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ABSTRACT
In recent decades, vegetation has faced the dual challenges posed by climate change and human 
activities. Quantitatively distinguishing the influences of climate change and human activities on 
vegetation changes is key to developing adaptive ecological protection policies. This study 
examined changes in temperature and precipitation to determine if anthropogenic land use 
changes have affected vegetation in mainland China. The contribution rates of temperature and 
precipitation changes and land use changes to vegetation dynamics are further calculated by the 
improved residual trend method, which considers the nonlinear relationship between vegetation 
and climate factors and time-lag effects from a spatiotemporal perspective and sets the base 
period for the equation. The results show that 68.81% of the vegetation in mainland China is in 
a state of sustained growth, where cultivated vegetation and grasses are the main greening 
vegetation types. The contribution of land use changes to vegetation changes in mainland 
China is higher than that of temperature and precipitation changes. Planting trees and grasses 
and returning farmlands to forests and grassland has increased the area covered by grasses and 
mixed coniferous broad-leaved forests, while cultivated vegetation coverage has decreased. 
Swamps are more sensitive to temperature and precipitation changes. We show that the improved 
residual trend method that considers temporal and spatial dimensions can reduce the uncertainty 
in quantifying the effects of climatic and anthropogenic factors on vegetation dynamics. This study 
provides a theoretical basis and a useful tool for future governmental implementation of ecological 
management strategies.
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1. Introduction

Vegetation plays a vital role in ecosystems and is an 
indicator of the health and stability of an ecological 
environment (Bégué et al. 2011; de Jong et al. 2011; 
Foley et al. 2000). The normalized vegetation index 
(NDVI) is the difference between the reflectance 
received in the near-infrared band and that in the 
red band divided by their sum (Tucker, Holben, and 
Goff 1984). It can accurately reflect the surface vege-
tation coverage and is widely used in the detection of 
regional or global vegetation growth (Xu, Wang, and 
Yang 2017; Faour, Mhawej, and Nasrallah 2018; 
Lamchin et al. 2018). NDVI has limitations and can 
be easily saturated in areas with high vegetation 
cover (Gu et al. 2013). Although the enhanced vege-
tation index (EVI) is superior to the NDVI in character-
izing areas with high vegetation coverage, the 
calculation of EVI is limited only to sensor systems 
with blue bands, so it is difficult to obtain long time 

series such as NDVI and is susceptible to the influence 
of topography (Huete, Justice, and Van Leeuwen 
1999; Son et al. 2014; Testa et al. 2018). NDVI has the 
advantages of having a high sensitivity and spatial 
and temporal adaptability for detecting vegetation, 
making it the most commonly implemented vegeta-
tion index in large-scale and long-term detection stu-
dies (Bai, Yang, and Jiang 2019; Fensholt and Proud 
2012). According to a report by the 
Intergovernmental Panel on Climate Change (IPCC), 
the main driving force of current climate change is the 
increase in anthropogenic CO2 emissions (Cui et al. 
2020). The main features of climate change include 
climate warming and an increase in the occurrence of 
extreme events. The growth of vegetation is mainly 
affected by temperature and precipitation (Fatima 
et al. 2020). Vegetation has been significantly affected 
by global climate change in recent years (Pettorelli 
et al. 2005; Chen, Hu, and Yu 2005; Guo et al. 2014; 
Nemani et al. 2003; Bao et al. 2014). Studies have 
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shown that global warming has caused significant 
changes in vegetation coverage across the Northern 
Hemisphere, especially at high latitudes (Beck et al. 
2011; Slayback et al. 2003; Menzel et al. 2006). In 
addition, the impact of human activities on vegeta-
tion cannot be ignored, such as that of urbanization, 
population migration, land use change, vegetation 
construction and soil and water conservation engi-
neering, etc (Neigh, Tucker, and Townshend 2008; 
Wu et al. 2013; Hua and Chen 2013). For example, 
overexploitation and overgrazing have led to the 
degradation of grasslands in Central Asia and 
Mongolia. (Jiang et al. 2017; Hilker et al. 2014). The 
Chinese government launched the Grain to Green 
Program (GTGP), which has been demonstrated to 
have improved vegetation coverage on the Loess 
Plateau (Zhou, Zhao, and Zhu 2012; Sun et al., 
2015b). These human activities are mainly expressed 
as land use changes. In this study, we focus on the 
increasing coverage of urban land, reduction of culti-
vated land, and changes in the abundance of grass-
lands and forests.

Over the past 30 years, the vegetation coverage in 
China as a whole has shown a tendency to increase, 
but there is an obvious interannual pattern, with 
a rapid increase before the 1990s, followed by 
a slow growth period and then a rapid recovery dur-
ing the 21st century (Liu et al. 2015; Peng et al. 2011; 
Piao et al. 2015). However, vegetation is affected by 
both climate- and human-related activities and 
behaves differently in different areas. For example, 
in the more economically developed Yangtze River 
Delta and Pearl River Delta, the vegetation coverage 
has decreased (Du et al. 2019), while in the Loess 
Plateau region, the vegetation coverage has increased 
significantly due to the return of croplands to forests 
and grasslands (Li, Peng, and Li 2017; Xie et al. 2015). 
China is one of the countries in the world that has 
been severely affected by climate change due to its 
diverse and changing climatic conditions (Liu and 
Raven 2010; Ren et al. 2005). Studies have shown 
that the rate of increase in China’s average annual 
temperature over the past few decades is significantly 
higher than the global average over the same period 
(Shi et al. 2018; Ying 2012). In addition, regional differ-
ences in precipitation trends in China are obvious; 
droughts are worsening in the north, while the fre-
quency and intensity of flood events are increasing in 
the south (Xu et al. 2011; Zhou, Ding, and Wang 2010; 

Gong, Pan, and Wang 2004; Zhai and Panmao 2003; 
Qian and Lin 2005; Zhai et al. 2005). Conversely, sig-
nificant changes have taken place in the regional land 
use patterns in mainland China, and various land use 
types have undergone transformations. Since 1998, 
the Chinese government has successively implemen-
ted six major forestry projects, the return of farmland 
to forest and grass, soil and water conservation and 
other measures (Xu et al. 2018b). Vegetation has 
undergone dramatic changes due to the coupling of 
climate change and human activities (Zhang et al. 
2016; Sun et al., 2015a; Wang et al. 2015; Zhang 
et al. 2016). However, the response of vegetation to 
climate change remains uncertain, and the impact of 
human activities on vegetation is twofold. Most stu-
dies now focus on the combined effects of climate- 
and anthropogenic-impacts on NDVI, and it is difficult 
to distinguish or even quantify the respective effects 
of these two factors on vegetation (Xie et al. 2015; 
Hua et al. 2017). It is, therefore, necessary to isolate 
the effects of climate change and human activities on 
the observed vegetation changes.

Quantitative research on the contribution of cli-
mate change and human activities to vegetation 
changes is mainly focused on areas with a fragile 
ecosystem in China, such as the Chinese Loess 
Plateau (Zheng et al., 2019b), inner Mongolian (Mu 
et al. 2013), Tibetan Plateau (Pan et al. 2017) and 
three-river source region (Zhang et al. 2016). There is 
an overall lack of quantitative assessment of all of 
mainland China. Although studies have detected the 
trend of greening in China, quantified the contribu-
tion of carbon dioxide concentration rise and nitro-
gen deposition and pointed out that human activities 
may play a role in promoting vegetation change (Piao 
et al. 2015), there has been no quantitative contribu-
tion to the distinction between the effects of human 
activities and climatic changes on vegetation change. 
Currently, there are three main types of methods used 
to quantitatively distinguish between the effects of 
climate change and human activity on changes in 
vegetation cover: regression model methods, residual 
trend methods and NPP-based biophysical modeling 
methods. The residual trend method is the most 
widely used method to separate and quantitatively 
analyze climate changes and human activities (Evans 
and Geerken 2004; Higginbottom and Symeonakis 
2014). Each of these three methods used for quantify-
ing the relative contributions of climate change and 
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human activities to vegetation change has advan-
tages and disadvantages. Regression analysis is easy 
to preform, and the required data are easy to obtain; 
however, it treats vegetation change as a simple lin-
ear relationship between the influencing factors and 
does not take into account the autocorrelation 
between the respective variables (Liu et al. 2015; Li 
et al. 2016;). The NPP-based model is the most com-
plex of the three methods and can accurately reflect 
the driving factors behind vegetation changes. 
However, this method is subject to a high degree of 
uncertainty, including the fact that across different 
models, different driver data and different study 
scales can lead to large variability in the results 
(Chen et al. 2014; Xu, Wang, and Yang 2017; Zhang 
et al. 2019). The residual trend method is simple and 
effective, and it reflects the spatial drivers well. It can 
be used to quantify the contribution rate through the 
application of a regression equation between the 
NDVI and climate factors (Tong et al. 2017; Li, Peng, 
and Li 2017). It is difficult, however, to define periods 
without anthropogenic impacts, and the categories of 
anthropogenic activities and active periods vary con-
siderably by region. Conversely, the relationship 
between the climate factors and NDVI is not simple 
and linear, and there are time lag effects, so there are 
errors resulting from the use of linear regression 
equations. Due to the limitations of the original resi-
dual trend method (Burrell, Evans, and Liu 2017), 
before application to different regions, it must be 
adjusted and improved to better identify the impacts 
of climate changes and human activities on changes 
in vegetation (Li, Peng, and Li 2017; Zhang and 
Shunfeng 2003).

This study attempts to improve the residual trend 
method to analyze the temporal and spatial vegeta-
tion dynamics of mainland China from 1982 to 2015 
to quantify its response to climate change and human 
activities. Climate change in this study refers to 
changes in temperature and precipitation. In addition, 
human activities in this article refer to anthropogenic 
land use changes, which directly affect changes in 
vegetation cover. The shortcomings of the residual 
trend method are threefold: (1) The prediction equa-
tion is built without considering the effects of human 
activities in the year in which it is built, which can lead 
to bias in the prediction equation itself. (2) The non-
linear response to NDVI to the climate factors are not 
considered when constructing the prediction 

equation between the NDVI values and the climate 
factors. (3) The time lag effect of climate change on 
vegetation growth is not considered. Current research 
suggests that vegetation changes may be influenced 
not only by current climatic conditions but also by 
preclimatic factors (Kong et al. 2020; Wu et al. 2015; 
Zhao et al. 2020), making it necessary to consider the 
effects of time lags when studying the relationship 
between climate factors and vegetation. To improve 
the assessment capabilities of the residual trend 
method, we use NDVI mutation points to set up 
time nodes to establish the relationship between cli-
mate factors and NDVI values, i.e., the assumption 
that the effects of human activities on vegetation 
change can be ignored during the period before the 
mutation point. Second, nonlinear multiple regres-
sion equations are established to find the lag of 
NDVI on climate factors using deterministic coeffi-
cients. Finally, spatial prediction equations are built 
for different vegetation types to mitigate the uncer-
tainty associated with the residual trend method. The 
objectives of this paper are as follows: (1) improve the 
residual trend method to make it more reasonable 
and applicable and (2) quantitatively distinguish the 
contribution rate of climate change (represented by 
temperature and precipitation) and human activities 
(represented by the area of land use change caused 
by ecological engineering and urbanization) to vege-
tation changes in mainland China. Due to the influ-
ences of human activities, regional land use in 
mainland China is undergoing changes, with transfor-
mations occurring between land use types, such as 
farmland changing to forests and grasslands. We 
mainly calculated the conversion area of farmland, 
constructed land and unused land from 1982 to 
2015 to verify the impact of human activities on 
vegetation change. We hope to gain an understand-
ing of the status of the vegetation in mainland China 
affected by the dual effects of climate change and 
human activities, which will assist in the establish-
ment of scientific ecological protection measures to 
achieve sustainable development.

2. Study site & data

2.1. Study site

Mainland China is located in East Asia, which is largely 
defined as China’s territory, excluding most of China’s 
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coastal islands (including Taiwan Island, South China 
Sea Islands and Diaoyu Island). China has a vast terri-
tory, a wide latitude, varied distances from the sea 
and various terrain types; thus, the combination of 
temperature and precipitation is diverse, forming 
a variety of climate types. Most of the types of vegeta-
tion in the world can be found in China due to the 
complex and diverse climate. In this research, main-
land China is divided into 17 basins (Figure 1) to 
represent relatively different climatic characteristics 
among these basins (Lang et al. 2014), which has 
been widely used across many studies (e.g., Ma, 
Yuan, and Ye 2015; Ma et al. 2016, 2018; Zhang and 
Ye 2020). The label of every basin seen in Figure 1 
corresponds to Table 1.

2.2. Data

2.2.1. NDVI data
The Global Inventory Monitoring and Modeling 
Studies (GIMMS3g v1) NDVI dataset (Pinzon and 
Tucker 2014) is synthesized every half month from 
1982 to 2015 at a spatial resolution of 0.083°, released 
by the National Aeronautics and Space 
Administration (NASA) and obtained by the 
Advanced Very High-resolution Radiometer (AVHRR) 
sensors on the National Oceanic and Atmospheric 
Administration (NOAA) satellite. The GIMMS3g NDVI 

dataset is processed using adaptive empirical pattern 
decomposition (EMD) to remove artifacts from the 
sequence, including differences in the data due to 
differences between sensors, making it a more stable 
dataset (Ibrahim et al. 2015). The maximum value 
composite (MVC) method was adopted for calculating 
the monthly data to remove noise (Holben and Brent 
2007). In addition, areas with NDVI values less than 0.1 
are set to 0.1 to shield areas not covered by vegeta-
tion. Statistical analysis of the average NDVI value for 
each basin was performed. The GIMMS3g NDVI data-
set has the highest temporal consistency compared to 
other NDVI products and is the most suitable choice 
for NDVI trend analysis (Fensholt and Proud 2012; 
Ibrahim et al. 2015; Zhou, Yamaguchi, and 
Arjasakusuma 2018). The GIMMS3g NDVI dataset is 
used extensively in terrestrial vegetation research 
(de Jong et al. 2011; Mao et al. 2012; Peng et al. 
2011; Wang and Han 2012; Wu et al. 2016).

2.2.2. Climate data
The growth of vegetation is generally mainly 
affected by three climate factors, precipitation (52% 
of the climatic controls), temperature (31%) and 
radiation (5%); radiation mainly influences tropical 
rainforests (Churkina and Running 1998; Bonan 
2008; Nemani et al. 2003; Schuur 2003). China’s tro-
pical rainforests are small and sparsely distributed 

Figure 1. The 17 basins in Mainland China.
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and are mainly found in the southern Taiwan 
Province and Hainan Province and the estuary and 
Xishuangbanna regions in southern Yunnan (Zheng 
et al. 2019a; Zhu 2013). Therefore, we did not con-
sider the radiation factor. In this study, the para-
meters of precipitation and temperature were 
selected for research. China’s Ground Precipitation 
0.5° × 0.5° Grid Data Set version 2.0 and China’s 

Ground Temperature 0.5° × 0.5° Grid Data Set version 
2.0 produced by the National Meteorological 
Information Center of China were used to calculate 
the monthly total precipitation and the monthly 
average temperature. The thin plate spline (TPS) 
interpolation method of ANUSPLIN was adopted to 
generate gridded precipitation and temperature data 
based on daily meteorological materials from 2472 
national meteorological observation stations distrib-
uted over mainland China. To further determine the 
relationship between the NDVI and climate factors, 
we resampled the 1982–2015 precipitation and tem-
perature grid data to 0.083°× 0.083°, which is the 
same resolution as the GIMMS3g NDVI dataset. 
Additionally, the monthly and annual average tem-
perature and total precipitation of the basin were 
calculated.

2.2.3. Vegetation-type data
The vegetation-type data are provided by the Data 
Center for Resources and Environmental Sciences, 
Chinese Academy of Sciences (RESDC) (http://www. 
resdc.cn). The spatial distribution of the vegetation 
types was obtained from the 1:1000000-China digi-
tal vegetation map (Hou 2001). The data are mainly 
based on the results of vegetation investigations 
and research carried out in all parts of the country 
over the past 50 years. Eleven types of vegetation 
were recognized, including cultivated vegetation 
(CV), alpine plant (AP), swamp, meadow, grass, 
grassland, desert, shrubland, broad-leaved forest 
(BF), mixed coniferous and broad-leaved forest 
(MCBF), coniferous forest (CF) and others (Figure 
2). In this paper, the names of the 12 vegetation 
types match those in Figure 2.

Since most of the NDVI values for the other and 
desert classifications were below 0.1, we screened out 
NDVI values less than 0.1; these areas were not 
included in our study. Therefore, we only studied 
the remaining 10 types of quilts.

2.2.4. Land use data
This study uses remote sensing monitoring data of 
land use status in China for 1980, 2000 and 2015. The 
dataset was downloaded from the Data Center for 
Resources and Environmental Sciences, Chinese 
Academy of Sciences (RESDC) (http://www.resdc.cn). 
The land use types of the dataset include six primary 

Table 1. The information of the 17 basins in China (Lang et al. 
2014; Peel, Finlayson, and McMahon 2007).

Region Full name

Mean 
Annual 

prec. 
(mm)

Mean 
Annual 
temp. 

(°C)

Main Land use 
types 

(in descending 
order)

Area 
(km2)

1 Songhua River 535.5 1.1 Forest, 
Farmland, 
Grassland

370,973

2 Liao River 566.1 6.1 Farmland, 
Forest, 

Grassland

310,117

3 Inner Mongolia 
inland river

220.4 5.1 Unused land, 
Grassland, 
Farmland

1,537,520

4 Hai River 515.9 8.8 Farmland, 
Forest, 

Grassland

578,092

5 Inland rivers in 
Xinjiang

168.3 5.9 Unused land, 
Grassland, 
Farmland

1,104,104

6 Lower Yellow 
River

391.0 8.5 Grassland, 
Farmland, 

Forest

448,864

7 Upper Yellow 
River

469.3 −0.7 Grassland, 
Forest, 

Unused land

504,731

8 Huai River 819.5 14.4 Farmland, 
Constructed 
land, Forest

415,287

9 Inland rivers in 
Northern 
Tibet

199.9 −1.8 Grassland, 
Unused land, 

Water

694,413

10 Brahmaputra 876.7 0.5 Grassland, 
Forest, 

Unused land

908,881

11 Upper Yangtze 
River

795.2 0.6 Grassland, 
Forest, 

Unused land

399,541

12 Middle and 
Lower 
Yangtze 
River

1276.5 14.7 Forest, 
Farmland, 
Grassland

567,237

13 Lower Yangtze 
River

1606.5 16.7 Forest, 
Farmland, 

Water

324,061

14 Middle and 
Upper 
Yangtze 
River

1001.1 11.0 Forest, 
Farmland, 
Grassland

323,970

15 Southeastern 
River

1705.9 16.6 Forest, 
Farmland, 
Grassland

226,496

16 Lancang River 882.2 7.3 Grassland, 
Forest, 

Unused land

316,057

17 Pearl River 1700.7 19.0 Forest, 
Farmland, 
Grassland

567,520
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types: farmland, forest, grassland, water, constructed 
land and unused land.

3. Methods

3.1. Change analysis methods

In this study, the slope of the linear regression is used to 
express the rate of interannual change of each factor, 
and the slope is optimized by using the least squares 
method to minimize the sum of its squared errors (Cai 
and Hall 2006; Ramsay 1977). When the slope>0, the 
elemental sequence increased across the time steps; 
conversely, when the slope<0, the elemental sequence 
decreased, and the larger the absolute value of the slope 
was, the greater the rate of change of the element.

The slope of the fitting function can be expressed 
as follows: 

Slope ¼
n
Pn

i¼1
i � xi �

Pn

i¼1
i
Pn

i¼1
xi

n
Pn

i¼1
i2 � Pn

i¼1
i

� �2 (1) 

where Slope is the trend in the factor time series, n is 
the number of monitoring years, which varied from 1 

to 34, and xi represents the element value corre-
sponding to the i-th year.

The coefficient of variation (cv) is the ratio of the 
standard deviation of a set of data to the average 
value. cvis a statistic that measures the degree of 
fluctuation in a data set, which can eliminate the 
influences of measurement scale and dimension. The 
cv can be expressed as follows: 

cv¼ σ
μ

(2) 

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n � 1

Xn

i¼1
ðxi � �xÞ2

r
(3) 

where cv is the coefficient of variation, σandμare the 
standard deviation and the mean value of a group of 
data, respectively, n is the number of data points, i=1, 
2, 3, . . . n, xi represents the i-th data point, and �x 
represents the average of the data.

3.2. Pettitt test

To select a period with a presumed absence of human 
activity, the Pettitt test was used. The average of the 

Figure 2. The vegetation distribution map of mainland China at a scale of 1:1000000.
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mutation years in each basin was taken as the muta-
tion point for vegetation cover change.

The Pettitt test (Pettitt 1979) is a non-parametric 
test used for detecting a single inflection point in 
a time series. In the present study, the Pettitt test 
was applied to obtain a significant inflection point in 
the annual value of NDVI. This method uses the Mann- 
Whitney statistic Ut;N to test whether the samples x1, 
x2, x3, . . ., xt and xt+1, xt+2, xt+3, . . ., xN have the same 
distribution. The Ut;N time series is obtained using the 
following equation: 

Ut;N ¼ Ut�1;N þ
XN

j¼1

sgnðxi � xjÞ (4) 

where t = 2 . . ., N. If θ>0, then sgn (θ) = 1; ifθ=0, then 
sgn (θ) = 0; and ifθ<0, the sgn (θ) = −1. The kN and 
pstatistic is obtained using the following equation: 

kN ¼ Max1�t�NjUt;Nj (5) 

p ffi 2 exp �6 knð Þ2= N3 þ N2� �n o
(6) 

In this test, H0 indicates smooth data, and H1 indicates 
that a mutation occurred in the time series studied. If 
the calculated p-value is less than a significance level 
of 0.05, the point of change is considered statistically 
significant. In other words, H0 has been rejected, and 
the change point is considered significant.

3.3. Improved RESTREND

The RESTREND (residual trend) method is used to 
distinguish the contribution rate of climate change 
and human activities to changes in vegetation cover 
by using the difference between the simulated vege-
tation change trend without human activities and the 
actual trends (Evans and Geerken 2004). Based on the 
RESTREND results (Burrell, Evans, and Liu 2017; Li et al. 
2016; Liu et al. 2019; Xu et al. 2018b), we made some 
improvements to suit the circumstances in mainland 
China in the temporal and spatial dimensions.

In this study, the period of establishing the regres-
sion model is defined by the abrupt years of each 
basin. It is assumed that the growth of vegetation is 
not greatly disturbed by human activities before the 
inflection point of NDVI occurs in each basin, and 
this point is set as the base period (Figure 4). The 
residual value after the abrupt year in each basin is 
calculated. In addition, the NDVI values do not show 

simple linear relationship to precipitation and tem-
perature (Kawabata, Ichii, and Yamaguchi 2001; 
Schultz and Halpert 1993; Wang, Rich, and Price 
2003), and vegetation in mainland China has a time- 
lag effect on precipitation and temperature (Wu 
et al. 2015; Xu et al. 2014). This study establishes 
a binary nonlinear regression equation for which 
NDVI is the independent variable and precipitation 
and temperature are the dependent variables. In 
addition, the time-lag response from NDVI to climate 
factors was considered. The first step in calculation 
step is to establish a binary nonlinear equation that 
calculates various parameters, then the determined 
equation is used to calculate the predicted value of 
NDVI, and finally, the calculated difference between 
the observed value and predicted value of NDVI is 
obtained from remote sensing images. The specific 
formula is as follows: 

NDVIpre ¼ a� ln Pði;nÞ þ b� Tði;mÞ þ c (7) 

NDVIres ¼ NDVIobs � NDVIpre (8) 

where NDVIpre represents the predicted value of NDVI, 
Pði;nÞ represents the cumulative monthly precipitation 
(mm), Tð i;mÞ represents the monthly average tempera-

ture(°C), a, b, and crepresent the parameters of the 
regression model, i is the number of months, n and m 
represent the lag period of 0–3 months,NDVIobsrepre-
sents the observed NDVI values (GIMMS3g NDVI), and 
NDVIresis the residual values of NDVI.

To determine the lagged month of precipitation 
and temperature and the best simulation equations, 
the determination coefficient R2 was used to evaluate 
the goodness-of-fit of the regression model. R2 is 
calculated as follows: 

R2¼1�
Pn

i¼1 ðxi � x̂iÞ2

Pn
i¼1 ðxi � �xÞ2 (9) 

where xi is the true value of an element in the i-th 
month, x̂i is the estimated value of the i-th month, �x is 
the mean of the true value, and n is the number of 
samples. The closer the value of R2is to 1, the better 
the fit of the developed equation is.

In terms of establishing regression equations, his-
torical time series were used in the temporal dimen-
sion, while in the spatial dimension, we simulated the 
optimal hydrothermal conditions of different vegeta-
tion types.
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The contribution of vegetation change can be 
attributed to the effects of climate change and 
human activities: 

Climate ¼ SlopeðNDVIpreÞ
SlopeðNDVIpreÞ
�� ��þ SlopeðNDVIobsÞj j � 100%

(10) 

Human ¼ SlopeðNDVIresÞ
SlopeðNDVIresÞj j þ SlopeðNDVIobsÞj j � 100%

(11) 

where SlopeðNDVIpreÞ, SlopeðNDVIobsÞ, and 
SlopeðNDVIresÞ represent the trends of the annually 
predicted NDVI values, annually observed NDVI values 
and annual residual values, respectively. Climate(%) 
represents the contribution of climate change, 
andHuman (%) represents the contribution of 
human activities. A positive (or negative) contribution 
ratio indicates a positive (or negative) influence on 
vegetation. A contribution ratio close to zero (i.e., 
between – 0.5% and +0.5%) indicates an insignificant 
effect on vegetation.

Figure 3. Changes in NDVI for mainland China from 1982 to 2015. (a) The slope of regression line; (b) Coefficient of variation (cv) of 
volatility.

Figure 4. The inflection point of each basin in mainland China.
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4. Results & discussion

4.1. The characteristics of vegetation change

The area of increase in vegetation coverage in main-
land China accounted for 68.49%, with annual change 
rates centrally varying between −0.006/a and 0.006/a 
(Figure 3a). The regions with negative trends were 
mainly distributed over the northeast and the source 
regions of the Yangtze River, Yellow River and 
Lancang River. From 1982 to 2015, the coefficient of 
variation on NDVI in mainland China (Figure 3b) was 
82.77% between 0.04 and 0.12, indicating that most 
of the vegetation changes in the study area were 
stable. Of the total area, 17.23% showed spatial differ-
ences, and the vegetation changes showed great 
volatility. Improvements in vegetation coverage 
were observed on the Loess Plateau, North China 
Plain and most of South Mainland China. In general, 
vegetation coverage changes in mainland China had 
spatially differentiated characteristics. The vegetation 
is expected to show a sustainable greening trend for 
the whole study area in the future.

Figure 4 shows the inflection point (the first 
significant year, p < 0.05) analysis results of the annual 
NDVI in the 17 basins from 1982 to 2015. The average 
years showing an abrupt change in each basin were 
between 1997 and 2005, which are concentrated 
around 2000. The Songhua River, Brahmaputra and 
Lancang River showed a decline in the NDVI after the 
inflection point, while the upward trend of NDVI of 
Inland rivers in Xinjiang, Hai River, Huai River and 
Upper Yangtze River slowed after the year of abrupt 
change. The NDVI of the remaining basins increased 

more significantly after the inflection year. Human 
activity in China in approximately 2000 and the timing 
of human activity vary across the regions (Piao et al. 
2015). In the late 1990s, with the massive expansion of 
Chinese cities and the reduction in arable land (Tian, 
Zhuang, and Liu 2003; Deng et al. 2015; Jiyuan, Qian, 
and Yunfeng 2012), the vegetation coverage in 
Chinese cities declined (Sun 2012). Conversely, since 
1999, the Chinese government has implemented 
a series of policies, such as tree planting and grass 
planting projects, that have greatly increased green-
ing in China (Liu et al. 2018; Liu, Liu, and Li 2018; Chen 
et al. 2019).

It is assumed that in each basin within the time 
period preceding its inflection year, the vegetation 
change is less disturbed by anthropogenic land use 
changes. This allowed us to identify the effects of 
anthropogenic land use changes in the period follow-
ing the previous baseline period.

4.2. The relationships between the NDVI and 

climate factors

4.2.1. The lag-time effect between the NDVI and 
climatic factors
The lagged month of the response of vegetation in 
mainland to precipitation and temperature had 
obvious spatial variability. The time-lag effect of 
NDVI on precipitation was obtained, affecting 
41.13% of the area in mainland China (Figure 5a). 
The areas with 3 lagged months for precipitation are 
mainly distributed in the southern part of the 
Brahmaputra, Lancang River and Upper Yangtze 

Figure 5. The lagged month at which the maximum determination coefficient of the regression equation between the NDVI and the 
total precipitation (mm) and average temperature (°C) is reported. (a) The lag time of NDVI response to precipitation. (b) The lag time 
of NDVI response to temperature.
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River. A lagging period of 1–2 months can be found in 
the southern part of the Middle and Lower Yangtze 
River and Lower Yangtze River, as well as in the Pearl 
River and Southeastern River. In the response of NDVI 
in mainland China to precipitation, a 1-month lag can 
be found in the area accounted for 26.40%, and 
2-month and 3-month lags affecting 7.20% and 
7.53% of the area, respectively. In areas with sufficient 
precipitation, vegetation has sufficient water for 
photosynthesis, so the time lag effect on vegetation 
is more significant. The NDVI response to temperature 
in 60.73% of the area of mainland China has no time- 
lag effect (Figure 5b). The lag effect occurs mainly in 
southern mainland China, especially in the southern 
part of the Brahmaputra, Lancang River and Upper 
Yangtze River, with a lag time of 3 months. Areas with 
a 1-month lag, 2-month lag, and 3-month lag account 
for 23.28%, 8.08% and 7.91%, respectively.

The different vegetation types present in mainland 
China have significantly different time-lag effects on 
the response of NDVI to precipitation and tempera-
ture, and the same vegetation type also demonstrates 
different lagged months resulting from the combina-
tion of precipitation and temperature (Table 2). The 
lag effect of BF on precipitation is more obvious than 
that of temperature, with 73.10% of the area lagging 
behind 1–3 months. The 3-month precipitation time 
lag is mainly due to the two vegetation types, CF and 
MCBF, which account for 10.4% of the total coverage. 
Conversely, only 31.8% of the grasslands showed 
a time lag effect with precipitation, and a lag of 
1-month accounts for 27.8%. The more temperature- 

sensitive vegetation types include BF, meadow, 
swamp and AP, which account for 73.1%, 72.9%, 
73.6% and 69.6% of the area, respectively, all of 
which have a lag of 1–3 months.

4.2.2. The spatial functional relationship between 
the NDVI and climate factors
To explore the possibility of establishing a regression 
equation in the spatial dimension, we further 
searched for the best hydrothermal conditions for 
the growth of each vegetation type. Although theo-
retical refinements have been made by assuming that 
the effect of human activity on vegetation changes 
prior to the year of the inflection is negligible, it is still 
not the optimal way to address the bias present in the 
prediction equation caused by the effects of human 
activities. Each vegetation type has its own adapted 
thermal and hydrothermal conditions under which it 
will grow naturally without interference from human 
activities. However, the equilibrium between the tem-
perature and precipitation change and vegetation 
growth may be disrupted if disturbed by ecological 
engineering and urbanization. We build prediction 
equations from the spatial dimension and expect it 
to compensate for the temporal bias associated with 
anthropogenic effects. We presume that the growth 
of vegetation is affected less by human activities 
under the best hydrothermal conditions. Optimal 
thermal and hydrothermal conditions for each vege-
tation type were determined by fitting the multiyear 
monthly average precipitation and air temperature 
data to the NDVI. On the fitted curves, the optimum 

Table 2. Statistics on the combination of precipitation and temperature time lag for various vegetation types in mainland China. P: 
precipitation; T: temperature.

Lag time (month) The percentage of combined precipitation and temperature time lag for each vegetation type (%)

P T CF
MC 
BF BF

Shrub- 
land Grass-land Grass Meadow Swamp AP CV

0 0 37.7 37.6 67.8 43.5 52.0 50.9 62.4 62.7 58.0 69.8
0 1 5.4 5.4 4.5 3.2 15.5 14.7 9.7 10.2 10.0 3.0
0 2 0.1 0.1 0.1 0.2 0.7 0.5 0.4 0.4 0.4 0.0
0 3 1.2 1.1 0.7 0.6 0.5 0.5 0.4 0.3 1.1 0.2
1 0 9.6 9.9 7.6 12.3 6.7 6.2 13.6 14.7 14.1 7.9
1 1 19.7 19.6 7.9 17.9 18.3 17.2 8.9 7.6 8.8 12.8
1 2 1.7 1.6 0.5 1.5 2.1 1.6 1.1 0.9 1.1 0.5
1 3 0.0 0.0 0.1 0.1 0.7 0.4 0.4 0.3 0.6 0.0
2 0 0.7 0.7 0.2 0.9 0.3 0.2 0.4 0.4 0.5 0.1
2 1 1.7 1.7 0.6 1.9 0.3 0.5 0.3 0.2 0.6 0.4
2 2 11.6 11.6 3.1 8.2 0.7 2.5 0.6 0.6 1.0 2.1
2 3 0.3 0.3 0.2 0.5 0.5 0.4 0.3 0.3 0.4 0.2
3 0 0.6 0.6 0.5 0.8 0.4 0.6 0.3 0.2 0.4 0.6
3 1 0.2 0.2 0.1 0.4 0.3 0.2 0.2 0.2 0.3 0.0
3 2 2.8 2.8 0.9 1.9 0.2 0.4 0.4 0.3 0.6 0.2
3 3 6.9 6.8 5.2 6.2 0.9 3.1 0.7 0.6 2.0 2.3
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thermal and hydric conditions were determined as the interval where the NDVI values were 

Figure 6. Scatter density plots and the curve fitted for the samples between NDVI and precipitation of the 10 vegetation types 
calculated by average monthly data during 1982–2015.

Figure 7. Scatter density plots and curve fitting for the samples between NDVI and temperature of the 10 vegetation types calculated 
using the average monthly data during 1982–2015.
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approximately linearly related to precipitation and air 
temperature. According to scatter density plots, the 
fitted curves mostly occur in the high-density areas, 
indicating a good nonlinear relationship between 
precipitation and NDVI and a good linear relationship 
between temperature and NDVI. The functional rela-
tionship between NDVI and precipitation in mainland 
China is logarithmic, excluding that of MCBF, which is 

not as obvious (Figure 6). Vegetation growth 
increases with increasing precipitation, but when pre-
cipitation reaches a certain threshold, the rate of 
increase in NDVI obviously slows or even stops. The 
relationship between vegetation and temperature is 
linear, excluding that of shrubland and meadow 
(Figure 7). Within a certain interval, the NDVI value 
increase as temperature rises. Based on Figures 6 and 
7, the optimal hydrothermal conditions were deter-
mined for each vegetation type (Table 3). The optimal 
precipitation range selected is the part where the rate 
of change of the fitted curve is largest. We deducted 
the range in which the NDVI does not respond dras-
tically to changes in precipitation. Similarly, for tem-
perature, we selected a temperature range with 
a higher point density near the fitted curve.

4.3. Model calibration

We used the predicted NDVI values calculated by the 
prediction model established in the base period of 
each basin to analyze the correlation with the 
observed NDVI values to verify the results of our 
improved method. The predicted NDVI values 
obtained by our improved method and the observed 
values show a higher correlation than that of the 
original method (Figure 8). Except in the inland rivers 
of Xinjiang (0.0645 lower than the original method) 
and inland rivers of northern Tibet (0.0461 lower than 
the original method), the correlation coefficient of the 
spatial dimension improvement method is lower than 

Table 3. The best hydrothermal conditions of different vegeta-
tion types in mainland China. P: Precipitation (mm/month).

Vegetation 
type Precipitation (mm/month)

Temperature 
(°C)

Others 10–150 −4-18
CF 9–70, 

if P > 70, NDVI = 0.7; if P < 9, 
NDVI = 0.15

−6-22

MCBF 30–90, 
if P > 90, NDVI = 0.7; if P < 30, 

NDVI = 0.3

−1-17

BF 10–105, 
if P > 105, NDVI = 0.8; if P < 10, 

NDVI = 0.1

−5-24

Shrubland 15–100, 
if P > 100, NDVI = 0.75; if P < 15, 

NDVI = 0.1

−4–22

Desert - -
Grassland 10–58 −10-10
Grass 30–160, 

if P > 160, NDVI = 0.75; if P < 30, 
NDVI = 0.2

4-22

Meadow 15–80, 
if P > 80, NDVI = 0.7; if P < 15, 

NDVI = 0.1

−8-13

Swamp 8–70, 
if P > 70, NDVI = 0.6; if P < 15, 

NDVI = 0.1

-

AP 11–111 −10-10
CV 5–120, 

if P > 120, NDVI = 0.7; if P < 5, 
NDVI = 0.1

0–24

Figure 8. The correlation coefficient between the predicted NDVI values and the observed NDVI values averaged in each basin. The 
calculation period is from 1982 to before the inflection year of each basin.
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that of the original method. This may be because, 
overall, the NDVI values of these two basins are rela-
tively small. The correlation coefficients of the 
improved method in other basins are 
0.0094 ~ 0.1815 higher than those of the original 
method and 0.0533 higher on average. The most 
obvious improvement was seen in the Songhua 
River (temporal dimension: 0.1815 higher; spatial 
dimension: 0.1807 higher) and the Southeastern 
River (temporal dimension: 0.1036 higher, spatial 
dimension: 0.1580 higher), and the correlation coeffi-
cients improved by more than 0.1. Overall, our 

improved method effectively modified the original 
method.

4.4. The contribution of climate change and human 

activities to NDVI change

From Figure 9, the positive and negative contribu-
tions of the temperature and precipitation changes 
and the anthropogenic land use changes to the 
temporal and spatial dimensions are similar overall 
in terms of their distribution characteristics, while 
there are some differences in a few regions, mainly 

Figure 9. The contributions of climate change and human activities to NDVI in mainland China during 1982–2015. (a) The temporal 
contribution of climate change. (b) The temporal contribution of human activities. (c) The spatial contribution of climate change. (d) 
The spatial contribution of human activities. (e) The original contribution of climate change. (f) The original contribution of human 
activities.
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in the Lower Yangtze River and the Brahmaputra. 
Areas with temperature and precipitation change 
contributions greater than 0 account for 58.47% of 
the temporal dimension (Figure 9a) and 78.91% of 
the spatial dimension (Figure 9c). In the northern 
part of the Songhua River, northwestern Xinjiang 
and western regions are found to have negative 
impacts on the vegetation coverage resulting from 
temperature and precipitation changes. The areas 
where anthropogenic land use changes contributed 
positively to the vegetation cover account for 
61.59% of the temporal dimension (Figure 9b) and 
50.52% of the spatial dimension (Figure 9d). The 
original results (Figure 9e,f) show that the average 
contribution of temperature and precipitation 
changes to vegetation changes is 43.42% (28.41% is 
from the positive contribution), compared to 56.58% 
for anthropogenic land use changes (38.28% is from 
the positive contribution). Negative contributions 
from deforestation, desertification and urbanization 
are observed in the Songhua River, northern Xinjiang 
and southwestern China. Negative anthropogenic 
land use changes mainly result from the develop-
ment of land, such as the expansion of farmland 
and built-up areas and deforestation. Overall, the 
contribution of temperature and precipitation 
changes to vegetation in mainland China are 
24.73% ~ 45.56% (14.46% ~ 35.95% is from the posi-
tive contribution), and the contribution of anthropo-
genic land use changes to vegetation changes is 

54.45% ~ 75.27% (33.54% ~ 50.52% is from the posi-
tive contribution). The contribution of anthropo-
genic land use changes to vegetation changes is 
greater than that of temperature and precipitation 
changes in mainland China. Anthropogenic land use 
changes are mainly concentrated in the eastern part 
(Pearl River Basin, Southeastern River, Middle and 
Upper Yangtze River, Middle and Lower Yangtze 
River, Lower Yangtze River, Huai River, Hai River, 
Lower Yellow River) of mainland China.

The improved methods can identify more anthro-
pogenic land use changes impacts and negative 
impacts of temperature and precipitation changes 
(Figure 9). In terms of the temperature and precipita-
tion changes (Figure 10a), the contribution rate 
ranges from −100% ~ −80%; the original method 
contributes 7.61%, the time dimension contributes 
14.77%, and the space dimension contributes 
21.69%. There is a large difference in the interval of 
−20% ~ 20%. The original method (13.69%) reports 
a similar contribution by the spatial dimension 
(9.65%), while the contribution of the time dimension 
reaches 44.19%. The contribution rate of anthropo-
genic land use changes (Figure 10b) varies greatly 
within a high range. In the range of −100% ~ −80% 
contribution rates, the original method contributes 
6.06%, the time dimension contributes 3.88%, and 
the space dimension contributes 14.26%. In the 
range of 80% ~ 100%, the contributions of the time 
dimension (74.15%) and the space dimension 

Figure 10. Contribution rate interval statistics of the original method and the improved method based on .Figure 9
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(39.05%) are higher than those of the original method 
(26.09%).

The improved residual trend values provide 
a threshold for the rate of contribution of climate 
change and human activities to changes in vegetation 
cover that are more accurate. Improvements in the 
temporal dimension enhance the ability of the origi-
nal residual trend method to identify the effects of 
human activity, while improvements in the spatial 
dimension reflect an underestimation of the contribu-
tion rate of the original method to climate change. An 
improved approach would better distinguish 
between the contributions of climate changes and 
human activities.

The smallest change in the improved results is 
seen in the Yellow River Basin (Upper Yellow River 
and Lower Yellow River) (Figure 11), where the 
contribution rate is essentially unchanged. The 
upward trend in vegetation cover is more pro-
nounced in the Yellow River basin, where both 
the temperature and precipitation change and eco-
logical engineering projects contribute to 

vegetation growth, so the residual trend method 
is better able to identify the contribution rates of 
both. The areas to the southwest of mainland 
China and the Songhua River show a large change, 
especially that of the Songhua River, which shows 
a significant increase in the contribution from 
changes in temperature and precipitation (10.86% 
~ 20.40%) (Figure 11a,c) and a significant decrease 
in the contribution of ecological engineering, 
deforestation and urbanization (23.86% ~ 25.07%) 
(Figure 11b,d). This is because both regions show 
time lag effects on precipitation and temperature, 
resulting in the original residual trend method, 
which underestimates the vegetation’s response 
to climate change. In addition, the modeling the 
spatial dimension reduces the overestimation of 
the contribution rate of anthropogenic land use 
changes due to the assumed period of no human 
activity.

The Middle and Lower Yangtze River, Lower 
Yangtze River and Southeast River present changes 
in the contribution rates of both the temporal and 

Figure 11. Improved results minus the results of the original residual trend method. (a) Difference in the effect of climate change 
between the original and improved residual trend methods in the temporal dimension. (b) Difference in the effect of human activities 
between the original and improved residual trend method in the temporal dimension. (c) Difference in the effect of climate change 
between the original and improved residual trend method in the spatial dimension. (d) Difference in the effect of human activities 
between the original and improved residual trend method in the spatial dimension.
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spatial dimensions in addition to the opposite effect, 
mainly because the vegetation types in these two 
regions have changed significantly over time, and 
the use of the same vegetation type in the spatial 
model leads to larger errors, so the contribution 
rates combined with the temporal dimensions are 
more accurate.

Overall, the improved residual trend method pro-
vides more accurate quantitative results. It improves 
the ability to calculate the contribution of climate 
change to vegetation impacts in the temporal dimen-
sion and to identify the contribution of human activ-
ities in the spatial dimension.

The improved residual trend method provides 
a new threshold for the contribution of climate 
change and human activities to changes in vegetation 
based on the original method (Figure 12).

With the improvement of the residual trend 
method, the contribution rate of anthropogenic land 
use changes in the Yellow River, Yangtze River, 
Southeast River and Pearl River increase significantly 
(Figure 12a) and is more in line with the actual anthro-
pogenic land use changes in these areas. The most 
prominent basin is the Lower Yellow River Basin, 
which accounts for 87.69% of the ecological engineer-
ing project contribution in the spatial dimension. The 

Figure 12. Contribution of climate change and human activities calculated from the original residual trend method and the improved 
residual trend method. The contribution ratio in the figure is the sum of the contribution ratios of climate change and human 
activities. To the left of each set of bar graphs is the original residual trend method, the middle bar shows the improved residual trend 
method for the spatial dimension, and the right bar represents the improved residual trend method for the temporal dimension. (a) 
Statistics on the contribution of climate change and human activities in the 17 basins. The names of the basins correspond to the 
number codes referred to in Table 1. (b) Statistics on the contribution of climate change and human activities on the 10 vegetation 
types. The full name of the vegetation types is referred to in Fig. 2.
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negative impacts of desertification, deforestation and 
urbanization on vegetation are observed mainly in 
the Songhua River (12.67 ~ 13.58%), Upper Yangtze 
River (11.39% ~ 18.07%) and Lancang River (18.72% ~ 
23.46%). Regarding the temperature and precipita-
tion changes, the contribution in the temporal dimen-
sion tends to zero or greater than zero, which has 
a positive impact on the vegetation, while 
a negative impact was found on the Brahmaputra 
(17.42%).

Anthropogenic land use changes show a positive 
effect on the contribution in the temporal dimension 
of grass (26.49%) and CV (20.84%) vegetation types 
(Figure 12b). In the spatial dimension, the effect of 
anthropogenic land use changes on each vegetation 
type decreases significantly, highlighting the role of 
temperature and precipitation changes. The negative 
effects of deforestation were in the MCBF (9.53% ~ 
18.76%) and BF (1.34% ~ 8.16%). The impact of the 
temperature and precipitation changes on vegetation 
is essentially positive or has no effect, but a negative 
impact is found in the swamp areas (33.25%) in the 
spatial dimension.

4.5. Result verification

An appropriate assessment method is a relatively 
important prerequisite for accurately distinguishing 
the impact of climate change and human activities 
on vegetation dynamics. In recent decades, climate 
change in mainland China has had great spatial 
heterogeneity. Overall, the temperature has 
increased significantly, while the spatial variation in 
precipitation has varied greatly (Wu et al. 2016; 
Zhang et al. 2019). Different vegetation types and 
hydrothermal conditions present in different regions 
lead to regional differences in vegetation change 
and its response to climate change (Liu et al. 
2018a; Jiang et al. 2017). At the same time, the 
Chinese government has implemented a number of 
vegetation construction projects and ecological pro-
tection projects across the different regions (Xu et al. 
2018b; Liu et al. 2018b), and the engineering bene-
fits to the corresponding regions are difficult to cal-
culate. Conversely, China’s urbanization and 
population migration has also had a great impact 
on changes in the vegetation coverage (Tan, Xu, and 
Zhang 2016; Zhang and Shunfeng 2003). The accu-
racy of the RESTREND method may be significantly 

weakened due to the spatial heterogeneity of the 
vegetation-climate and vegetation-human 
relationships.

This research aimed to explore spatial approaches, 
and based on the assumption that the growth of 
vegetation is not disturbed by anthropogenic land 
use changes under the optimal hydrothermal condi-
tions preferred by each vegetation type during the 
same period is necessary for the effective supplemen-
tation of the method. In the results of spatial dimen-
sion modeling, the contribution rate of 
anthropogenic land use change is approximately 
20% lower than that of traditional time dimension 
modeling. In this study, it is assumed that the implica-
tions of human activities on vegetation changes 
before the year of abrupt change can be ignored, 
and the original residual trend method is further 
improved. However, without considering the impact 
of human activities in those years before the change 
point, the bias of the prediction equation cannot be 
eliminated. From the spatial dimension, we assume 
that under the best hydrothermal conditions, vegeta-
tion growth is not disturbed by human activities to 
supplement the time dimension. However, under the 
optimal conditions of water and heat, human activ-
ities may be influential, so the impact of temperature 
and precipitation changes may be overestimated. In 
addition, we validate our results laterally through 
analyzing changes in the historical land use patterns 
in mainland China.

Based on the 1980–2000 land use transfer matrix 
for mainland China (Table 4), the area converted to 
farmland is the largest, with a total of 1601 pixels and 
a net increase of 737 pixels, followed by constructed 
land (a net increase of 288 pixels). Grassland has the 
largest net reduction of 645 pixels, followed by forest 
areas, which showed a net reduction of 222 pixels. 
The land use transfer matrix in mainland China from 
2000 to 2015 shows that the areas of farmland and 
grassland decreases, with net decreases of 94 and 320 
pixels, respectively, while the net increase in con-
structed land is 635 pixels. From 1980 to 2015, grass-
land in mainland China shows an overall decreasing 
trend, with a net reduction of 965 pixels, mainly 
resulting from farmland conversion (1071 pixels of 
grassland were converted to farmland). In addition, 
the area of constructed land and farmland increased, 
with net increases of 921 and 643 pixels, respectively. 
The expansion of constructed land is mainly due to 
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the occupation of farmland, which resulted in the 
conversion of 732 pixels constructed land. From 
1980 to 2015, the overall distribution of land use 
types in mainland China are relatively stable in 
space, and changes are more drastic on smaller scales. 
The net decrease in grassland is the largest reduction, 
and the net increase in constructed land is the largest 
addition. This suggests that mainland China has 
experienced more human activity in recent years, 
which is consistent with our findings.

The Songhua River and Liao River experienced 
large land use changes between 1980 and 2000, espe-
cially via a drastic increase in the cultivated land. In 
contrast, cultivated and built-up land remain largely 
unchanged from 2000–2015, so fewer human activ-
ities are detected after 2000 (Figure 13). In the results 
of our improved residual trend method, fewer effects 
of human activities are detected in the Songhua River 
Basin and the Liao River than in the original method. 
The improved residual trend method detected 
a higher anthropogenic contribution than the original 
method in the Upper Yellow River, Huai River, Inland 
rivers in Northern Tibet, Brahmaputra, Upper and 
Middle Yangtze River and Lancang River. The Upper 
Yellow River, Huai River, and Upper and Middle 
Yangtze River show significantly increased areas 
with constructed land, while Inland rivers in 
Northern Tibet (0.044% to 0.12%), Brahmaputra 
(0.034% to 0.068%), Upper Yangtze River (0.14% to 
0.27%) and Lancang River (0.17% to 0.25%) are 

difficult to see in the figure due to their relatively 
small proportions of constructed land; however, 
their constructed land area has basically doubled.

Compared with previous studies, our results are 
consistent and reasonable (Huang et al. 2020; Jiang 
et al., 2020; Liu et al. 2018a; Sun et al. 2015b; Wang 
et al. 2013). In the temporal dimension, the ability to 
identify the effects of temperature and precipitation 
changes on vegetation change is enhanced by our 
method; in the spatial dimension, the rate of contri-
bution of anthropogenic land use changes to vegeta-
tion change is highlighted. Combining the results of 
both makes the residual trend method more accurate. 
Changes in the vegetation coverage in most parts of 
China is caused by human activities and climate 
change factors. Overall, the contributions of tempera-
ture and precipitation changes and anthropogenic 
land use changes are approximately 40% and 60% 
(Kai. 2019), respectively, from our results. According 
to the results of some regions, anthropogenic land 
use changes contributed to 42.35% and temperature 
and precipitation changes contributed to 57.65% of 
the vegetation change in the Loess Plateau from 2000 
to 2016 (Zheng et al. 2019b). The contribution of 
human activities to vegetation changes on the Loess 
Plateau was 55% from 1982 to 2015 (Li, Peng, and Li 
2017). Our research shows that climate change and 
human activities accounted for 48.94% ~ 62.98% and 
37.02% ~ 51.06% of the vegetation changes seen in 
the Yellow River (including the Upper Yellow River 

Table 4. Number of pixels of land-use change in mainland China during 1980–2015.
Land use type Farmland Forest Grassland Water Constructed landUnused landTotal

Number of pixels in 2000 Number of pixels in 1980
Farmland - 394 829 74 47 257 1601
Forest 166 - 265 17 3 30 481
Grassland 245 253 - 84 3 340 925
Water 113 15 52 - 1 87 268
Constructed land 276 11 30 16 - 9 342
Unused land 64 30 394 248 0 - 736
Total 864 703 1570 439 54 723 4353
Number of pixels in 2015 Number of pixels in 2000
Farmland - 152 351 43 41 197 784
Forest 141 - 136 6 4 14 301
Grassland 163 71 - 25 1 137 397
Water 78 18 46 - 3 60 205
Constructed land 475 75 77 28 - 30 685
Unused land 21 6 107 41 1 - 176
Total 878 322 717 143 50 438 2548
Number of pixels in 2015 Number of pixels in 1980
Farmland - 451 1071 92 63 415 2092
Forest 217 - 384 19 7 42 669
Grassland 279 311 - 95 4 444 1133
Water 162 31 87 - 4 118 402
Constructed land 732 84 108 38 - 38 1000
Unused land 59 35 448 265 1 - 808
Total 1449 912 2098 509 79 1057 6104
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and Lower Yellow River, which contains the Loess 
Plateau) from 1982 to 2015, which is similar to the 
results of previous research but more accurate. 
Another study showed that the relative contributions 
of temperature and precipitation changes and 
anthropogenic land use changes accounted for 
46.6% and 53.4% in arid and semiarid areas of China, 
respectively, from 1983 to 2012 (Feng et al. 2015). 
From Figure 8, the range of influence of climate 
change and human activities to NDVI is similar in 
arid and semiarid areas coinciding with the results of 
the compared research. Overall, the improved resi-
dual trend method further refines the theory of the 
impact of the temporal dimension, establishes the 
nonlinear relationship between NDVI and climate fac-
tors, considers time-lagged effects and sets up 
a hypothetical anthropogenic-free period. However, 
the anthropogenic bias of the NDVI assumptions can-
not be eliminated, so this study adds a spatial dimen-
sion, i.e., a spatially simulated equation, at the same 
time, assuming that the vegetation is not affected by 
human activities under optimal thermal and hydro-
thermal conditions. The improvement in the spatial 
dimension can negate the bias introduced in the 
temporal dimension, but it does not completely 

exclude the new bias introduced by anthropogenic 
influences at optimal hydrothermal conditions. We, 
therefore, provide a threshold reference for the con-
tribution of climate change and human activities to 
vegetation changes. We believe that our research 
further improved the residual trend method and 
obtained more accurate results.

5. Conclusions

Anthropogenic land use changes and temperature 
and precipitation changes are the two main factors 
driving changes in vegetation cover on regional and 
global scales. This paper improves the residual trend 
method to determine the contribution rate of anthro-
pogenic land use changes in the temporal and spatial 
dimensions on the basis of ensuring a more accurate 
quantification of the temperature and precipitation 
change contribution rates to the actual NDVI values. 
Taking mainland China as a research object from 1982 
to 2015, we concluded the following: (1) 68.81% of 
the area is in a state of sustainable increase in vegeta-
tion coverage, of which the cultivated vegetation (CV) 
and grass components are dominant. (2) The contri-
bution of temperature and precipitation to vegetation 

Figure 13. Spatial distribution of the historical land use types in mainland China. (a) Status of land use in 1980. (b) Status of land use in 
2000. (c) Status of land use in 2015. (d) Proportion of land use types in 17 basins in 1980, 2000, and 2015 (the left column is 1980; the 
middle column is 2000; and the right column is 2015).

GISCIENCE & REMOTE SENSING 253



is 24.73% ~ 45.56%; the contribution rate of anthro-
pogenic land use changes to changes in vegetation is 
54.45% ~ 75.27%. (3) The improved residual trend 
method enhances the accuracy of the calculated con-
tribution rates of climate change and human activities 
to vegetation changes in the temporal and spatial 
dimensions, respectively. (4) Although increasing 
attention has been given to the effect of anthropo-
genic land use changes on vegetation changes, we 
cannot ignore the impact of temperature and preci-
pitation changes.
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Appendix

The annual average temperature in mainland China increased 
significantly from 1982–2015, especially from 1982–2000 
(Figure A1). The annual total precipitation fluctuated greatly 
from 1982 to 2015, but the overall change was not significant 

(Figure A2). Most of the temperature measurements in main-
land China from 1982 to 2015 showed a clear upward trend 
(Figure A3). There are large spatial differences in the precipita-
tion trends in mainland China seen from 1982 to 2015 (Figure 
A4).

Figure A1. Trends in the annual average temperature in mainland China from 1982 to 2015.

Figure A2. Trends in the annual total precipitation in mainland China from 1982 to 2015.
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Figure A3. Spatial distribution of the slope in the annual average temperature from 1982 to 2015 in mainland China.

Figure A4. Spatial distribution of the slope in the annual total precipitation from 1982 to 2015 in mainland China.
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