 days of the forecast from 1985 to

2018. For example, when the forecast date is k, the forecasts are

p(k) (lead time 1 day), p(k 1 1) (lead time 2 day), . . . , p(k 1 7)

(lead time 8 day), respectively. The original temporal and spatial

resolutions are 3 h and 18 3 18, respectively (Hamill et al. 2013).

2) REFERENCE DATA

The 0.58 daily observed gridded precipitation dataset

(1985–2018) used in this study was provided by the China

Meteorological Administration (CMA). This dataset was

interpolated and verified using thin plate smooth spline

method and the high-quality precipitation data from about

2400 weather stations in China, which is the most accurate

gridded dataset available and has been used for climate as-

sessments, flood forecasts, drought predictions, and many

other studies (Zhao et al. 2014; Wu et al. 2016; Lu et al. 2017).

We choose these data because their spatial resolution corre-

sponds to the interpolated raw precipitation forecasts (0.58 3
0.58). We are more focused on discussing the feasibility of the

ML methods for precipitation postprocessing, the error in-

troduced in the data preprocessing processes is ignored.

3. Methods

The general workflow of a complete machine learning task

involves (i) abstracting a real-world problem into a machine

learning problem, (ii) extracting input and output features,

and (iii) comparing different machine learning models through

iterations to select the best model for the application. Here we

define our machine learning task as trying to build a post-

processing model (regression model) to correct the bias of raw

precipitation forecasts fromNWPs. For all selectedmodels, the

input data include the raw forecast ensemble members from

GEFS, and the output is the precipitation ensemble mean,

which is further compared with the observations. Below we

introduce the basic information of different ML models, fea-

ture selection, and experimental design.

a. Data processing

Data preprocessing mainly includes data extraction,

combination, interpolation, and transformation. First, we

extracted the CMA and GEFSv2 data using the YLR basin

boundary (Fig. 1). The raw GEFSv2 data were then com-

bined to a daily scale and interpolated into a 0.58 3 0.58 grid
using the bilinear interpolation to ensure the consistency of

the data resolution. Finally, to enable faster training of the

ML models, we transformed the raw data to a normal dis-

tribution in the training period and inversely transformed

the predicted values to compare with observation using the

Yeo–Johnson power transformation (Yeo and Johnson

2000), which was accomplished by Eq. (1):

x
(l)
i 5

8<
: [(x

i
1 1)l 2 1]/l, if l 6¼ 0, x

i
$ 0

ln(x
i
1 1), if l5 0, x

i
$ 0

, (1)

where l is a mapping factor, which is estimated by the maxi-

mum likelihood method; xi represents daily precipitation

(mm day21); and x
(l)
i is the transformed daily precipitation

(mm day21).

b. Machine learning methods

In this study, we selected 21 widely used ML algorithms

(Table 1) for systematic and extensive comparison. In addi-

tion, there are three multimodel averaging combinations for

the parameterization, and more results can be found in the

online supplemental material (Figs. S1–S3). The selected 21

FIG. 2. The spatial distributions of (a) elevation and (b) average precipitation, and the observed climatology of the typical grid cells,

(c) grid cell 5, and (d) grid cell 39. The average precipitation in the figure is drawn from the gridded observation data (1985–2019).
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models can be classified into the following categories ac-

cording to their characteristics: 1) linear models; 2) soft-

margin-based models; 3) decision-tree-based models; 4)

KNN models; and 5) artificial neural networks (ANNs). It

should be noted that comparing all existing MLmodels would

be a hopeless task, so we only select some typical examples and

provide a reference for such a large-scale comparative study.

The reasons for selecting these algorithms are as follows:

1) The selected models are widely used and easy to imple-

ment. For example, they are completed under the same

framework (e.g., scikit-learn). So, it is convenient to com-

pare all models at the same time.

2) They are diverse enough to include linear and nonlinear

models, or individual and ensemble models. This allows us

to choose the model architecture more clearly. But they have

some similarities, such as only different forms of loss functions

to prevent overfitting. This allows us to compare whether such

regularization strategies are effective.

Below is a short description of these models. More detailed

theories and explanations canbe found in the references inTable 1.

1) LINEAR MODELS

Linear models are a family of linear regression-based models,

and their basic form is as Eqs. (A1)–(A3) in the appendix.

TABLE 1. The ML methods, abbreviations, brief descriptions, and references.

ID Full name and abbreviation Brief description Reference

M1 Multilayer perceptron (MLP) Also known as an artificial neural

network.

Rumelhart et al. (1986)

M2 Gradient boosting regressor (GBR) An ensemble model based on the gradient

boosting machine

Friedman (2001)

M3 CatBoost regressor (CATB) Similar to the GBR, but optimized for

category features

Prokhorenkova et al. (2018)

M4 Light gradient boosting (LGBM) Similar to XGB, but introduces the

histogram algorithm

Ke et al. (2017)

M5 Extreme gradient boosting (XGB) Similar to the GBR, but optimizes

efficiency, generalization, and

robustness

Chen et al. (2015)

M6 AdaBoost regressor (ADAB) An ensemble model based on the gradient

boosting machine and weights of

sample points

Freund and Schapire (1996)

M7 Random forest (RF) An ensemble bagging model based on

the DT

Breiman (2001)

M8 Extra-trees regressor (ET) Similar to the RF, but randomness

is added

Geurts et al. (2006)

M9 Decision tree (DT) A binary tree with probabilities Xu et al. (2005)

M10 K-neighbors regressor (KNN) K-nearest neighbors with distances Altman (1992)

M11 Linear regression (LR) Original least squares linear regression —

M12 Ridge regression (RIDGE) Linear least squares with L2

regularization

Hoerl and Kennard (1970)

M13 Least angle regression (LAR) Similar to forward stepwise regression Efron et al. (2004)

M14 Lasso regression (LASSO) Linear model trained with L1

regularization

Koh et al. (2007)

M15 Elastic net (EN) Linear regression with combined L1 and

L2 regularizations

Owen (2007)

M16 Huber regressor (HUBER) A linear regression model that is robust to

outliers

Huber (2004)

M17 Bayesian ridge (BR) Similar to ridge, introduces Bayesian

inference

Bishop (2006)

M18 Random sample consensus (RANSAC) Similar to LR, but ignores outliers Fischler and Bolles (1981)

M19 Passive aggressive regressor (PAR) A stepwise learning method Crammer et al. (2006)

M20 Orthogonal matching pursuit (OMP) A greedy iteration method Pati et al. (1993)

M21 Support vector machine (SVM) A soft-margin-based model with kernel

transformation

Schölkopf et al. (2002)

M22 Combine1 Equally weighted averaged all 21ML

models

—

M23 Combine2 Equally weighted averaged four tuned

ML models (KNN, ET, LGBM, MLP)

—

M24 Combine3 Equally weighted averaged two tunedML

models (ET, LGBM)

—
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Methods to fit the model include the original least squares linear

regression [Eq. (A4)], as well as extended solutions with various

regularization, such as lasso regression with L1 regularization

[Eq. (A5)], ridge regression with L2 regularization [Eq. (A6)],

elastic net in the formof combinedL1 andL2 regularization [Eq.

(A7)], Huber regression in the form of linear loss [Eqs. (A8) and

(A9)], and Bayesian ridge with additional prior information.

Besides, we also selected two models similar to stepwise re-

gression that utilize the correlation between features and targets,

namely, the least angle regression (LAR) and the orthogonal

matching pursuit (OMP). They differ in that the OMP has

stronger sparsity by assuming nonzero terms before fitting

the model.

2) SOFT-MARGIN-BASED MODELS

According to a hypothetical tolerance interval «, the soft-

margin-based model partitions the data into two parts, inliers

and outliers. The model is then fitted based on the inliers while

ignoring the effect of the outliers, so the model can be gener-

alized more easily. Here, we selected three soft-margin-based

ML algorithms with different complexity, which are random

sample consensus (RANSAC), passive aggressive regressor

(PAR), and support vector machine (SVM). RANSAC uses

completely random sampling to classify the original data, while

PAR is based on hinge loss function [Eq. (A10)] to complete

the segmentation of inliers and outliers. Compared with PAR,

the SVM additionally introduces a kernel function that can

map nonlinear features to a high-dimensional space to obtain

linear features. Support vector regression (SVR) is the version

of SVM used for the regression task.

3) DECISION-TREE-BASED MODELS

Decision tree (DT) is a nonparametric supervised learning

method used for classification (also known as classification

tree) and regression (also known as regression tree). The re-

gression tree continuously approximates the target by dividing

the feature space by nodes and weighting the average from

different subspace. DTs are often used as a base learner to

obtain ensemble learning models through different strategies.

One commonly used ensemble learning strategy is to com-

bine the DTs through bagging. Bagging is a parallelized

method, that is, there is no dependency between the base

learners. Such models include random forest (RF) and extra-

trees regression (ET). Random forest uses bootstrap random

sampling of training data and features to obtain multiple de-

cision tree models, and then the final prediction is obtained by

averaging multiple base learners. The extra-trees regression

uses all data to train different base learners, and the node

splitting is more randomized.

Another ensemble learning strategy aggregates the DTs by

boosting, including adaptive boosting regressor (ADAB),

gradient boosting regressor (GBR), extreme gradient boosting

(XGB), light gradient boosting (LGBM), and categorical

boosting regressor (CATB). Boosting is a serialized model,

which is trained by stepped iteration. In the training period,

only one base learner is trained for each round, and a strong

regressor with higher accuracy is finally obtained. ADAB de-

termines the weight of the base model by iteratively adjusting

the weight of the sample and finally gets the ensemble model.

GBR is a forward algorithm that uses gradient descent. In each

iteration of training, the negative gradient of the loss function

under the current model is estimated, so that the parameters

are updated in the direction of minimizing the loss function.

XGB is a further improvement to GBR, including 1) deriving a

second-order Taylor expansion of the loss function and 2)

adding a regular term to it. These improvements control the

complexity of the model and help prevent overfitting. LGBM

is a distributed and efficient framework that further develops

the XGB model. It generates decision trees using leaf-wise

splitting, finds feature split points through histogram-based

algorithms, and supports parallel learning, which can process

big data more efficiently. CATB better handles discrete cate-

gorical features, which enriches the feature dimensions.

4) K-NEAREST NEIGHBOR

The KNN algorithm is a nonparametric machine learning

model, which is similar to the analog method. In the training

period, k historical records similar to the forecast are found in

the sample space, and the prediction is obtained by weighting

calculation according to the k historical records. The similarity

is estimated by the Euclidean distance.

5) ARTIFICIAL NEURAL NETWORKS

The artificial neural network (ANN) is one of the most

widely used ML algorithms. It uses different features as input

and maps the nonlinear relationship between input variables

and target through neurons and activation functions. Here,

we use a typical neural network model called multilayer

perceptron (MLP).

c. Feature selection

A reasonable postprocessing model is a prerequisite for

maximizing the values of NWPs, and postprocessing models

are often constructed based on the statistical relationship be-

tween the observations and the predictors. Therefore, whether

there is a good correlation between the predictors and the

observations directly affects the skill of postprocessing models.

Predictors can be selected from various aspects, such as the

element field, space, and time. In this study, we selected and

validated different combinations of predictors to determine

their feasibility. The principles we adhere to are as follows: 1)

to simplify the complexity of the model and 2) to include as

much valid information as possible. So, we only selected the

precipitation ensemble forecasts members as predictors with-

out considering the additional auxiliary variables. Meanwhile,

feature engineering is performed by controlling the number of

ensemble members and the spatial and temporal information

of precipitation forecasts.

First, for the ensemble members, we tested the correlation

skill between different ensemble members and observations.

Figure 3a indicates that the correlation skill between the ob-

servations and all alternative ensemble predictors is greater than

0.4 for the 6-day lead time. Such a high correlation skill between

the ensemble mean, ensemble standard deviation, and obser-

vations can even last up to 8 days. For different grid cells, the

correlation skill varies with the ensemble members. Figures 3b
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FIG. 3. Correlation skills of different predictors. (a) The regional averaged correlation skill between ensemble members and obser-

vations with lead times up to 8 days. (b),(c) The correlation skill between ensemblemembers and observations with lead times up to 8 days

at grid cells 5 and 39, respectively. (d) The correlation skill between observations at a specific grid cell and observations at the other grid

cells. (e) The correlation skill between observations at a specific grid cell and forecasts at the other grid cells. (f) The regional averaged

correlation skill between the observations on a specific day and forecasts ahead of that day. (g),(h) The correlation skill between the

observations on a specific day and forecasts ahead of that day at grid cells 5 and 39, respectively. The hatching in (a)–(e) highlights the

correlation skill exceeding 0.4.
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and 3c indicates that the correlation skills at grid cell 5 are higher

than those at grid cell 39.

The search for predictors in the spatial dimension is based on

the following two scenarios: 1) the center of precipitation

forecasts may be shifted, and 2) similarities exist in regional

precipitation patterns (e.g., between neighboring grid cells)

(Scheuerer and Hamill 2015). Here, we examined the corre-

lation skill between the observations among different grid cells

(Fig. 3d) and the correlation skill between the observations and

forecasts of the surrounding grid cells (Fig. 3e) to explore the

similarities among different grid cells. Combining the corre-

lation skill between the observations and forecasts, almost all

specific grid cells have more than 20 similar grid cells (except

grid cells near the basin boundary). There is a broad range of

correlation skills for the precipitation forecasts (Fig. 3e).

Therefore, considering that we selected a relatively small wa-

tershed and to simplify the complexity of the model, we se-

lected all the data within the basin to build regional models.

For the time dimension, in general, the forecast skills of

NWPs decrease with increasing lead times. And, there are no

corresponding observations for the future forecasts of the op-

erated NWPs. So, we only considered forecasts from the day of

interest to n days before (n5 1–31) to identify the appropriate

predictors. The results (Figs. 3f–h) show that n5 3 is a suitable

choice for all grid cells or specific grid cells. This strategy is

forward rolling time window (FRTW).

d. Experimental design and performance metrics

After the preliminary selection of predictors, we further

designed several comparative experiments to verify whether

the valid predictor information could be transferred to the

postprocessing models. The entire experimental design

framework is shown in Fig. 4, while the input and output

variables, feature selection, and training sample size for

each experiment are shown in Table 2.

For the selection of the ensemble members, we set up

three sets of experiments (including the ensemble mean

(EnsMean), the ensemble mean (EnsMean) and standard

deviation (EnsStd), and all ensemble members.

For the selection of the spatial predictors, because the YLR

basin is relatively small, forecasts for all grid cells in the basin

were selected as predictors to achieve the following two ob-

jectives: 1) simplify the complexity of the model and fully

compare the performance of different ML models and 2) de-

termine whether a regional model can be applied to local

grid cells.

For the selection of the forward rolling timewindow (FRTW),

we set up two experiments (FRTW 5 1 day and FRTW 5
3 days). For example, when the target forecast is p(k), the input

variables are f(k, k) with FRTW 5 1, and f(k, k), f(k 2 1, k),

f(k2 2, k) with FRTW 5 3, respectively. In addition, 10-yr

(2009–18) and 20-yr (1999–2018) data were selected to

compare the effects of different sample sizes on model

performance.

According to the above experimental design, we compared

the effects of different input features and sample sizes on the

model skills. The tenfold cross-validation method (also known

as the leave-one-out method) was used to calibrate and eval-

uate themodel accuracy. For example, the training set (2009–18,

178 948 samples) was randomly divided into 10 groups, of which

nine groups (161 053 samples) were used for training and one

group (17 895 samples) was used for testing; this process was

iterated 10 times. Finally, we averaged the 10 results to evaluate

the model performance. The Pearson correlation coefficient

(PCC), mean absolute error (MAE), and root-mean-square

error (RMSE) were used as performance metrics, and their

formulas are given by Eqs. (2)–(4):

PCC5
�
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i51

(O
i
2O)(S

i
2S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

(O
i
2O)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
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i
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2
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FIG. 4. Experimental design.
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whereO is defined as the observation, S is defined as the forecasts,

n is the length of the sequence, and i is the day of interest.

The PCC measures the linear correlation between observa-

tions and forecasts. The MAE and RMSE measure the differ-

ences between observations and forecasts and therefore provide

the overall performance of the model. A high PCC indicates a

good linear correlation between the observations and forecasts,

and low RMSE and MAE values indicate that the forecast is

fitted well to the observations. TheRMSE ismore susceptible to

extreme values than the other indices are.

To eliminate differences in the magnitude of precipitation

and to quantify the improvement of the ML models, we also

introduced the PCC skill score (PCCSS), MAE skill score

(MAESS), and RMSE skill score (RMSESS), which are

given by Eqs. (5)–(7):

PCCSS5
PCC

ml

PCC
ref

2 1, (5)

MAESS5 12
MAE

ml

MAE
ref

, (6)

RMSESS5 12
RMSE

ml

RMSE
ref

, (7)

where ref represents a reference forecast andml represents the

ML models. High PCCSS, MAESS, and RMSESS values in-

dicate optimal improvements of the MLmodels in terms of the

reference method.

To compare the computational efficiencies of the different

models, we also considered the time required to train the models.

Our experimental platform was based on a personal desktop PC

with an Inter(R) Core (TM) i7–7700 CPU @ 3.6GHz.

4. Results

a. Baseline experiments

First, for the subsequent model selection and optimization,

we obtained the results of our baseline experiments based on

the experimental designs indicated above and the selected

machine learning algorithms. In this stage, we only compared

the effects of sample sizes and predictor features. Therefore,

the default parameters of all models were used to fit the ML

models. All-important default parameters are listed in the

Table S1. Finally, we obtained 189 postprocessing models

(Fig. 5). The vertical axis includes all 21ML models shown in

Table 1 (without multimodel combination), and the horizontal

axis includes all experimental designs shown in Table 2. The

evaluation metrics used here not only included the three

metrics we introduced in section 3c (PCC, MAE, and RMSE)

but also comprised the run time, which was considered to

embody the model efficiency (Fig. 5d). We compared models

by controlling different variables. In detail, we compared EX1

and 2 (or EX4 and 5, or EX7 and 8) to obtain the effects of

different training sizes on model skill. We compared the effect

of different ensemble members on model accuracy with EX1,

4, and 7 (or EX2, 5, and 8, or EX3, 6, and 9). The effects of the

forward rolling time window (FRTW) on model accuracy were

compared by EX1 and 3 (or EX4 and 6, or EX7 and 9).

From the results in Fig. 5, we can draw the following

conclusions:

1) For all ML methods, compared to the sample size, the use

of a forward rolling time window during the training period

significantly increased model performance. The ensemble

members had a relatively inconspicuous effect on model

performance. The selected predictor EX9 was the best-

performing model configuration among all experiments

(Figs. 5a–c).

2) When comparing the performances of the different ML

models (Figs. 5a–c), it was found that more complex

models, such as those including ensemble learning methods

(e.g., RF and LGBM), usually significantly outperformed

linear regression-based models, especially when more fea-

tures were added (e.g., LGBM-EX9).

3) In terms of the runtime necessary for model training

(Fig. 5d), in general, one model with a simple structure

TABLE 2. Experimental design.

ID Input Target Period Ensemble member Time window Sample size Feature size

EX1 f(k, k) p(k) 2009–18 EnsMean 1 178 948 1

EX2 f(k, k) p(k) 1999–2018 EnsMean 1 357 945 1

EX3 f(k, k) p(k) 2009–18 EnsMean 3 178 948 3

f(k, k21)

f(k, k22)

EX4 f(k, k) p(k) 2009–18 EnsMean 1 178 948 2

EnsStd

EX5 f(k, k) p(k) 1999–2018 EnsMean 1 357 945 2

EnsStd

EX6 f(k, k) p(k) 2009–18 EnsMean 3 178 948 6

f(k, k 2 1) EnsStd

f(k, k 2 2)

EX7 f(k, k) p(k) 2009–18 11 ensemble members 1 178 948 11

EX8 f(k, k) p(k) 1999–2018 11 ensemble members 1 357 945 11

EX9 f(k, k) p(k) 2009–18 11 ensemble members 3 178 948 33

f(k, k 2 1)

f(k, k 2 2)
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and a few samples and features required short runtime.

However, there were exceptions, such as LGBM.

By comparing the results of the baseline experiments, we se-

lected five models from different categories for further analysis,

namely, LR, ET, KNN, LGBM, and MLP. The LR model is the

simplest linear model. KNN is a model that is similar to the an-

alog method and has fewer hyperparameters and can handle

high-dimensional datasets. The ETmodel is an extended version

of the RF algorithm and is more robust. The LGBM model is a

member of the gradient boosting decision tree (GBDT) family of

methods. The algorithm is highly parallelized and can be trained

by bothCPUs andGPUs. TheMLP is themost primitive shallow

artificial neural network algorithm and is a long-standing model

that is widely used. Moreover, we followed the configuration of

EX9, with a 10-yr training sample size (2009–18), a 3-day forward

rolling time window, and 11 ensemble members as predictors.

b. Comprehensive performance with model

hyperparameter optimization

In the baseline experiments in section 4a, we focused on

comparing the performance of different model structures and

feature selection strategies without tune the model hyper-

parameters. Therefore, in this subsection, we select and further

tuned the four representative models to achieve their individ-

ually optimized model configurations (the LR model has no

hyperparameters), and evaluated model performance. For

each model, with RMSE as the objective function, we used the

grid search and the 10-fold cross-validation method. The

optimization of hyperparameters is divided into two steps.

In the first step, we change a single parameter and screen out

the sensitive parameters in the model by comparing the

model performance. In the second step, we use grid search

to continuously adjust the sensitive parameters until the

FIG. 5.Model performances in baseline experiments (only for lead time 1 day). (a) Pearson correlation coefficient

(PCC). (b) Mean absolute error (MAE). (c) Root-mean-square error (RMSE). (d) Runtime required for one

tenfold cross validation. In all panels, a darker color (blue) indicates a better model performance. The ‘‘**’’ in

(a) highlights PCCs exceeding 0.6.
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model performance no longer changes significantly to finally

obtain the optimal parameters. The sensitive parameters,

parameter space, and optimum are shown in Table S2 in the

supplemental material.

Based on the final models, we obtained the postprocessed

precipitation forecasts and the overall model performances

and improvements relative to the raw forecasts (Fig. 6 and

Table 3). In general, the precipitation forecasting skill deteri-

orates as the increase of forecasting period. Therefore, to en-

sure the accuracy of the model, for each leading day, we train

independentmodels. All five selectedmachine learningmodels

improved the raw forecasts significantly. Among them, ET

achieved the best performance, with an average RMSESS 5
0.48 (RMSEavg from 6.43mm from the raw forecast to 3.17mm

from the postprocessed model) for a lead time of 8 days. The

performance of LGBMwas close to that of ET, ranking second

among the five models.

In terms of model performances under lead times ranging

from 1 to 8 days, a very promising finding was thatMLmethods

were able to correct original biases to a relatively small degree

regardless of the lead time. For example, ET corrected the bias

(MAE) to 1.385 6 0.13mm, with MAESS 5 0.59 6 0.12.

Figure 7 shows the regional average model performances of

different ML methods on each day of the year. We can clearly

observe that there were significant seasonal differences in the

forecasting skill of the GEFS raw forecast; the model per-

formed better skill from November to April and poorer skill

from May to October. The use of different ML methods im-

proved the accuracy of precipitation forecasts. To quantify this

seasonal difference, we further calculated evaluation metrics

for the monsoon (May–October) and nonmonsoon seasons

(November–April) (Table 4).

The average PCC between the raw forecasts and observa-

tions displayed poor skill throughout the year, and that during

the monsoon season was better than that during the non-

monsoon season. The bias (MAE) of the raw forecast pre-

sented an opposite result, with lower biases in the

nonmonsoon season (MAE 5 1.1 mm) than in the monsoon

FIG. 6. Regional average model performances with lead times up to 8 days. (a) Pearson correlation coefficient

(PCC). (b) Mean absolute error (MAE). (c) Root-mean-square error (RMSE). EnsMean in the figure represents

the mean of the raw ensemble members.

TABLE 3. Regional average forecast skill scores of the different ML methods over 1–8 lead days. Here, we take the raw forecast

ensemble mean as a reference in Eqs. (5)–(7).

Metric Model

Lead time (day)

1 2 3 4 5 6 7 8

PCCSS LR 0.123 0.047 0.027 0.045 0.041 0.048 0.042 0.027

KNN 0.235 0.149 0.138 0.166 0.157 0.151 0.152 0.131

LGBM 0.461 0.359 0.345 0.382 0.396 0.410 0.414 0.404

ET 0.498 0.398 0.388 0.430 0.447 0.463 0.470 0.461

MLP 0.283 0.182 0.165 0.199 0.197 0.197 0.201 0.179

MAESS LR 0.541 0.526 0.524 0.286 0.290 0.296 0.301 0.296

KNN 0.631 0.625 0.629 0.444 0.442 0.438 0.438 0.428

LGBM 0.702 0.691 0.688 0.517 0.518 0.514 0.514 0.500

ET 0.712 0.701 0.696 0.537 0.528 0.522 0.521 0.510

MLP 0.617 0.599 0.593 0.382 0.391 0.388 0.405 0.376

RMSESS LR 0.543 0.524 0.522 0.280 0.271 0.269 0.257 0.234

KNN 0.558 0.539 0.538 0.302 0.283 0.270 0.259 0.229

LGBM 0.623 0.608 0.605 0.399 0.385 0.378 0.365 0.344

ET 0.635 0.623 0.621 0.424 0.409 0.402 0.389 0.368

MLP 0.571 0.552 0.546 0.312 0.301 0.282 0.278 0.246
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season (MAE5 5.1mm). This is because the monsoon season

is associated with heavy precipitation events and the heter-

oscedasticity of precipitation forecasts that is implicit in

the NWPs.

The use of the ML methods reduced the bias and improved

the correlation skill between the forecasts and the observa-

tions. The ET model still achieved the greatest model skills,

with an annual average of 1.169 for PCCSS, 0.51 for MAESS,

and 0.395 for RMSESS. After postprocessing, the MAE was

reduced to 1.53mm.

c. The spatial patterns of precipitation forecasts

From the above analysis, we can draw a preliminary con-

clusion that for regional averaging, MLmethods, especially the

ET model, can greatly improve the accuracy of precipitation

forecasts. In our proposed framework, we used all gridcell data

at once as inputs for model training, which is the so-called re-

gional model, and thus, we can obtain bias-corrected forecasts

for all grid cells at once. Unlike previous postprocessing

methods that trained models at each grid cell to ensure local

accuracy, there may be several problems with the regional

model. For example, how well does the regional model

simulate precipitation at a specific grid cell? The amount of

bias which exists? To what extent are the postprocessing

predictions improved compared to the raw forecasts? Are

there differences between the annual and seasonal scales? In

this subsection, we attempted to answer these questions.

Figure 8 shows the spatial distributions of precipitation

forecasts in the YLR basin, both at annual and seasonal scales,

obtained from the observations (OBS), the GEFS raw fore-

casts (EnsMean), and the MLmethods. All ML methods, even

the raw forecasts, were able to capture the spatial pattern of

precipitation. Precipitation is distributed relatively scarce in

the upper reaches and more abundant in the middle and lower

areas. However, there was a certain deviation in the precipi-

tation forecasts obtained from different methods, and this de-

viation also varied with location and season. In general, the raw

forecast expressed the largest bias, while the ET forecast dis-

played the smallest bias and was almost consistent with the

observations.

On a seasonal scale, precipitation showed the largest bias in

summer and the minimum bias in autumn. Except for the raw

forecast, all ML methods underestimated the magnitude of

summer precipitation in downstream area of the basin. This is a

potential problem caused by data imbalances. Although we

used 10 years of data for training, there were still very few

samples of extreme precipitation events compared to the

number of samples of slight precipitation events.

FIG. 7. Regional average model performances of different ML methods on each day of the year (only for lead

time 1 day). (a) Pearson correlation coefficient (PCC). (b) Mean absolute error (MAE). (c) Root-mean-square

error (RMSE). In all panels, a darker color (blue) indicates a better model performance. EnsMean in the figure

represents the mean of the raw ensemble members.
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We further evaluated the improvements of our post-

processing models relative to the raw forecast. Figure 9

show the spatial distributions of PCCSS, MAESS, and

RMSESS, respectively. The postprocessing models were

able to improve the precipitation forecasting skills at all

grid cells, and the ET model displayed the best perfor-

mance. The spatial distribution of the improvements in skill

scores indicated that the PCCSS, MAESS and RMSESS

values in the downstream region were all larger than those

in the upper region, explaining that the postprocessing

models could significantly improve the forecasting skill for

extreme precipitation events.

d. Performance comparison between regional and
local models

The difference between regional and local models is that a

regional model uses data from all grid cells for modeling,

while a local model only uses data from a specific grid cell.

Therefore, a regional model can be applied to all grid cells

in a basin, while a local model can only be applied to the

specific grid cell that is modeled.

In the previous section, we focused on evaluating and dis-

cussing the forecasting skills of regional models. Are there large

gaps between regional and local models, especially when ML

methods are applied? Are there significant differences among

different locations with different climate types?To explore these

gaps and differences, in this subsection, we built additional local

models using grid cells 5 and 39 as representatives.

The climatology obtained from the observations, raw fore-

cast, and model postprocessing at grid cells 5 and 39 are shown

in Figs. 10 and 11, respectively. The black lines in the figures

represent the observations, which are consistent with those in

Figs. 2c and 2d. The precipitation at grid cell 5 is 574.8mm,

while the precipitation at grid cell 39 is 1079.9mm. The total

precipitation and intra-annual distribution indicated signifi-

cantly different climatic characteristics of the two grid cells.

The pink lines represent the raw forecast, which displayed

overestimation. The results obtained after the postprocessing

of the precipitation data based on ML methods more closely

match the observations. By comparing regional and local

models, almost all regional models showed comparable per-

formance with local models. Among the five methods, the ET

model displayed the smallest difference between regional and

local models. Even when comparing two grid cells with dif-

ferent climate types, there was almost no difference observed

between the local and regional ET models.

5. Discussion and future works

a. Model selection and comparison

In this study, 21 machine learning models were selected

and their effectiveness in precipitation forecasting post-

processing studies was confirmed. As shown in section 4, all

the machine learning models outperformed the raw predic-

tions. This also confirms that there is a large bias in the

original prediction, which requires bias postprocessing.

However, we would like to reiterate here that our selection

of models is limited compared to the vast library of models.

Several broad classes of different model architectures are

included as much as possible, including linear and nonlinear,

individual and ensemble models. And for each category,

several variants that include penalty terms and regularization

strategies are also selected to increase model diversity. Then,

these models are compared and evaluated based on comparing

themodel structure without tuning parameters. This may lead to

missing the best models with well-tuned parameters. However,

our results are reasonable. The models with more advanced

structural design have better performance without parameter

tuning. Although different models could achieve comparable or

even surpassing performance through parameter tuning, the

authors believe that improvements in model structure are more

TABLE 4. Model performances and skill scores during the different periods. The monsoon season refers to May–October,

and the nonmonsoon season refers to November–April.

EnsMean LR KNN LGBM ET MLP

PCC (mm) Annual 0.2423 0.2685 0.3581 0.4870 0.5255 0.3255

Monsoon 0.2777 0.3030 0.4097 0.5353 0.5710 0.4159

Nonmonsoon 0.1994 0.2247 0.3035 0.4312 0.4722 0.2287

MAE (mm) Annual 3.1159 2.1937 1.7832 1.5592 1.5273 1.9455

Monsoon 5.0978 3.5507 3.0323 2.6106 2.5378 3.1936

Nonmonsoon 1.0824 0.7980 0.5222 0.5030 0.5101 0.6844

RMSE (mm) Annual 4.4692 3.3399 3.3437 2.7901 2.7051 3.3021

Monsoon 6.9803 5.2766 5.3459 4.5667 4.3961 5.2432

Nonmonsoon 1.9133 1.3826 1.3301 1.0178 1.0170 1.3497

PCCSS Annual — 0.108 0.478 1.010 1.169 0.343

Monsoon — 0.091 0.475 0.928 1.056 0.498

Nonmonsoon — 0.127 0.522 1.162 1.368 0.147

MAESS Annual — 0.296 0.428 0.500 0.510 0.376

Monsoon — 0.303 0.405 0.488 0.502 0.374

Nonmonsoon — 0.263 0.518 0.535 0.529 0.368

RMSESS Annual — 0.253 0.252 0.376 0.395 0.261

Monsoon — 0.244 0.234 0.346 0.370 0.249

Nonmonsoon — 0.277 0.305 0.468 0.468 0.295
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enlightening for scientific research. Therefore, in the first stage

only the model structures were compared, and models with

different structural designs in each category were selected for

the second stage of the experiment.

In the second stage, fivemodels were selected as representatives

based on a combination of model diversity, model performance,

and training time. However, these choices are only representative

and not optimal. For example, LGBM, as can be seen in Fig. 5, is

inferior toCATB.This is becauseCATB is an improved version of

LGBM based on category-based features. As the feature dimen-

sion increases, CATB better handles different types of features

than LGBM. But LGBM is more widely used and in general it

converges faster than CATB, so we have chosen it here as the

representative of the boosting family.Among the selectedmachine

learningmodels, ETandLGBMshow surprising results in not only

reducing the bias but alsomaintaining the bias at a low degreewith

different leading days. The difference between ET and LGBM is

that the ET model is an ensemble learning method based on

bagging, while LGBM is an ensemble learning method based on

boosting. In our experiments, the ET model expresses a slightly

better performance than the LGBM model, but the training time

of LGBM is much less than that of the ET model, and the GPU

version of theLGBMalgorithm can shorten the training time even

further. Thus, LGBM and its improved version (CATB) may be a

more promising model in general.

In addition, we only compared the improvements to the raw

forecast by the machine learning models in this study and did

not build traditional statistical postprocessing models. Our model

FIG. 8. Spatial distributions of precipitation forecasts from different models. The seasonal variations in the prediction are shown:MAM

(March–May); JJA (June–August); SON (September–November); and DJF (December–February). OBS and EnsMean in the figure

represent the observations and the means of the raw ensemble members, respectively.
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strategy and the selected predictors aredifferent from thoseused in

traditional methods. For example, a forward rolling time window

(3 days) strategy is used in this study, while many studies select

rolling time windows (15 days) before and after the event, which

is a significant difference (Li et al. 2019). We selected a large

number of predictors to build regional models, which is also dif-

ferent from the methods used for traditional statistical post-

processing models (Scheuerer and Hamill 2015). To determine

whether the machine learning methods are better than the tradi-

tional methods, careful experiments should be set up in future

studies for comparison (e.g., LGBM and CSGD).

In our experiments, we used a simple artificial neural network

model (multilayer perceptron model, MLP) with only two hidden

layers. We tuned the hyperparameters many times, including the

learning rate, activation function, and the number of neurons. Our

final model did not show a significantly better performance than

those of other models. This may be caused by our insufficient

training samples, as MLP tends to require a larger sample size

compared to other ML models. Another possible reason is that

we used a shallow neural network, and the shallower network

layers underfit the nonlinear relationship between precipitation

forecasts and observations. The major difference between the

shallow neural network and deep neural networks is the number

of layers. Advanced deep neural networks, including convolu-

tional neural networks (CNNs) and recurrent neural networks

(RNNs), contain deep hidden layers and even incorporate some

feature extraction strategies, such as encoding–decoding. Such a

group of deep learningmodels are very flexible and can perform

many incredible tasks with careful tuning. In our research, we

focused on comparisons between traditional machine learning

models and therefore did not involve deep learning methods.

Recent research suggested that deep learning methods may be

able to provide more accurate precipitation forecasts or opti-

mize postprocessing (Shi et al. 2017; Wu et al. 2020). Deep

learning tends to require more computational resources. In the

future, we can use more data and deeper neural networks to

compare them with other traditional machine learning models

(e.g., LGBM) with respect to their model performance and

training time.

In addition to the boosting and bagging ensemble learning

methods mentioned in the text, simple averaging is often

used as the simplest form of ensemble learning (see e.g.,

Papacharalampous et al. 2019; Tyralis et al. 2019, 2020) and

constitutes an alternative to hyperparameter optimization

in the sense that they both improve predictive performance

(see, e.g., Papacharalampous et al. 2019). We also made

FIG. 9. Spatial distributions of precipitation forecast improvement skill scores from different models.
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similar attempts through three differentmodel combinations (see

Figs. S1–S3). They are the combination of all 21 models (com-

bine1), the combination of four selected models (combine2), and

the combination of the best two methods (combine3). This

strategy does not seem to have achieved better results for com-

bine1, because the performance of our base models is uneven.

Inferior models applying equal weight averaging may affect the

overall performance. But combination 2 and combination 3 seem

FIG. 10. The climatology obtained from the observations (OBS, black lines), raw forecast (EnsMean, pink lines), and regional (magenta

lines) and local (orange lines) postprocessing models at grid cell 5.
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to reach a comparable level, which confirms that strong combi-

nations can better improvemodel performance. In this study, the

good performance of the ensemble model based on bagging or

boosting (e.g., RF and LGBM) shows that a weight averaging

method are recommended to solve the problem of multimodel

(or multimembers) precipitation postprocessing.

In summary, ML models are essentially derived from sta-

tistical theory, but they go beyond traditional statistical

FIG. 11. The climatology obtained from the observations (OBS, black lines), raw forecast (EnsMean, pink lines), and regional (magenta

lines) and local (orange lines) postprocessing models at grid cell 39.
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methods by being able to handle high-dimensional features

and by being applicable to big data. With the development of

NWPs model and computer technology, the previous chal-

lenges of sample size and computational resources no longer

exist, soMLmodels are potential as alternatives to traditional

methods (Boukabara et al. 2019; Vannitsem et al. 2021).

b. Feature selection techniques

Predictors can be selected from various aspects, such as the

element field, space and time. Different combinations of fea-

tures are selected and compared in this study (Fig. 5). Thus,

some preliminary variable importance can be derived: 1) the

forward rolling time window is the most important variable; 2)

ensemble members is essential to increase the dispersion; and

3) regional model based on neighboring data within the basin

reduces modeling complexity.

There are three types of predictors in terms of physical

elements. The first is based on the direct outputs of NWPs,

such as precipitation predictions and variables that are

closely related to precipitation (e.g., temperature and wind

speed, see Bremnes 2004; Peng et al. 2014). The second

category is the diagnostic physical elements that are calcu-

lated from basic factors, such as the water vapor flux (Darby

et al. 2019). For direct and extended variables, the ensemble

mean and standard deviation can also be used to express the

mean and dispersion of ensemble members (Rasp and Lerch

2018). The third category includes geographically related

attributes, such as latitude, longitude, and elevation infor-

mation (Kratzert et al. 2019). However, in this study, we

only selected the precipitation ensemble forecasts as pre-

dictors without considering the additional auxiliary vari-

ables because that a large number of computing resources

were spent on the model comparison. In the future study,

more covariables could be used as predictors to build a more

sophisticated model.

Similarly, as for spatial features, all data within the water-

shed are fed into the model as spatial information to reduce the

modeling effort. However, as the scale of the study area in-

creases, this strategy is not desirable. In most of the previous

studies, the strategy for the selection of spatial predictors was

to build a postprocessing model for each grid cell or site sep-

arately to ensure local accuracy (Li et al. 2019). This approach

is very complex and cumbersome for multiple stations with

multiple forecasting periods. In recent years, considering pre-

cipitation center shift and regional similarity, several studies

have also introduced a hyperparameter radius (Scheuerer

2014; Scheuerer and Hamill 2015). That is, when a post-

processing model is built for a specific grid cell, the forecasts

within the radius are selected as predictors. However, due to

differences in topography, climate type, and study area, the

hyperparameter radius varies and is usually selected by adap-

tive algorithms.

Another difference from the traditional method is the

selection of time-dimensional features. A forward rolling

time window strategy is used in this study. This is different

from the traditional rolling time window, which tends to

select several periods before and after the forecast day as

predictors (Hamill et al. 2008). In fact, the traditional

method selects a larger time window because it considers

regional climatology information to increase the sample

size. However, the results of the correlation skill analysis

(Fig. 3c) confirm that the useful information of forecasts

with larger time windows is limited. A shocking finding is

f(k, k 2 1) in forward rolling time window is of a higher

correlation with p(k) comparing to f(k, k). A possible hy-

pothesis is that we are comparing the correlation skill be-

tween ensemble mean and observations, and that f(k, k2 1)

has a higher dispersion (EnsStd) relative to the ensemble

members of f(k, k), thus better describing the uncertainty

of the weather state. However, whether this hypothesis

holds for other study areas needs to be confirmed by more

cases. If so, the features obtained using this strategy would

be more effective and would reduce the complexity of the

postprocessing models.

Another issue is that an increase in the number of pre-

dictors may lead to redundancy of information and increase

the computational burden. Therefore, in future studies,

when we focus on one machine learning algorithm (e.g.,

LGBM), we can select more predictors to enhance the model

performance. Meanwhile, because we did not select auxiliary

predictors as features and the maximum feature dimension

was 33 in this study, only the correlation skill technique was

applied for feature selection, and the dimensionality reduc-

tion strategy was not designed. Although ML models have

automatic feature extraction capabilities, manually designed

feature selection and dimensionality reduction are necessary

to filter for more physically meaningful predictors and re-

duce model complexity. In the future study, more strategies

for dimensionality reduction (e.g., principal component

analysis, t-SNE) should be included in the process of feature

engineering to preserve the most important features as much

as possible.

The last issue is the sample size. The sample size should be

regarded as a hyperparameter that affects the model perfor-

mance. An increase in the sample size may lead to improved

model performance, but may also lead to overfitting. Due to

the limitation of the number of experiments, we only used 10-

and 20-yr data as the training sets in our research and did not

choose more combinations. For different models in future

studies, especially more complex deep learning models, the

sample size is a noteworthy hyperparameter that needs to be

treated carefully. Another contradiction is that although our

sample size is large enough, the sample size of extreme pre-

cipitation events is still very small. This also leads to a

certain shortcoming in our ability to handle extreme pre-

cipitation events. The best way to solve data imbalances

through different approaches (e.g., data supplementation)

is also an area worthy of further research.

6. Conclusions

Although the development of existing techniques has

greatly improved the accuracy of weather forecasting, there

are still uncertainties and bias in precipitation predictions.

Bias correction is crucial for hydrometeorological ensemble

forecasting and applications in hydrology-related fields. In
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recent years, especially in the last five years, machine

learning models have gained much popularity in Earth sci-

ence disciplines, including hydrology. These data-driven

approaches are essentially statistical learning methods, but

they surpass traditional statistical methods in that more

predictors can be selected as input feature vectors, and such

black-box models do not require a priori information and

can fit nonlinear relationships between input and output

variables. All these advantages make machine learning al-

gorithm become a better solution in the postprocessing of

hydrometeorological ensemble forecasts. In this study, we

try to compare postprocessing models for NWPs (e.g.,

GEFS) using machine learning approaches. The selected

machine learning models include simple linear regression

models and their extensions, artificial neural networks (e.g.,

MLPs), and state-of-the-art ensemble learning models (e.g.,

RF and LGBM). To fully compare the usability of these

models, we selected the Yalong River basin as an example.

We established nine different experiments for each machine

learning algorithm, which resulted in a total of 189 combi-

nations. The results show that our experimental design can

adequately compare the advantages and disadvantages of the

different models and select the best predictors for post-

processing modeling. Overall, the following conclusions can

be drawn from our research:

1) The model structure determines their higher priority.

Under same experimental conditions, the nonlinear, en-

semble models always outperformed the linear models.

Combining the factors of training time and model accuracy,

LGBM is the best one among all selected models; when

considering only model accuracy, the ET model is recom-

mended for application.

2) The selection of forecast predictors plays a significant role

in the improvement of the forecast accuracy of the post-

processing models. Among nine sets of experiments in our

study, the best model performance was obtained using 11

ensemble members and a 3-day forward rolling time win-

dow. And the selection of the time window is the most

important.

3) Machine learning models are able to learn local features

from mixed samples of the whole basin with different

climatic conditions. Regional models can reduce model-

ing complexity and improve efficiency in operational

forecasting.
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APPENDIX

Software and Machine Learning

a. Used software

We conducted all experiments in this study with Python

programming language including following packages: xar-

ray (http://xarray.pydata.org/), numpy (https://numpy.org)

and pandas (https://pandas.pydata.org/) for data preprocessing;

scikit-learn (https://scikit-learn.org), pycaret (www.pycaret.org),

LGBM(https://github.com/microsoft/LightGBM), XGB (https://

xgboost.ai/), and CATB (https://catboost.ai/) for machine learn-

ing modeling; matplotlib (https://matplotlib.org/) and cartopy

(https://scitools.org.uk/cartopy) for visualizations.

b. Machine learning basics

A theoretical linear model and a trained model can be

expressed as

y5wX1 « , (A1)

ŷ(w, x)5wX5w
0
1w

1
x
1
1 . . . 1w

p
x
p
1 « , (A2)

where y is the target variable; ŷ is the fitted target variable,X is

the input variable; w is the weight, « is the error term.

We fit the above function by minimizing the loss function

and solving the parameters

ŵ5 argminL
w

(y, ŷ), (A3)

where ŵ is estimated value w; L(y, ŷ) is the loss function.

Original least squares linear regression:

L(y, ŷ)5 kwX2 yk22 . (A4)

L1 regularization in lasso regression:

L(y, ŷ)5
1

2n
kwX2 yk22 1akwk

1
. (A5)

L2 regularization in ridge regression:

L(y, ŷ)5 kwX2 yk22 1akwk22 . (A6)

Combined L1 and L2 regularization in elastic net

L(y, ŷ)5
1

2n
samples

kk1arkwk
1
1
a(12 r)

2
kwk22 , (A7)

where a and r are regularization parameters.

Linear loss in Huber regression:
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where s and a are regularization parameters; � is a threshold

value using for select outliers.

Hinge loss function in PAR and SVM:

L(w, «)5max(0, jy2Xwj2 «), (A10)

where « is a threshold value using for select outliers.
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