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Abstract: Satellite precipitation estimates (SPEs) are promising alternatives to gauge observations
for hydrological applications (e.g., streamflow simulation), especially in remote areas with sparse
observation networks. However, the existing SPEs products are still biased due to imperfections
in retrieval algorithms, data sources and post-processing, which makes the effective use of SPEs a
challenge, especially at different spatial and temporal scales. In this study, we used a distributed
hydrological model to evaluate the simulated discharge from eight quasi-global SPEs at different
spatial scales and explored their potential scale effects of SPEs on a cascade of basins ranging from
approximately 100 to 130,000 km2. The results indicate that, regardless of the difference in the
accuracy of various SPEs, there is indeed a scale effect in their application in discharge simulation.
Specifically, when the catchment area is larger than 20,000 km2, the overall performance of discharge
simulation emerges an ascending trend with the increase of catchment area due to the river routing
and spatial averaging. Whereas below 20,000 km2, the discharge simulation capability of the SPEs
is more randomized and relies heavily on local precipitation accuracy. Our study also highlights
the need to evaluate SPEs or other precipitation products (e.g., merge product or reanalysis data)
not only at the limited station scale, but also at a finer scale depending on the practical application
requirements. Here we have verified that the existing SPEs are scale-dependent in hydrological
simulation, and they are not enough to be directly used in very fine scale distributed hydrological
simulations (e.g., flash flood). More advanced retrieval algorithms, data sources and bias correction
methods are needed to further improve the overall quality of SPEs.

Keywords: satellite precipitation estimates; hydrological simulation; scale effects; PERSIANN; GPM;
DTVGM; Yalong River basin

1. Introduction

Precipitation is an important climate variable as well as a major driver of the water
cycle [1–3]. The traditional method of measuring precipitation is to observe through
gauge stations on the ground. However, due to its high cost, the rain gauge network is
very sparsely distributed in some regions (e.g., remote areas or high-altitude locations),
resulting in its spatial under-representation [4,5]. Radar precipitation is susceptible to
many effects (e.g., topography), and usually cannot provide full coverage of precipitation
observation [6]. Satellite precipitation estimation is currently the most promising tool,
which can provide quasi-global precipitation estimation with high spatial and temporal
resolution [7]. Existing state-or-the-art satellite precipitation estimate products (SPEs)
include the Precipitation Estimate from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN), the Tropical Rainfall Measuring Mission (TRMM), the
Global Precipitation Measurement Mission Integrated Multi-satellitE (GPM IMERG) and

Remote Sens. 2021, 13, 3061. https://doi.org/10.3390/rs13163061 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6996-0008
https://orcid.org/0000-0002-9055-2583
https://doi.org/10.3390/rs13163061
https://doi.org/10.3390/rs13163061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163061
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163061?type=check_update&version=1


Remote Sens. 2021, 13, 3061 2 of 24

Global Satellite Mapping of Precipitation (GSMaP) [8–12]. Among them, different satellite
estimates incorporate input data from different sensors. For example, the latest PERSIANN
Dynamic Infrared-Rain rate model (PDIR), which utilizes climatological data to construct a
dynamic cloud-top brightness temperature with the rain rate, contains the spatiotemporal
richness and near-instantaneous availability needed for rapid natural hazards response.
Other products (e.g., GSMaP) use both IR and passive microwaves (PMW) as input sources
and therefore require relatively more processing time. There are also many products (e.g.,
IMERG Final) that use ground-based observations for bias correction, which are often used
for research-level (or climate-scale) studies and are not suitable for real-time monitoring
and forecasting. Despite the great development of satellite retrieval algorithms, data
sources, post-processing and other technologies, SPEs still suffer biases compared with
ground observations [13]. Understanding and quantifying the bias can better serve the
updating iteration and application of SPEs [14].

Many studies have been conducted at global or regional scales using various hydro-
logical models for the validation of a wide range of SPEs [15–20]. Such studies intuitively
enable us to recognize and understand the response of rainfall-runoff processes to input
uncertainty and the propagation of input uncertainty in the water cycle [21–25]. For ex-
ample, Beck et al. [26] selected 9053 small to medium-sized watersheds (catchment area
less than 50,000 km2) on a global scale and evaluated 22 global precipitation products,
including satellite estimates, reanalysis and merging products, using the HBV hydrologi-
cal model. Their results showed significant spatial variability in the performance of the
different products on a global scale, which emphasizes the importance of assessing and
selecting datasets at local scales [26]. Similarly, Mazzoleni et al. [27] selected eight large-
sized catchments (Amazon, Brahmaputra, Congo, Danube, Godavari, Mississippi, Rhine
and Volga) in different continents around the globe with different catchment areas, climate
types and land conditions. Their study also concluded that there is no unique product that
outperformed the others in all eight selected basins. In addition, their study proposed an
interesting conclusion. That is, the runoff simulation ability of the same product at the
outlet of the basin does not indicate its simulation accuracy in internal locations, and they
highlighted the importance of using distributed models [27]. The above studies remind
us of the importance of pre-evaluation and selection of SPEs for different study areas.
More importantly, they demonstrated the existence of scale effects in the application of
SPEs. Validating the performance of streamflow simulation only at the basin outlet may
not be enough for distributed applications. However, as these studies involve multiple
watersheds, they did not discuss this issue in depth.

The scale effect is an important topic and belongs to 1 of the 23 unsolved problems in
hydrology [28]. Namely, what are the hydrological laws at the catchment scale and how
do they change with scale? In this study, we attempt to answer the question: What is the
spatial representation of SPEs as forcing data at the catchment scale? Furthermore, how do
they change with scale? In fact, this issue has been discussed in some previous studies. For
example, Michaud and Sorooshian [29] designed a couple of experiments with various rain
gauge densities to discuss the effect of rainfall-sampling errors on distributed hydrologic
simulations. They pointed out that about half of the difference in flood simulations between
observation and simulation was due to sampling errors. Mandapaka et al. [30] also took a
similar approach to explore the spatial correlation of radar rainfall errors. In addition, they
found that the spatial correlation of radar precipitation errors is about 20 km, emphasizing
that we need to take care of the differences in runoff simulations due to point-surface
rainfall uncertainty. Nijssen and Lettenmaier [31] also used a Monte Carlo and Variable
Infiltration Capacity (VIC) model to generate and quantify a large amount of simulated
precipitation and their performance. The results showed that when the catchment area is
larger than 50,000 km2, the runoff simulation error decreases greatly as the catchment area
increases. In another study, the authors indicated that the error was greater for catchments
smaller than 400 km2 compared to larger catchments [32]. All the above studies used the
Monte Carlo method to generate stochastic rainfall sequences to study the scale effects
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(or sampling error) of the satellite or radar products used. However, the conclusions they
obtained are not entirely consistent due to the small number of relevant cases, so more case
studies are needed. Moreover, they did not use real precipitation products or fully reveal
the scale effects. As indicated, this still is an unsolved issue [28].

To date, we have a large number of available precipitation products. It is time to
revisit the latest precipitation products and their possible scale effects in hydrological
application. In this study, we select the Yalong River basin in China as a case. The
eight latest quasi-global SPEs are used to drive a distributed hydrological model to val-
idate their applicability and scale effects. This study not only deepens our understand-
ing of satellite precipitation estimates products and their hydrological applications, but
also contributes to the study of other rainfall-related topics, such as an estimation of the
Areal Reduction Factor (ARF) [33,34] and spatial classification of Rainfall events [35–37].
Section 2 introduces the study area, dataset, hydrological model and performance metrics
we selected. The main results are described and analyzed in Section 3. Related studies and
issues are discussed in Section 4. Section 5 summarizes the conclusions.

2. Materials and Methods
2.1. Study Area

Yalong River is the largest tributary of the Jinsha River in the upper reaches of the
Yangtze River of China (Figure 1a). The Yalong River (YLJ) basin is located in the eastern
part of the Qinghai-Tibet Plateau and stretches from 96◦52′E to 102◦48′E longitude and
from 26◦32′N to 33◦58′N latitude. The basin spans 1570 km, with a total area of about
130,000 km2 and significant variation in elevation from north to south (from 7148 m
to 115 m). The precipitation in the YLJ basin increases from north to south, with an
average annual precipitation of 550 mm in the source area and up to about 1500 mm in
the middle and downstream areas (Figure 1d). The runoff distribution is consistent with
the precipitation. For better calibration and verification of the hydrological model, we
collected flow records from 2006–2015 at four hydrological stations, namely, Tongzilin
(TZL), Yajiang (YJ), Daofu (DF) and Ganzi (GZ) (Figure 1b). The average annual discharge
at the outlet (TZL) of the basin is about 1860 m3/s. The downstream areas of the YLJ basin
are heavily exploited for hydropower production through a complex system of reservoirs
(e.g., Pingxiang Hydropower Station and Ertan Hydropower Station). These reservoirs are
useful for flood control during the rainy season, guarantee human water use during the
dry season and provide abundant power resources through specific scheduling rules.

2.2. Gauge Precipitation Observations

The China Meteorological Administration (CMA)-observed gridded precipitation
(0.5◦ × 0.5◦ and daily) was used in this study as a benchmark and reference. This product
was developed by interpolating the high-density gauge observations from more than
2400 stations over China [38]. The good quality and spatial representativeness has been
confirmed [38] and widely applied in climate change [39], drought monitoring [40,41] and
hydrological simulations [42].

2.3. Satellite Precipitation Estimates Products (SPEs)

In this study, eight satellite precipitation estimates products (SPEs) were selected as
alternatives to CMA ground observations (Figure 2) and they have also been widely used
as alternatives in previous studies. These products differ in algorithms, data sources and
bias correction. They can be broadly divided into three categories: (1) Near real-time
products with sole IR input (PERSIANN, PERSIANN-CCS and PDIR-Now) and without
bias correction, (2) bias-corrected products using rain gauge observations (CMORPH,
IMERG Final, GSMaP) and (3) climate data records (PERSIANN-CDR, PERSIANN-CCS-
CDR). Detailed information of these products can be found in Table 1 as well as in some
earlier studies [9,43].
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Figure 1. (a) The location of the Yalong River basin. (b) The terrain and gauge distribution in
the Yalong River basin. (c) Basin-averaged precipitation climatology for 2003–2019. (d) Spatial
distribution of mean annual precipitation (MAP) for 2003–2019.

Figure 2. The spatial distribution of mean annual precipitation (MAP) (2003–2019) for eight SPEs
(a–h) in the YLJ basin.
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Table 1. Satellite precipitation estimates (SPEs) used in this study. GPCP: Global Precipitation Climatology Project dataset;
CPC: Climate prediction center dataset; GPCC: Global Precipitation Climatology Centre dataset.

Category Product Availability
Period

Spatial
Coverage

Temporal
Resolution

Spatial
Resolution

Time
Delay

Bias
Correction

Near real-time
without bias

correction

PERSIANN March 2000
–present 60S–60N 1 h 0.25 2 days -

PCCS January 2003
–present 60S–60N 1 h 0.04 1 h -

PDIR March 2000
–present 60S–60N 1 h 0.04 15–60 min -

Near real-time
with bias
correction

CMORPH January 1998
–present 60S–60N 30 min 0.25 3–4 months CPC

GPCP

IMERG June 2000
–present 60S–60N 30 min 0.1 3.5 months GPCC

GSMaP April 2000
–present 60S–60N 1 h 0.1 4 h CPC

Climate data
record

PCDR January 1983
–present 60S–60N 1 day 0.25 3 months GPCP

PCCSCDR January 1983
–present 60S–60N 3 h 0.04 3 months GPCP

2.3.1. PERSIANN

Precipitation Estimate from Remotely Sensed Information using Artificial Neural
Networks (hereafter, PERSIANN) [44] is the first generation of the PERSIANN family
of products. PERSIANN uses a modified propagation network and clusters the satellite
infrared (IR) imagery into various categories using a self-organizing feature map (SOFM).
Meanwhile, the passive microwave (PMW) imagery is used to adapt the parameters of
the network.

2.3.2. PCCS

The PERSIANN-Cloud Classification System (hereafter, PCCS) [45] uses a cloud-patch-
based algorithm, which extracts features (e.g., cloud coverage) from the satellite images
under specified temperature thresholds and classifies them into different categories using
SOFM. Then, the relationships between brightness temperature and rainfall rate are fitted to
estimate the precipitation using histogram matching and the nonlinear exponential function.

2.3.3. PCDR

The PERSIANN-Climate Data Record (hereafter, PCDR) [46] was intended to develop
a long-time historical precipitation record (1983–present). Therefore, it uses more available
satellite information from the International Satellite Cloud Climatological Project (ISCCP).
Meanwhile, it uses the National Centers for Environmental Prediction (NCEP) Stage IV
hourly precipitation data to tune the parameters of the modified PERSIANN model. Finally,
the Global Precipitation Climatology Project (GPCP) monthly 2.5 precipitation data are
also used to correct the bias of the raw PCDR data.

2.3.4. PCCSCDR

PERSIANN-Cloud Classification System-Climate Data Record (hereafter, PCCSCDR) [47]
is a merged product, which concentrates PCCS and PCDR and provides a long-term
(1983–present) and high-spatiotemporal-resolution (0.04◦ × 0.04◦, 3 h) precipitation record.

2.3.5. PDIR

PERSIANN-Dynamic Infrared Rain Rate near real-time (PDIR-Now, hereafter, PDIR) [48,49]
is the latest generation of the PERSIANN family of products. It incorporates more high-
frequency sampled IR imagery and provides near real-time precipitation estimates with
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a very short time latency (15–60 min). Moreover, the latest PDIR algorithm establishes
a dynamic shifting curve between cloud-top brightness temperature and rainfall rate
using rainfall climatology to reduce the uncertainties derived from satellite IR images.
PIDR dataset is produced at a high spatiotemporal resolution (1 h, 0.04◦ × 0.04◦) with a
quasi-global coverage (60◦N–60◦S).

2.3.6. CMORPH

Bias-corrected Climate Prediction Center Morphing Technique Climate Data Record
(BC-CPC-CMORPH V1.0-CDR, hereafter referred to CMORPH) [50] is a reproduced version
of CMORPH post-processed with bias correction by incorporating CPC daily gauge analysis
over land and the Global Precipitation Climatology Project (GPCP) merged precipitation
over the ocean. The original CMORPH technique is a novel method that combines the
PMW data from low earth orbiting satellites (LEOS) and IR data from geostationary earth
orbiting (GEO) satellites. CMORPH provides high-resolution global satellite precipitation
estimates by performing a time-weighted interpolation between the PMW scans. CMORPH
are now available at three temporal resolutions (30 min, 1 h and 1 day) and include a quasi-
global (60◦N–60◦S) high-spatial-resolution (0.25◦ × 0.25◦) record from 1998 to present
for researchers.

2.3.7. IMERG

The Global Precipitation Measurement Mission Integrated Multi-satellitE (GPM IMERG) [8]
provides multi-satellite precipitation estimates retrieved from PMW satellite images. Its
main products include the IMERG Early Run (near real-time low-latency), the IMERG Late
Run (quasi-Lagrangian time interpolation) and the IMERG Final Run (bias correction). In
this study, we selected the IMERG Final Run V6B product (hereafter, IMERG). Its algorithm
fully integrates the advantages of morphing technique, PCCS, and Kalman filter. Then,
after bias correction by GPCC gauge analysis, research-quality long-term (2000–present)
quasi-global (60◦N–60◦S) high-spatiotemporal-resolution (0.1◦ × 0.1◦, 30 min) precipitation
estimates are generated.

2.3.8. GSMaP

Gauge-calibrated Global Satellite Mapping of the Near real-time Precipitation product
(GSMaP_Gauge_NRT_v6, hereafter, GSMaP) [11,12] covers quasi-global (60◦N–60◦S) cover-
age and provides high-spatiotemporal-resolution (0.1◦ × 0.1◦, 1 h) precipitation estimates.
The algorithms of this product are mainly done by the microwave-IR merged algorithm
(GSMaP-MVK) and gauge calibration, which makes full use of the multiple-input informa-
tion, including microwave imager and sounder, GEO IR imager, space-borne precipitation
radar, atmospheric condition, sea surface temperature (SST), CPC unified global gauge
analysis and topographic data.

2.4. Other Data

Other meteorological forcing data (wind speed, maximum and minimum temperature)
were collected from 10 national meteorological stations located in the YLJ basin. For
hydrological modeling, the precipitation and temperature data were further interpolated
into each sub-basin by using the inverse distance weighting (IDW) method and elevation
correction [51]. The wind speed data were also interpolated into each sub-basin using
the synergistic mapping (SYMAP) algorithm [52]. Daily (2007–2014) streamflow records
for four hydrological stations were collected for model calibration and verification. The
1 km soil types and land use data were clipped from the China soil map-based harmonized
world soil database (HWSD) (v1.2) and the Chinese Academy of Sciences Resource and
Environmental Science Land use dataset, respectively. The 90 m digital elevation model
(DEM) data were downloaded from the National Aeronautics and Space Administration
Shuttle Radar Topographic Mission (NASA SRTM).
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2.5. Hydrological Model

In this study, we use a distributed hydrological model called the distributed time-
variant gain hydrological model (DTVGM) [53,54], which was developed from rainfall-
runoff nonlinear theory and can now be fully driven by remote sensing information [55].

First, given a threshold of the sub-basin (100 km2 in this study), we use the drainage
network extraction method introduced by Du et al. [56] to spit the whole YLJ basin into
522 sub-basins. The minimum threshold for sub-basin is based on the complexity of
hydrological modeling, the running time step, the area of the Yalong River basin, the time
scale of the hydrological simulation and the resolution of the forcing data. In each sub-basin
(as known as the hydrological response unit, HRU), the runoff is calculated according to
the water balance (Equation (1)).

Pt + AWt = Ep,t · Ke + AWt+1 + g1 ·
(

AWu,t

WMu · C

)g2

· Pt + AWu,t · Kr + AWg,t · Kg (1)

where t is the time step; P is the precipitation (mm); Ep is the potential evapotranspira-
tion (mm); AW represents the soil moisture (mm); WM is the field soil moisture (mm);
Subscript u and g represent the upper and lower layers of soil, respectively; Ke, Kr, and
Kg are the coefficients of evapotranspiration, interflow runoff and groundwater runoff,
respectively; g1 and g2 are factors describing the nonlinear process of runoff; and C is the
land cover parameter.

The kinematic wave equation is used for streamflow routing [57,58]. n in the river
routing procedure stands for the roughness factor [58]. The degree-day method is used to
compute the snowmelt in the upper reaches of the YLJ basin [59].

2.6. Performance Metrics

To evaluate the satellite precipitation estimates products, we selected five metrics as
follows: the Pearson Correlation Coefficient (R), the Nash–Sutcliffe efficiency (NSE) [60],
the Kling–Gupta efficiency (KGE) [61], the Relative bias (RB) [62] and the Normalized
centered root mean square error (NCRMSE) [22]. Among them, R describes the correlation;
NSE and KGE are two integrated goodness-of-fit metrics; RB and NCRMSE describe the
systematic bias and random bias, respectively. Their equations, intervals and optimal
values are summarized in Table 2.

Table 2. Performance metrics used in this study.

Metrics Formula Interval Optimum

R R =
∑n

i=1 (Oi−O)(Si−S)√
∑n

i=1(Oi−O)
2
√

∑n
i=1(Si−S)

2 [−1, 1] 1

NSE NSE = 1− ∑n
i=1(Si−Oi)

2

∑n
i=1(Oi−O)

2 [−∞, 1] 1

KGE

KGE2012 = 1− ED

ED1 =
√
(s[1] ∗ (R− 1))2 + (s[2] ∗ (γ− 1))2 + (s[3] ∗ (β− 1))2

R =
∑n

i=1 (Oi−O)(Si−S)√
∑n

i=1(Oi−O)
2
√

∑n
i=1(Si−S)

2

β = µs/µo

γ = CVs
CVo

=
σs/µs
σo/µo

[−∞, 1] 1

RB RB = ∑n
i=1(Si−Oi)
∑n

i=1 Oi
[−∞, +∞] 0

NCRMSE NCRMSE =

√
1
n ∑n

i=1[Si−Oi− 1
n ∑n

i=1(Si−Oi)]
2√

1
n ∑n

i=1(Oi−O)
2

[0, +∞] 0

Note: s is a coefficient matrix, here s = [1, 1, 1]. S is the satellite precipitation estimates products; O is the gauge observations.
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3. Results

We evaluated the performance of each of the eight SPEs at the hydrologic station and
sub-basin scales using the calibrated DTVGM hydrologic model from 2001 to 2019. In
this paper, we took the discharge simulations driven by the observed precipitation as the
reference (or “truth”) and compared the satellite-driven simulations with them. The differ-
ences between the satellite-driven and observation-driven simulations were considered as
the error of SPEs. We chose the observation-driven simulations instead of the observed
discharge at hydrological stations as the reference for the following two considerations:
(1) We only used one distributed hydrological model in this study. Although we adequately
calibrated the model, there may still be uncertainties in the model structure and model
parameters. Using the observation-driven simulations as the reference allowed us to focus
on analyzing the uncertainties of different SPEs without considering the influence of the
model structure and the model parameter uncertainties. (2) The number of stations with
observed discharge is often limited, especially in remote areas. We collected data from
four hydrological stations, which was valid for model calibration and verification to some
extent but was far from enough for assessing the applicability of SPEs at the sub-basin or
grid scale.

3.1. Model Calibration and Verification

In this study, we used CMA precipitation gauge observations to force the DTVGM
and four hydrological discharge records to calibrate and verify DTVGM at a daily scale.
The discharge simulation was divided into a warm-up period (2006), a calibration period
(2007–2010) and a validation period (2011–2014). We manually calibrated the model param-
eters during the calibration period (2007–2010). The Nash–Sutcliffe efficiency (NSE) and
relative bias (RB) were selected as the main objective functions, constraining the NSE > 0.7
and RB between ±10%. Firstly, we adjusted Ke (0 < Ke < 1) to reduce the overall RB of
simulation, then tuned Kr (0 < Kr < 1), Kg (0 < Kg < 1), g1 (0 < g1 < 1) and g2 (g2 > 0) to
achieve a good enough NSE, and finally fitted the flood peak time by changing different n
(0.001 < n < 0.15).

Figure 3 shows the model validation results for the four hydrological stations. Except
for the TZL station, all other stations achieved good simulation accuracy (with R > 0.9; NSE
and KGE > 0.85; RB < ±10%). In order to ensure the effectiveness of the hydropower plants
located in the lower YLJ basin, these reservoirs store more water through regular operations
compared to natural conditions. Periodic reservoir operations led to the observation of
more undulating hydrologic curves than the smoother hydrologic curves we simulated
(Figure 3a). However, we did not consider the effect of downstream, regional, intense
reservoir scheduling in this study, which was also not the main objective of our research.
Meanwhile, we used the observed precipitation-driven simulated flows as a reference in the
following section to ignore the uncertainties in the model structure and model parameters.

3.2. Validation of Discharge Simulations at Four Gauged Hydrological Stations and Sub-Basin Scale

By driving the DTVGM model with different SPEs, we obtained corresponding stream-
flow simulations for four hydrological stations. Figure 4 shows an example of the hydro-
graph for the TZL station, and those for the other three hydrological stations can be found
in the Supplementary Materials (Figures S1–S3). By comparing the streamflow obtained
from different datasets, there are quite a lot of mismatches as well as a severe overesti-
mation of flood peaks in PCCS and PERSIANN. The mismatches and overestimation of
flood peaks also can be quantified by the low temporal correlation coefficient and high RB
values. These two main factors are also responsible for the overall poor performance of
PCCS and PERSIANN.
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Figure 3. Model calibration and verification at four hydrological stations. (a) TZL. (b) YJ. (c) DF.
(d) GZ. Pearson correlation coefficient (R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency
(KGE); Relative bias (RB).

Except for PCCS and PERSIANN, the simulations obtained from the other six precipi-
tation products are in high agreement with the reference (CMA). All of them can capture
the intra-annual and inter-annual variability well. This is attributed to the fact that they are
all bias corrected (except PDIR), whereas the main sources of errors are mainly overestima-
tion and underestimation of flood peaks. For example, PCCSCDR severely overestimates
during the high flow period in flood season. PCDR, PDIR and GSMaP also show different
degrees of overestimation, while IMERG relatively underestimates the flood peaks. Among
the eight products, CMORPH is largely consistent with the reference at the TZL station.

Table 3 summarizes the results for the four hydrological stations, which are distributed
at different locations (internal or at the outlet) in the YLJ basin and represent the variation in
model performance with the catchment area (Figure 1b). So, these four hydrological stations
representing the results of streamflow simulations in four catchments (or sub-basins) from
large to small can be used to preliminarily evaluate the performance of different SPEs
in different spatial scales and their potential scale effects. To distinguish these products,
we divide the results into three columns. The numbers in bold on the left and middle
column represent the best values for the near real-time products without bias correction
and with bias correction, respectively. Furthermore, the numbers in bold on the right
column represent the best values for the climate data records.
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Figure 4. The model simulation forced by CMA observation and eight different SPEs (a–h) at the TZL
station. Pearson correlation coefficient (R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency
(KGE); Relative bias (RB); Normalized centered root mean square error (NCRMSE).
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Table 3. Hydrological evaluation of eight SPEs at four hydrological stations of the YLJ basin. Pearson correlation coefficient
(R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency (KGE); Relative bias (RB); Normalized centered root mean
square error (NCRMSE).

Station
(Catchment Size) Metric

Without Bias Correction With Bias Correction Climate Data Record

PERSIANN PCCS PDIR CMORPH IMERG GSMaP PCDR PCCSCDR

TZL
(~127.2 ×103 km2)

R 0.520 0.377 0.899 0.962 0.969 0.920 0.916 0.875
NSE −0.816 −3.165 0.600 0.924 0.924 0.160 0.394 −0.162
KGE 0.271 −0.359 0.764 0.961 0.902 0.567 0.636 0.486

RB (%) 53.98 118.56 15.77 −0.07 −9.30 38.37 33.99 47.78
NCRMSE 0.810 0.758 0.457 0.278 0.284 0.484 0.453 0.536

YJ
(~66.5 ×103 km2)

R 0.240 0.084 0.820 0.928 0.915 0.892 0.834 0.774
NSE −8.638 −23.127 0.490 0.799 0.818 0.199 −0.425 −1.921
KGE −0.766 −2.264 0.762 0.789 0.848 0.604 0.440 0.151

RB (%) 159.32 313.12 11.31 19.31 −12.58 31.95 50.94 79.6
NCRMSE 0.841 0.769 0.570 0.507 0.463 0.513 0.588 0.658

GZ
(~32.6 ×103 km2)

R 0.088 −0.021 0.73 0.837 0.876 0.828 0.762 0.667
NSE −27.205 −76.389 0.276 0.586 0.741 0.524 −0.863 −3.589
KGE −1.753 −4.226 0.687 0.664 0.787 0.711 0.411 0.044

RB (%) 258.41 512.43 8.28 −29.4 −13.88 −21.0 46.85 81.75
NCRMSE 0.863 0.798 0.687 0.74 0.508 0.562 0.662 0.747

DF
(~14.2 ×103 km2)

R 0.224 0.06 0.795 0.929 0.925 0.909 0.86 0.768
NSE −9.431 −25.353 0.32 0.835 0.841 0.151 −0.47 −2.404
KGE −0.663 −2.127 0.703 0.847 0.867 0.583 0.42 0.12

RB (%) 146.16 298.19 17.79 −12.56 −11 32.83 53.89 81.3
NCRMSE 0.863 0.783 0.601 0.454 0.42 0.503 0.563 0.668

Note: Bold numbers in the table indicate the optimum in near real-time SPEs (without bias correction), bias-corrected SPEs and climate
data records, respectively.

When comparing the accuracy of different products horizontally, the performance
ranking of different products is basically the same, despite the differences in the size of
the catchment area. For example, in the near real-time family, PDIR expresses the best
performance (R, NSE, KGE and RB) for all stations evaluated. Similarly, for the bias-
corrected products, IMERG has a better simulation performance than others for three of
the stations evaluated (GZ, YJ and DF), except CMORPH outperforms IMERG at the TZL
station, with the best values of NSE, KGE, RB and NCRMSE.

As mentioned above, we have drawn some common conclusions about the strengths
and weaknesses of the products based on the horizontal comparison of the different
products. However, what is more noteworthy is that the performance of these products
varies greatly from the stations. For example, although PDIR obtained relatively good
results at the TZL station, it performed relatively worse at the YJ, GZ and DF stations,
especially the NSE value, which was 0.6 at the TZL station but only 0.32 at the GZ station.
Other indicators also showed similar degradation. This phenomenon indicates that the
same products may vary greatly when evaluated at different stations, and these stations
are outlets of different sub-basins of the whole basin.

Further, by observing the results of these sub-basins with different catchment areas,
another interesting conclusion that can be summarized is that this degradation seems
to show a regular pattern according to the size of the catchment. For example, the best
performance was observed at the TZL station, which has the largest catchment area, while
the performance of SPEs deteriorates as the catchment size decreases. However, the
generalization of this pattern is hindered by the assessment results at the DF station, which
has the smallest catchment area. The performance for different products is better at the DF
station than at the GZ station, and even better than at the YJ station.

In general, the comparison of the four hydrological stations allows for a ranking of the
products, but this ranking varies somewhat with the stations. The latest generation of the
PERSIANN family of products, PDIR, is a very significant improvement over PERSIANN
and PCCS, while PCCSCDR, a blended product of PCCS and PCDR, is not a significant
improvement. This can be attributed to PCCS, which uses a fixed relationship between the
cloud-top brightness temperature and the rain rate, and results in an underestimation in
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wet regions and an overestimation in dry regions [48,49]. More importantly, the results for
the different sites remind us that it is worth noting the spatial characteristics of the model
performance more. Does the performance of different SPEs have a scale effect? How does
the model performance correlate with the catchment area?

Figure 5 shows the spatial distribution of the five different goodness-of-fit metrics at
each sub-basin of the YLJ basin. To better explore the spatial characteristics of the SPEs-
driven simulations, we compare and evaluate the performance of each of the eight products
at the sub-basin scale. The same color bars are used to describe the relative goodness of the
metrics, except for the presence of positive and negative values of the systematic bias (RB),
with darker colors representing better results for that indicator. The spatial patterns of the
metrics allow us to not only clearly derive the spatial differences between the different
SPEs, but also to analyze the differences of each product in different internal locations
of the basin. It should be noted that the results for the specific sub-basins are the model
performance when the sub-basin is used as an outlet for the catchment.

Figure 5. Spatial distribution of precipitation performance metrics of eight SPEs in YLJ basin. Pearson correlation coefficient
(R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency (KGE); Relative bias (RB); Normalized centered root mean
square error (NCRMSE).
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First, by comparing the different products, we can easily distinguish the advantages
and disadvantages of the products, and this is consistent with the results obtained in the
previous section at the four hydrological stations. In terms of NSE and KGE, among all
products, IMERG and CHORPH belong to the first tier, showing the best performance,
while PDIR, GSMaP and PCDR are in the second tier, and their spatial distribution of NSE is
relatively poor in the local area of the basin. For example, the NSE of PDIR is even less than
0 near the source part and outlet of the YLJ basin. Further, the same is true for PCDR, with
more low values in the middle and upper part of the YLJ basin, while for GSMaP, these cases
occur mainly in the middle and lower reaches. PCCSCDR, PCCS and PERSIANN are in the
third tier for the YLJ basin, where they express the worst accuracy and temporal correlation.
This can be attributed to their severe overestimation in the upper and middle reaches
of the YLJ basin (see the spatial distribution of RB in Figure 5), and this overestimation
could be dominated by the false alarm precipitation overestimation, and it also leads to the
mismatches of flood peaks. Systematic overestimation (or underestimation) of flood peaks
also occurs in several other products, such as the overestimation (or underestimation) of
PDIR, PCDR and GSMaP (or IMERG and CMORPH). However, these overestimates (or
underestimates) did not destroy the temporal correlation.

Then, we focus on the scale effect of discharge simulation. It was not difficult to find
that there is a significant spatial variability for the eight SPEs in the internal locations of
the whole YLJ basin. Furthermore, the significance of spatial variability varies to a degree
with the products. PCCSCDR, PCCS and PERSIANN present the most significant spatial
differences, indicating that these datasets are insufficient or even far from adequate for
application in the upper areas of the YLJ basin. In contrast, the other products express
relatively less spatial variability and perform consistently throughout the whole basin.
However, while these products perform poorly in the upstream areas of the catchment,
they perform better along with the river network, suggesting that the ability to simulate
streamflows driven by SPEs in these regions is very close to that of observation-driven sim-
ulations. The common feature of these regions is that they are all near the riverways, with
larger catchment areas. This suggests that there is indeed a scale effect in the application of
hydrological simulations forcing by SPEs. That is, the error generated in the upstream area
of the catchment is attenuated with the streamflow routing. However, for the source part
of the catchment, i.e., the sub-basins with smaller flow accumulation area (FAA), there are
large differences in model performance. For example, PDIR performs worse at the source
and near the outlet of the YLJ basin compared to IMERG, and CMORPH performs worse
near the outlet of the basin.

3.3. Spatial Scale Dependence of Simulation Performance

The basic law is that the simulation performance increase with the increase of the
catchment area, and there may be a threshold condition triggering the occurrence of this
law. To better quantify the relationship between the simulation capacity and the catchment
area, as well as to find the threshold condition for the occurrence of the scale effect, we
plot the simulation accuracy of all sub-basins and the corresponding flow accumulation
area (FAA, or catchment area) of these sub-basins in a two-dimensional coordinate system.
Figure 6a–e shows the scores of different metrics as a function of the FAA. Figure 6f shows
the distribution of the FAA in different locations of the YLJ basin. Despite the different
evaluation metrics used, Figure 6a–e clearly reveals the correlation between the model
performance and FAA. It is also worth noting that this relationship does have a threshold,
and the threshold is about 20,000 km2, which is determined by all five metrics.
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Figure 6. Hydrological simulation performance metrics (a–e) of eight SPEs as a function of the flow accumulation area
(FAA). (f) The distribution of the flow accumulation area (FAA) in the YLJ basin.

When the FAA (or catchment area) is less than 20,000 km2, the model performance
behaves more randomly, with different model performances in various locations of the YLJ
basin. When the FAA (or catchment area) is larger than 20,000 km2, the model performance
increases with the increase of FAA. This reaffirms our hypothesis that the scale effect affects
the model performance. For the YLJ basin, 20,000 km2 is a key condition to activate the
scale effect.

According to the threshold condition, we further divided the FAA into four intervals
(0–20, 20–60, 60–100 and 100–130; ×103 km2) according to their size. The number of sub-
basins in the four intervals are 476, 19, 13 and 14, respectively. Meanwhile, we selected
the median values of metrics in each interval to represent the average performance of that
interval. For better visualization, we use radar plots to depict the capacity of different
products. In the radar plot, we uniformly standardize the five metrics to the range of 0
and 1. The method of standardization is shown in Appendix A. In this way, for a specific
product, 1 means that the metrics corresponding to that product perform best in the four
intervals. Conversely, 0 means that the metrics corresponding to that product performs
worst in the four intervals. It is important to note that we have standardized the results
between 0 and 1, which can only be applied to compare the relative goodness of products
in four intervals. To be able to quantitatively express the model performance of different
SPEs and FAA, we summarize the results in Table 4.
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Table 4. The discharge simulation performance (median) of eight products in different catchment area intervals. Pearson
correlation coefficient (R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency (KGE); Relative bias (RB); Normalized
centered root mean square error (NCRMSE). The values shown in the table are the median of each interval.

FAA Metric
Without Bias Correction With Bias Correction Climate Data Record

PERSIANN PCCS PDIR CMORPH IMERG GSMaP PCDR PCCSCDR

0–20
(103 km2)

R 0.43 0.298 0.639 0.731 0.769 0.716 0.691 0.552
NSE −1.646 −3.902 −0.29 0.334 0.47 −0.579 −0.726 −3.12
KGE 0.218 −0.126 0.486 0.596 0.671 0.392 0.41 0.087

RB (%) 56.8 91.9 15.8 −11.8 −12.0 37.6 40.8 63.8
NCRMSE 0.9 0.887 0.78 0.784 0.734 0.709 0.72 0.826

20–60
(103 km2)

R 0.093 −0.003 0.733 0.839 0.876 0.83 0.763 0.67
NSE −26.087 −73.171 0.281 0.593 0.742 0.469 −0.814 −3.543
KGE −1.709 −4.142 0.689 0.669 0.79 0.695 0.41 0.048

RB (%) 254.0 503.9 8.3 −28.9 −13.6 1.1 47.2 80.8
NCRMSE 0.861 0.796 0.683 0.733 0.507 0.558 0.662 0.745

60–100
(103 km2)

R 0.326 0.164 0.863 0.948 0.931 0.911 0.86 0.815
NSE −4.351 −12.131 0.658 0.823 0.824 0.27 0.059 −0.913
KGE −0.309 −1.42 0.829 0.792 0.819 0.608 0.561 0.315

RB (%) 112.2 226.5 6.8 −19.0 −16.4 33.1 39.5 64.3
NCRMSE 0.838 0.768 0.504 0.476 0.463 0.484 0.541 0.609

100–130
(103 km2)

R 0.469 0.319 0.891 0.959 0.96 0.918 0.901 0.865
NSE −1.38 −4.552 0.648 0.906 0.884 0.21 0.318 −0.239
KGE 0.14 −0.588 0.8 0.901 0.853 0.583 0.617 0.46

RB (%) 67.0 141.7 11.4 −8.0 −13.7 36.6 35.6 50.6
NCRMSE 0.819 0.76 0.462 0.334 0.364 0.483 0.478 0.548

YLJ median
(~365 km2)

R 0.398 0.268 0.652 0.746 0.786 0.726 0.704 0.568
NSE −2.35 −5.358 −0.208 0.366 0.505 −0.452 −0.692 −2.998
KGE 0.094 −0.583 0.506 0.615 0.683 0.416 0.424 0.094

RB (%) 70.8 139.8 13.4 −13.1 −13.0 36.3 40.4 64.9
NCRMSE 0.885 0.877 0.771 0.750 0.688 0.702 0.710 0.818

Note: Bold numbers in the table indicate the optimum in near real-time SPEs (without bias correction), bias-corrected SPEs and climate
data records, respectively.

Figure 7 shows the relative goodness of the eight products in the four catchment
intervals with respect to five metrics. Just as the scale effect obtained in Figure 6, the
simulation performance keeps increasing when the catchment area is larger than 20,000 km2.
This pattern is expressed in the radar plot as the inclusion relationship of the circles. For
example, in Figure 7c, the purple circle encloses the blue circle, while the blue circle encloses
the red circle. Likewise, PERSIANN, PCCS, PCCSCDR, and CMORPH show the same
patterns. However, PDIR, IMERG and GSMaP show different characteristics. Among them,
PDIR and IMERG are mainly the anomalies of the systematic bias (RB). This may be due
to the offset effect of positive and negative values in biases. The results may exist in three
cases: (1) RB is negative in all upstream areas of the catchment, and its value may increase
to a large negative one as it accumulates in the process of streamflow routing; (2) RB is
positive in all upstream areas of the catchment, and it will also increase to a large positive
one as it accumulates in the process of streamflow routing; (3) there are both positive and
negative values in the upstream areas of the catchment, and they may accumulate (or
cancel each other out), causing the RB to increase (or decrease). GSMaP does not seem to
follow the patterns of the scale effect, which may be due to the relatively good performance
in the upstream of the YLJ basin and the poor performance in the downstream regions
(Figure 5). Therefore, during the routing process, this routing-induced positive scale
effect occurs mainly in the upstream region, which does not further improve the model
performance in the downstream region due to the worse performance in these regions.
The FFA of the upstream region is roughly between 20,000 and 60,000 km2, corresponding
to the results in the radar plot (see Figure 7h). On the other hand, when the catchment
area is less than 20,000 km2 (black line in the radar plot), model performance varies in
different products, which is highly correlated with the local simulation capacity, without
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being affected by the river routing. Furthermore, the model performance of the local area
may be dominated by the accuracy of precipitation estimates.

Figure 7. The relative goodness of the eight products (a–h) in the four catchment intervals with respect to five metrics.
Pearson correlation coefficient (R); Nash–Sutcliffe efficiency (NSE); Kling-Gupta efficiency (KGE); Relative bias (RB);
Normalized centered root mean square error (NCRMSE). The values shown in the figure are the median of each interval.

3.4. Product Selection Based on Spatial Scale Dependence

In this study, we divided the YLJ basin into 522 sub-basins according to the 100 km2

threshold to expand enough cases for the study of the scale effect. The FAA of different
sub-basins ranges from 100 km2 to 130,000 km2. Based on this framework, the simulation
capability of different FFA for different SPEs is analyzed. In practical applications, models
with different resolutions may be built to achieve the relevant research objectives. For
example, flash flood monitoring and early warnings need high-resolution models with as
many hydrological response units (HRUs) as possible to capture the local flood character-
istics. For water resources planning and reservoir regulation, we only need to obtain the
flow conditions at the main stream or outlet of the basin. A coarse-resolution distributed
hydrological model, a semi-distributed hydrological model or a lumped model driven by
the area mean precipitation can meet the requirements.

Figure 8 shows the relationship between the advantages and disadvantages of different
products in different catchment area intervals. Similarly, the five metrics are uniformly
standardized to the range of 0–1, where 1 means that the product is the best compared to
other products in a certain dimension, and 0 means that the product is the worst compared
to other products in that dimension. As shown in the figure, the radar plot can more
clearly guide us to identify the strengths and weaknesses of different products. It should
be emphasized again that we have scaled down the metrics to between 0 and 1, which
can only be applied to compare the relative goodness of different products at the same
catchment scale. To quantitatively express the performance of the different products, we
summarize the results in the Table 4.
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Figure 8. The relative goodness of different products in different catchment area intervals (a–d). Pearson correlation
coefficient (R); Nash–Sutcliffe efficiency (NSE); Kling–Gupta efficiency (KGE); Relative bias (RB); Normalized centered root
mean square error (NCRMSE). The values shown in the figure are the median of each interval.

It can be seen from the figure that when the catchment area is less than 20,000 km2,
the difference between the eight products is significant, and the best product is IMERG.
Meanwhile, IMERG still maintains a high level of simulation performance when the
catchment area increases to 100,000 km2. For other products, CMORPH and PDIR have
comparable performance and gradually catch up with IMERG in the large catchment. The
performance of CMORPH exceeds that of IMERG when the catchment area is larger than
100,000 km2. GSMaP and PCDR are at the same level, followed by PCCSCDR. PERSIANN
and PCCS are the worst products for the YLJ basin. Interestingly, for the random error
(NCRMSE), although the difference between the eight products is small, the CMORPH and
PDIR products perform worse when the catchment area is in the range of 0–100,000 km2,
which indicates that the random error of these two products is larger than other products.
However, the random error decreases gradually with the increase of the FAA.



Remote Sens. 2021, 13, 3061 18 of 24

4. Discussion
4.1. Comparison with Previous Studies

In this study, we investigate the scale dependence of the accuracy of SPEs-driven
streamflow simulations. In the YLJ basin, when the catchment area is larger than 20,000 km2,
the simulation accuracy increases with the increase of FFA (or catchment area), which is
mainly attributed to the river streamflow routing. It weakens the propagation of errors
in upstream areas into downstream areas. On the other hand, when the catchment area is
smaller than 20,000 km2, the spatial distribution of simulation accuracy is more stochastic,
and its performance is mainly controlled by the local simulation performance. Since we
selected only one basin as the case, more evidence is needed to prove whether the results
are generalizable. In fact, some previous studies have some degree of similarity with the
results we present, or they can be combined with our study to reveal common patterns.

One important law is that when the catchment area is small, the accuracy of flow
simulations is dominated by forcing accuracy. A large-scale hydrological simulation exper-
iment confirms this conclusion. Jiang and Bauer-Gottwein [63] selected 300 watersheds
with catchment areas smaller than 5000 km2 in mainland China. The authors conclude that
these catchments generally follow the rainfall-runoff error propagation and are not influ-
enced by the streamflow routing process. The above studies were conducted in different
basins and some other studies were conducted in the same basin with different sub-basins.
Terink et al. [64] used the Bootstrap sampling method to set different gauge network den-
sities ranging from 1 to 106 stations in a small watershed in the Netherlands and found
that higher densities significantly reduced the uncertainty in runoff simulations and thus
increased simulation accuracy. Similarly, the conclusion was confirmed in other studies that
the degradation in precipitation resolution introduces errors in the precipitation field and
propagates to the runoff simulation [65]. In addition, Cunha et al. [66] selected watersheds
(with catchment areas of 20–1600 km2) in central Iowa, showing that the uncertainty in
peak flow simulations depends to a large extent on the size of the catchment. Uncertainty
decreases with increasing catchment area due to the aggregation effect of the river network,
which filters out small-scale uncertainty.

Another issue not covered in this paper but equally important is the temporal scale
effect of precipitation, which has been discussed in many previous studies. In these studies,
it is also called precipitation time averaging (temporal resolution), or time resampling
(sampling error) [29,31,67]. An example is the density scatter plot (see Figure 4 in [64]).
In their study, they assessed the quality of IMERG precipitation products at three scales
(daily, monthly and annual). The results showed that the quality of precipitation products
increased significantly with the increase of time scales. Similar findings can also be found
in the assessment of daily and hourly precipitation [68].

However, the high temporal resolution of precipitation is still very important. Li et al. [69]
conducted a case study using hourly and daily precipitation to drive SWAT models in
a large-scale watershed in eastern China, respectively. The results show that the hourly
precipitation-driven runoff simulation is better than the daily simulation because the hourly
precipitation is better able to capture the detailed features (e.g., flood peak) of streamflow.
Additionally, their results also confirm the existence of a temporal scale effect on the
temporal resolution of precipitation. This effect was also confirmed by many other case
studies in Tengboche, southern France and America [68,70,71].

In addition, the importance of temporal resolution relative to spatial resolution was
emphasized in these studies that included both temporal and spatial resolution discussions.
However, this conclusion was limited to smaller study watersheds where precipitation
was more uniformly distributed in whole regions [68]. In another study about urban flood
simulation, researchers discussed the response of urban hydrological dynamics to the
spatial and temporal resolution of precipitation using radar precipitation data and showed
that urban flood processes are more sensitive to spatial resolution compared to temporal
resolution [72]. Both spatial averaging and temporal averaging result in a flattening of the
flood peak simulations [29,67].
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In summary, high-precision precipitation estimates with high spatial and temporal
resolution are urgently needed, especially for areas with frequent flash floods or urban areas
with high-proportioned impervious surfaces. In that case, equally refined high-resolution
hydrological models are necessary. The two strategies can work together to improve our
understanding and prevention of disasters (e.g., flash floods and urban flooding) [73].

4.2. Statement of Different SPEs in This Study

In this study, we chose eight different remote sensing precipitation products. Our
main objective in selecting these products is to increase the diversity of the dataset and
thus highlight the generality of the scale effects. Therefore, it is important to state that the
generality of the conclusions regarding scale effects is acceptable and this is confirmed by
a large number of relevant studies [63–72]. However, inter-comparisons about product
performance are to some extent inappropriate because these data are not used for the
same purposes.

PERSIANN, PCCS and PDIR are near real-time products without bias correction and
with very short time delay (15 min to 2 days), so they are mainly used for real-time flood
or drought monitoring [9,44,45]. PERSIANN and PCCS were among the first generation
of global satellite precipitation estimates products, and their algorithm design provided a
solid foundation for the advancement of PDIR [48,49]. In addition, they are the foundations
of PCDR and PCCSCDR [46,47]. PDIR is a very promising product with a very short
delay time (15 to 60 min), relatively high accuracy and the highest spatial resolution
(0.04 degree), and it uses the Dynamic Infrared-Rain model, which utilizes climatological
data to construct a dynamic cloud-top brightness temperature (Tb)–rain rate relationship
to retrieve precipitation. It can be used for a wide range of studies (e.g., atmospheric rivers,
flash floods and extreme rainstorms).

CMORPH, IMERG and GSMaP are bias-corrected, near-real-time products. While
GSMaP has a relatively short latency (4 h), the other two products have a much longer la-
tency (3 to 4 months). CMORPH (1998 to present) is for the bias-corrected, reprocessed CPC
Morphing Technique (CMORPH) high-resolution global satellite precipitation estimates.
Bias in raw CMORPH is removed through a comparison against CPC daily gauge analysis
over land and adjustment against the Global Precipitation Climatology Project (GPCP)
merged analysis of pentad precipitation over ocean [50,74]. IMERG Final provides research-
quality, gridded, global, multi-satellite precipitation estimates with quasi-Lagrangian time
interpolation, gauge data and climatological adjustment [8]. Its algorithm is intended
to intercalibrate, merge and interpolate “all” satellite microwave precipitation estimates,
together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge
analyses and potentially other precipitation estimators. The system is run several times for
each observation time, first giving a quick estimate (IMERG Early Run) and successively
providing better estimates as more data arrive (IMERG Late Run). The final step uses
monthly gauge data to create research-level products (IMERG Final Run). So for IMERG
Final, incorporating data from multiple sources and being fully bias corrected makes it the
best performer in this study. These three datasets achieved very good accuracy with bias
correction. This also confirms the importance of bias correction.

PCDR and PCCSCDR are climate-scale data records (CDR). PCDR and PCCSCDR
are consistent from 1983 to present at a high resolution. The consistency in them is from
the consistent global IR and GPCP datasets utilized in creating these datasets. These
datasets are unique and useful for climate studies (i.e., historical trend analysis or climate
change). Although PCCSCDR did not exceed the accuracy of PCDR in this study (YLJ
basin), PCCSCDR has a higher spatial resolution (0.04 degree) compared to PCDR. It may
exceed PCDR in other regions and can be used for some local studies [47].

In addition, the results of this study can only illustrate the basic performance of these
data in the Yalong River basin. In other regions, the data may behave differently. Therefore,
end-users should select products in a targeted manner according to the specific usage.
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5. Conclusions

In this study, we evaluated eight satellite precipitation estimate products in a set
of nested watersheds in the YLJ basin in China. The selected eight satellite products in-
clude Remotely Sensed Information using Artificial Neural Networks (PERSIANN), the
PERSIANN-Cloud Classification System (PCCS), the PERSIANN-Climate Data Record
(PCDR), the PERSIANN-Cloud Classification System-Climate Data Record (PCCSCDR),
PERSIANN-Dynamic Infrared Rain Rate near real-time (PDIR), the Bias-corrected Cli-
mate Prediction Center Morphing technique Climate Data Record (CMORPH), the Global
Precipitation Measurement Mission Integrated Multi-satellitE Final Run V6B (IMERG)
and Gauge-calibrated Global Satellite Mapping of Near Real-time Precipitation product
version 6 (GSMaP). The SPEs-driven simulated flow processes were evaluated for 522 catch-
ments and four hydrological stations based on simulations driven by gauge observations,
respectively. The 522 selected catchments range in size from 100 km2 to 130,000 km2.
The results of this study indicate that the quality of satellite-driven runoff simulations
is characterized regionally at different spatial scales. Despite the different satellite pre-
cipitation estimates products, they tend to have poorer model performance upstream of
the catchment and better performance downstream of the catchment (areas close to the
river network). In addition, the scale effects contribute to these regional characteristics of
simulation performance. Due to regional averaging and river routing, the “parent” basins
are better simulated than the “son” basins, but this law is triggered under a threshold value
(20,000 km2 in this study).
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.3390/rs13163061/s1, Figure S1: Model simulation forced by CMA observation and eight different
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SPEs (a–h) at DF station, Figure S3: Model simulation forced by CMA observation and eight different
SPEs (a–h) at GZ station.
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Appendix A. Standardization Scaling in the Radar Plot

For R, NSE and KGE, the scaling (0–1) was transformed by:

x′i =
xi − xmin

xmax − xmin
(A1)

For NCRMSE, the scaling (0–1) was transformed by:

x′i =
xi − xmax

xmin − xmax
(A2)

For RB, the scaling (0–1) was transformed by:

xabs = |x| (A3)

x′i =
xi,abs − xabs, max

xabs, min − xabs, max
(A4)

where x′ and x are scaled and original values of metrics, respectively; xabs is the absolute
value of x.
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