
1. Introduction
Precipitation is a key climatic variable and an important element of the hydrological cycle. Real-time precipita-
tion measurements provide a powerful tool for real-time drought and flood monitoring, forecasting, and warning 
(Hong et al., 2007; Nguyen et al., 2015; Qi et al., 2021; Zhou et al., 2014). Traditionally, several approaches are 
available for real-time precipitation measurements, but each of them has advantages and disadvantages (Sun 
et al., 2018). For example, gauge observations provide the most accurate estimates at the site scale, but it degrades 
at large scales because of sparse stations and sampling errors (Tang et al., 2018). Therefore, ground observations 
based on a limited gauge density do not provide sufficiently representative spatial precipitation distributions. 
Radar precipitation estimates suffer from similar issues and the method is also vulnerable to obstructions (Goud-
enhoofdt & Delobbe, 2009). High construction and maintenance costs also hinder the widespread rollout of both 
rain gauge and radar equipment, especially in remote areas (Nguyen et al., 2018).

Abstract Accurate and reliable near-real-time satellite precipitation estimation is of great importance for 
operational large-scale flood forecasting and drought monitoring. The state-of-the-art precipitation post-
processing model is based on a deterministic approach to construct relationships between satellites estimates 
and ground observations. We propose a probabilistic postprocessor, the Probabilistic Post-Processing of 
Near-Real-Time Satellite Precipitation Estimates using Quantile Regression Forests (QRF4P-NRT), based 
on quantile modeling, yielding both deterministic and probabilistic predictions. The experimental design 
incorporates different solutions of near-real-time predictors to further improve the model performance. Using 
the Integrated Multi-satellitE Retrievals Early Run for Global Precipitation Measurement Mission (IMERG-E) 
product as an example, we illustrate that the proposed method significantly improves the overall quality of the 
raw IMERG-E and is also superior to the bias-corrected product (IMERG Final Run, IMERG-F) at daily scale 
in a complex mountain basin. Evaluations of the corrected IMERG-E, raw IMERG-E, and IMERG-F using 
ground observation show that the corrected IMERG-E improves correlation coefficients (0.7), mean error 
(−0.14 mm/day) and root mean square error (3.3 mm/day) relative to the raw IMERG-E (0.31, −0.72  and 
5.5 mm/day) and IMERG-F (0.34, −0.09  and 6.0 mm/day). The error decomposition further confirms that the 
QRF4P-NRT improves on the various deficiencies of the raw IMERG-E product. The ensemble assessment 
also demonstrates that the quantile outputs provide reliable prediction spread and sharp prediction intervals. 
The promising results indicate the great potential of the proposed method for probabilistic post-processing 
for near-real-time satellite precipitation estimates, and for further applications such as hydrological ensemble 
forecasting.

Plain Language Summary Errors in near-real-time satellite precipitation estimates limit 
their applications. The use of error correction models is better able to reduce the errors. However, current 
deterministic error correction models reduce errors while losing uncertain information. In this study, we 
propose a probabilistic error correction method that has been used in the field of ensemble numerical weather 
forecasts. While reducing the error, it is also possible to quantify the probabilistic information. Our method 
obtains the best score compared to both the raw product and bias-corrected product. This is of great interest for 
the application of near-real-time satellite precipitation estimates and can be further applied to operational flood 
forecasting and drought monitoring.
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Since the Tropical Rainfall Measuring Mission project, precipitation estimates based on satellite retrieval 
have been considered as a promising tool for large-scale precipitation measurements (Hou et al., 2013; Huff-
man et al., 2007). Multiple satellite precipitation estimates products are available (Sun et al., 2018; Y. Zhang 
et  al.,  2021a). Depending on whether they are bias-corrected and the record length of the data, they can be 
broadly classified into three categories: real-time or near-real-time products (RTs or NRTs), bias-corrected prod-
ucts (BCs), and climate data records (Y. Zhang et  al.,  2021a). Among them, NRTs (or RTs) with very short 
latency time are the ideal product for operational applications such as flood monitoring and forecasting (Hong 
et al., 2007; Zhou et al., 2014). For example, the latest Precipitation Estimate from Remotely Sensed Information 
using Artificial Neural Networks Dynamic Infrared Rain Rate near-real-time (PDIR-Now) issued by the Center 
for Hydrometeorology and Remote Sensing at the University of California, Irvine, which is primarily based on 
infrared imagery, has a delayed-release time of only 30 min (Nguyen, Ombadi, et al., 2020; Nguyen, Shearer, 
et al., 2020). Released by Global Precipitation Measurements Mission (GPM) led by the National Aeronautics and 
Space Administration (NASA), the latency time of IMERG early run is 4 hr (Huffman et al., 2015). Developed 
by Global Rainfall Watch led by the Japan Aerospace Exploration Agency, the latency time of Global Satellite 
Mapping of Precipitation real-time (GSMaP-Now) and near-real-time (GSMaP-NRT) is 0 and 4 hr, respectively 
(Kubota et al., 2020). However, due to the data source and retrieval algorithm, these raw precipitation estimates 
from NRTs (or RTs) normally suffer from large errors (Chen et al., 2020). This results in large uncertainty, which 
subsequently limits their operational applications.

Many studies have been attempted to develop effective bias correction methods for improving the quality of 
the satellite precipitation estimates (Dong et al., 2020; Gumindoga et al., 2019; W. Li et al., 2019). Typically, 
with ground observations, the satellite estimates are post-processed using regression-like or probability density 
function-based matching models. For example, many studies have developed multiple linear regression models 
(i.e., univariate or multivariate) based on the relationship between precipitation error and factors such as topog-
raphy, seasonality, climate type, and rain rate (Chen et al., 2021). Distribution adjustment is mainly implemented 
by correcting the values of different quartiles to eventually match the observed and satellite-based cumulative 
density functions (CDFs; Maraun, 2013). However, precipitation post-processing is tagged with various difficul-
ties such as nonlinearity, heteroskedasticity, and skewed distribution (A. H. Li et al., 2017). The existing methods 
mentioned above do not address these challenges well. For example, CDF-matching is a kind of “climatolo-
gy-based” adjustment that is more effective for reducing systematic errors, but does not handle random errors 
well and does not improve the correlation coefficient between satellite estimates and ground observations (Shen 
et al., 2021). Moreover, regression models are mostly linear and do not address nonlinearity and heteroskedastic-
ity well (Chen et al., 2021).

Recently, machine learning (ML) models have been commonly used in post-processing of the satellite precipi-
tation estimates and related hydrometeorological applications because of their ability to better handle complex 
problems such as nonlinearity as well as big data (Sharifi et al., 2019; F. Wang et al., 2021; Y. Zhang & Ye, 2021). 
Among different ML models, the random forests (RF) model (Breiman, 2001) has been used for a variety of 
scenarios and showed superior model performance. For example, Ibarra-Berastegi et al. (2011) earlier applied the 
RF model for downscaling of precipitation and surface moisture flux. Subsequently, X. He et al. (2016) used and 
compared single RF and double RF models for GLDAS precipitation downscaling with different ratios of exper-
iments. This RF-based approach to precipitation downscaling has also proven to be very effective in complex 
alpine terrain (Mei et al., 2020). Similarly, double RF models have been used in the study of merging multi-
source satellite precipitation estimates products (L. Zhang et al., 2021). Baez-Villanueva et al. (2020) develop 
an RF-based MErging Procedure, which combines information from ground-based observations, state-of-the-
art precipitation products, and topography-related features to improve the representation of the spatiotemporal 
distribution of precipitation in Chile. Herman and Schumacher (2018a, 2018b) conducted a series of experiments 
on the improvement of precipitation forecasts using the RF-based tree models and came to the very “valuable” 
conclusion that “Money Does not Grow on Trees, but Forecasts Do”. The RF model was also successfully used 
to implement automatic detection and classification of low-level orographic precipitation processes from space-
borne radars (Arulraj & Barros, 2021). Precipitation error correction models based on streamflow observations 
and RF models have also been experimented at the global scale (Beck et al., 2020).

Whether single-source or multi-source, corrected or merged, the studies mentioned above perform precipita-
tion post-processing in a deterministic way. However, because of the imperfect nature of the model and the 



Water Resources Research

ZHANG ET AL.

10.1029/2022WR032117

3 of 29

ineradicable nature of the uncertainty, deterministic models do not always convey a consistent message and do 
not take full advantage of multi-source information (Donat et al., 2014; Henn et al., 2018). When these determin-
istic products are applied, the uncertainty may also be amplified with the model or over time (Cunha et al., 2012; 
Pan et al., 2010; Schreiner McGraw & Ajami, 2020). In contrast, probabilistic post-processing outputs not only 
provide deterministic information, but also quantify uncertainty and a basis to measure and manage the risk of 
decision making (Parrish et al., 2012; S. Wang et al., 2018). Few probabilistic products have been developed 
to achieve this objective, such as observation-based global temperature products (HadCRUT4, 100 ensemble 
members; Morice et al., 2012), high-resolution ensemble precipitation analysis (HREPA, 24 ensemble members; 
Khedhaouiria et al., 2020), and ensemble meteorological data set for North America (EMDNA, 100 ensemble 
members; Tang et al., 2021). For post-processing of near-real-time satellite precipitation estimates, its uncertainty 
information is even as important as deterministic information, yet almost no studies discussed this issue.

Quantile regression forests (QRF) model is a variant of the RF model that not only predicts the conditional 
mean of the predictand, but also provides the full conditional probability distributions (Meinshausen & Ridge-
way, 2006). Thus, the QRF model inherits all the advantages of the RF model and provides additional probabil-
istic information. There have been few studies in ensemble post-processing of numerical weather forecasts based 
on the QRF model. Fox example, Taillardat et al. (2016) developed the QRF model and compared it with ensem-
ble model statistics (EMOS) for post-processing surface temperature and wind speed. Results indicated that the 
QRF model performs better than EMOS and can bring additional value to the human forecaster. Evin et al. (2021) 
proposed using the QRF model to calibrate ensemble forecasts of the height of new snow, which also indicated 
that QRF could be applied to the correction of skewed distribution for variable similar to precipitation. In addition 
to the post-processing of MWPs, QRF has also been successfully applied to hydrological ensemble post-process-
ing (Tyralis & Papacharalampous, 2021; Tyralis et al., 2019) and soil uncertainty mapping (Kasraei et al., 2021; 
Vaysse & Lagacherie, 2017). However, no studies have attempted to use it for near-real-time post-processing of 
satellite precipitation estimates.

In this study, we propose the development of a QRF-based postprocessor called QRF4P-NRT (Probabilistic 
Post-Processing of Near-real-time Satellite Precipitation Estimates using QRF). We further demonstrate the 
proposed framework as a simple, multi-stage probabilistic post-processing method capable of providing dry-wet 
classification, deterministic and probabilistic prediction for near-real-time satellite precipitation estimates. 
Using the Yalong River basin in China as a case study, the more accurate dry-wet classification, deterministic 
adjustments, and reliable probabilistic outputs are confirmed by the comparison between the raw IMERG-E and 
IMERG-F products. The structure of this study is organized as follows in this manuscript: study area and data 
set are introduced in Section 2. Section 3 describes in details the architecture of the proposed method, its imple-
mentation, the inputs and outputs, and the final evaluation measures. Section 4 presents the analysis and results. 
Critical issues are discussed in Section 5. Main conclusions are summarized in the last section.

2. Study Area and Data
2.1. Study Area

The Yalong River, located in the western part of the Sichuan Basin and the eastern part of Qinghai-Tibet Plateau, is 
selected as the region of interest of this study. Yalong River is the largest tributary of the Jinsha River in the upper 
reaches of the Yangtze River of China (Figure 1a). The Yalong River basin (96°52’–102°48’E, 26°32’–33°58’N) 
spans 1,570 km, covers a total area of about 130,000 km 2 and presents significant topographic difference from 
north to south (from 7,148 to 115 m). The shape of the Yalong River basin is long and narrow, surrounded by 
high mountains and canyons. The upper reach of the basin is in a continental climate (cold and relatively dry), 
with a mean annual precipitation of 500–750 mm. The middle and lower reaches of the basin have relatively high 
temperatures and precipitation rates, with a mean annual precipitation of 750–1,500 mm (Figure 1b). Precipita-
tion in Yalong River basin has a strong seasonal pattern, with dry periods in November–May and rainy seasons 
in June–October. The complexity of the terrain and the diversity of precipitation make the Yalong River basin an 
ideal study area to evaluate its corresponding satellite precipitation estimates and probabilistic post-processing.



Water Resources Research

ZHANG ET AL.

10.1029/2022WR032117

4 of 29

2.2. Data

The data used in this study include two types of satellite precipitation estimates products, one ground observation 
product, geographic data, intra-annual indicator, meteorological data, and subsurface state variable. They are 
described in details below.

2.2.1. Satellite Precipitation Estimates Products

The most commonly used Level 3 products in NASA's Global Precipitation Measurement project include three 
types of data sets, the IMERG Early Run (IMERG-E), IMERG Late Run (IMERG-L) and IMERG Final Run 
(IMERG-F; Huffman et al., 2015, 2019a, 2019b). Among them, IMERG-E and IMERG-L belong to near-real-
time precipitation estimates. The minimum latency time of IMERG-E is 4 hr, and the minimum latency time of 
IMERG-L is 12 hr. IMERG-F is a bias-corrected, research-quality post-processing product with a 3.5 months 
latency time (https://gpm.nasa.gov/data/directory). In this study, we select the IMERG-E product as a representa-
tive for conducting probabilistic post-processing of near-real-time satellite precipitation estimates. And IMERG-F 
is selected as a reference for verifying the model performance of the proposed post-processing model. The quality 
of IMERG products has also been confirmed in our previous studies by comparing them with other satellite 
precipitation estimates products (Y. Zhang et al., 2021a, 2021b). The IMERG-E and IMERG-F data selected in 
this study are the latest IMERG version 6 products. A total of 12 yr of precipitation data (1 January 2007 to 31 
December 2018) are used here for the analysis. The spatiotemporal resolution of the data is 1 day and 0.1°.

2.2.2. Reference Data

An observed gridded precipitation data set with a 0.5° spatial and daily temporal resolution from the National 
Meteorological Data Center of China Meteorological Administration (CMA) is selected as a reference. The data 
set with high accuracy and wide applications was developed by interpolating the high-quality precipitation gauge 
observations from more than 2,400 weather stations (approximately 50 gauge stations over our study area) over 
China using the Global 30 Arc Second Elevation Data Set (GTOPO30) and the thin plate smooth spline (TPS) 

Figure 1. Study area. (a) Topography and precipitation grid cells and (b) precipitation climatology.

https://gpm.nasa.gov/data/directory
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method (Y. Zhao et al., 2014). CMA gridded precipitation data set has also been used as reference data in many 
other studies in China (B. Guo et al., 2020; H. Guo et al., 2016; Qiang et al., 2016; Y. Zhang & Ye, 2021). In this 
study, we mainly investigate the reliability and effectiveness of the probabilistic post-processing model. So we 
taking the CMA observation as the ground “truth”, and the sampling errors caused by the gauge network density 
and instruments are ignored. When more accurate and representative ground observations are available, we can 
retrain the model to obtain a more accurate model between satellite precipitation estimates and ground “truth”. 
Similarly, because of the gauge density, the spatial resolution of the ground reference is 0.5°, so we upscale the 
satellite product to 0.5° and then train the model at a spatial scale of 0.5°. When finer resolution references are 
available, finer resolution models can be retrained directly. A total of 12 yr of precipitation reference data (1 Janu-
ary 2007 to 31 December 2018) are selected to maintain time overlap. There are 66 grid cells within the Yalong 
River basin, and their spatial distribution is shown in Figure 1a.

2.2.3. Auxiliary Data

Precipitation climatology varies with grid cells, which may be affected by latitude, longitude, and elevation 
(Basist et al., 1994). Therefore, we select the station number (ID), longitude (Lon), Latitude (Lat), and elevation 
(Ele) of each grid cell as the geographic information. The elevation data is obtained from NASA Shuttle Radar 
Topographic Mission digital elevation model, the original spatial resolution is 90 m. We extract the information at 
each grid center point as the representatives of the grid cell. Intra-annual variation in precipitation characteristics 
is also present. Day of year (DOY) is selected as an indicator.

Like geographic information, meteorological variables that correlate and interact with precipitation at different 
locations can reflect the local precipitation characteristics (Aleshina et al., 2021; Back & Bretherton, 2005; Déry 
& Wood, 2005; H. Li et al., 2021; Pendergrass & Hartmann, 2014; Sahin, 2012). Therefore, they can also be used 
as auxiliary data to retrieve precipitation estimates. Here, we selected six meteorological variables, including 
surface downward longwave radiation (Lard), surface downward shortwave radiation (Srad), near-surface air 
temperature (Temp), near-surface air pressure (Pres), near-surface air specific humidity (Shum), near-surface 
wind speed (Wind). They were obtained from the China meteorological forcing data set (CMFD) provided by the 
National Tibetan Plateau Data Center of China (J. He et al., 2020). This data set has been validated and widely 
used in many studies in China (e.g., Gou et al., 2021; Huang et al., 2020; Lu et al., 2020). These reanalysis data 
with a temporal resolution of 3 hr and a spatial resolution of 0.1° were aggregated to a daily scale and a spatial 
resolution of 0.5° using daily and spatial averaging. In addition, surface soil moisture (SM) is also used as an 
auxiliary variable to reflect the dry and wet state of the ground surface. The surface (0–7 cm) SM data selected 
for this study were obtained from the ERA5-land reanalysis products provided by the European Centre for Medi-
um-Range Weather Forecasts (ECMWF), with a temporal resolution of 1  hr and a spatial resolution of 0.1° 
(Muñoz-Sabater et al., 2021). The ERA5 SM product has been validated in our earlier study (H. Li et al., 2021). 
Similarly, they are handled at daily scale and 0.5°. The time period for these data sets is 1 January 2007 to 31 
December 2018.

3. Methodology
We first introduce the basics of QRF model in Sections 3.1 and 3.2. Then in Section 3.3 we introduce the work-
flow of our proposed method and conducted experiments. Finally, we describe a set of evaluation metrics in 
Section 3.4.

3.1. Decision Tree and Random Forests

Decision tree (DT) is a supervised ML algorithm based on top-down conditional judgments. A typical DT mainly 
consists of three types of nodes: root node, split node, and leaf node (Figure 2; Song & Ying, 2015). The DT 
grows up from the root node, classifies the samples according to their predictors (or features) and the node 
conditions, goes to the split node and selects the samples with a similar process in the root node again until to 
the leaf node. The growth of a typical DT is completed under the control of the leaf node. Finally, the prediction 
(classification or regression) is obtained at the leaf node.

Classification and regression tree (CART), proposed by B. Li et al. (1984), is a binary DT model. For the classi-
fication task, the principle of splitting any non-leaf node is based on the Gini index, which is a metric similar to 
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information entropy used to describe the purity of sample features. For the regression task, the splitting principle 
for any non-leaf node is based on minimizing the mean squared difference between the observations and predic-
tions as the loss function, also known as the variance reduction criterion. The equations are given as follows:

Gini(�) =
∑�

�=1
�� (1 − ��) = 1 −

∑�

�=1
� 2
�

 (1)

where S is a specific sample; Pi represents the probability of positive or negative classes appearing in the sample 
set; m is the number of sample features.

Loss = 1
�

∑�

�=1

√

(�� − �̂�)2 (2)

where N is the number of samples, yj is a specific observation, and 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗 is the corresponding prediction.

CART is a simple non-parametric model with low computational complexity, no need for distribution assump-
tions and normalization of the samples. However, because of the growth process of the CART, it also has obvious 
drawbacks. For example, a CART may grow too deep, resulting in an over-complicated model, which leads to 
overfitting. CART is essentially a greedy algorithm, and there is randomness in the growth process of a single 
CART. Therefore, it is sensitive to the training samples and may converge to the local optimum. A pruning-like 
approach was proposed to mitigate the drawbacks of CART, but it is not a highly desirable solution.

Inspired by the idea of ensemble learning, Breiman (2001) proposed the RF model. RF model is to generate K 
individual CART to form huge “forests”. Such an integrated idea is based on the collective decision of Bootstrap 
aggregating sampling (Bagging). The link between RF and CART is shown in Figure 2.

The implementation of the RF model consists of two steps:

1.  Determine K CARTs and use bootstrap sampling to generate the initial samples of each tree. Given a 
data set S with N samples, N′ samples (N′ ≤ N) are randomly selected as subsamples S1, S2, S3,…,Sk−1, Sk of 
each CART. Therefore, this is where the first manifestation of the randomness of the RF model comes into 
play. It should be noted that the bootstrap sampling is not a simple replication of S, but a reconstruction that 
approximates the original sample space, which ensures both the difference and the similarity with the original 
feature space.

Figure 2. The link between the classification and regression tree (CART) and random forest (RF) model.
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2.  Construct each CART using independent subsample Si and form the final forests. Another randomness 
of the RF model is mainly reflected in the feature selection when each non-leaf node splits. At any non-leaf 
node of an RF model containing K CARTs, a certain number of features are randomly selected from the whole 
feature space as the basis, and then node splitting is performed using Gini index (classification) and variance 
reduction criterion (regression). The random selection of feature space greatly reduces the similarity between 
different nodes and different CARTs in the same RF model, making it more robust.

The two types of randomness in the above steps make the RF model a comprehensive improvement compared 
with CARTs, which can effectively prevent overfitting and eliminate pruning in CARTs. In addition to the advan-
tage of “forest” to prevent overfitting, the integration of multiple CARTs also solves the problem of single CART 
prediction falling into local optimum and greatly improves the ability of the algorithm to converge to the global 
optimum.

Following the previous notations (Breiman, 2001; A. H. Li & Martin, 2017), the prediction inference processes 
of the RF model are as follows:

Given a data set S with N samples, each sample in S consists of a predictor Xi containing p-dimensional features 
and a predictand (or target) Yi. They are expressed as follows:

𝑆𝑆 = (𝑌𝑌𝑖𝑖, 𝑋𝑋𝑖𝑖) , 𝑖𝑖 = 1, . . . , 𝑁𝑁 (3)

𝑋𝑋𝑖𝑖 = 𝑥𝑥1
𝑖𝑖 , 𝑥𝑥

2
𝑖𝑖 , 𝑥𝑥

3
𝑖𝑖 , ..., 𝑥𝑥

𝑝𝑝

𝑖𝑖
𝜖𝜖ℝ𝑝𝑝 (4)

In data set S, for the dry-wet classification task, Yi is 0 or 1, that is, Yi = {0, 1}, where 0 represents a dry event 
and 1 represents a wet event. For the regression task, Yi is a continuous random variable representing the ground 
“truth” of precipitation on a specific day, which in this study is the CMA observation.

Define θ as the internal parameter that determines how the RF is generated, then the single CART can be 
expressed as T(θ). Suppose the single CART contains a total of l leaf nodes, Rl is the subspace obtained by the lth 
leaf node for the original factor space through a split. For any sample factor x ∈ X, an Rl can be found with x ∈ Rl, 
and the sample is noted as l(x, θ).

For each CART of RF model, given a new sample predictor X = x, solving the predictand 𝐴𝐴 𝑌𝑌  means taking an 
equally weighted average of the sample values in all leaf nodes l(x, θ), which is expressed as follows:

�̂ (�, �) =
∑�

�=1
� (��, �, �) ��

 (5)

𝜔𝜔 (𝑋𝑋𝑖𝑖, 𝑥𝑥, 𝑥𝑥) =
1{𝑋𝑋𝑖𝑖∈𝑅𝑅𝓁𝓁(𝑥𝑥,𝑥𝑥)}

# {𝑗𝑗 ∶ 𝑋𝑋𝑗𝑗 ∈ 𝑅𝑅𝓁𝓁(𝑥𝑥,𝑥𝑥)}
 (6)

∑�

�=1
� (��, �, �) = 1 (7)

Finally, extending single CART to K CARTs, the conditional mean E(Y∣X = x) is estimated by the averaged 
prediction of K CARTs, which is expressed as follows:

�̂ (�) =
∑�

�=1
� (��, �) ��

 (8)

� (��, �) =
1
�

∑�

�=1
� (��, �, ��) (9)

∑�

�=1
� (��, �) = 1 (10)

where ω(Xi, x, θk) is the weight matrix of the kth CART. For the classification task, all sample values are voted, 
while all sample values are averaged for the regression task.
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3.2. Quantile and Quantile Regression Forests

Given any random variable X, whose distribution function is F(x) = P(X ⩽ x). Then given any quantile τ ∈ (0, 1), 
we define the τ quantile function of the random variable X as:

𝑄𝑄(𝜏𝜏) = 𝐹𝐹 −1(𝑥𝑥) = inf {𝑥𝑥 ∶ 𝐹𝐹 (𝑥𝑥) ⩾ 𝜏𝜏} (11)

According to the definition of the quantile function Q(τ), it can be seen that there exists a proportion of τ (or 
1 − τ) samples larger (or smaller) than the quantile function Q(τ), respectively. Quantile regression models 
are built at specific quantile levels about the conditional distribution of the target variable, which can describe 
the global distribution characteristics of the target variable and therefore contain more uncertainty information 
(Meinshausen & Ridgeway,  2006). Conditional mean focuses on the mean state of the target variable, while 
quantile focuses on the global distribution; Empirical quantile modeling does not obey strict assumptions (e.g., 
normality, independence, and homoscedasticity). Therefore, quantile modeling is a more general framework of 
the conditional mean modeling.

The quantile loss function can be further defined as:

𝜌𝜌𝜏𝜏 (𝑢𝑢) =

⎧
⎪
⎨
⎪
⎩

𝜏𝜏 ⋅ 𝑢𝑢 if 𝑢𝑢 ≥ 0

(𝜏𝜏 − 1) ⋅ 𝑢𝑢 if 𝑢𝑢 𝑢 0
 (12)

where u can be regarded as samples larger (or smaller) than the quantile function, which ensures the quantile loss 
function to always be positive.

In regression inference using the RF model, the prediction is approximated by conditional mean, which is an 
equal-weighted averaging method that does not take full advantage of the CDF of the whole samples. Solving the 
RF model can be expressed as:

�̂ (�) = argmin
�∈ℝ

∑�

�=1
� (��, �) (�� − �)2 (13)

In the QRF model, the prediction uses the entire CDF information and is a non-equal-weight approach. Solving 
the QRF model can be expressed as:

�̂� (�) = argmin
�∈ℝ

∑�

�=1
� (��, �) �� (�� − �) (14)

Given any quantile τ ∈ (0, 1), the loss function Loss(τ) can be expressed as:

Loss(�) =
∑�

�=1
� (��, �)

{

∑

�∶��≥0
(� ⋅ ��)2 +

∑

�∶��<0
[(� − 1) ⋅ ��]2

} (15)

𝑢𝑢𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑌𝑌𝜏𝜏 (𝑥𝑥) (16)

The above equation allows finding the predictand at different quantile levels. The prediction intervals (PIs) can 
also be obtained. For example, PI50% and PI90% can be given by the following equations:

PI50%(𝑥𝑥) = [𝑌𝑌0 .25(𝑥𝑥), 𝑌𝑌0 .75(𝑥𝑥)] (17)

PI90%(𝑥𝑥) = [𝑌𝑌0 .05(𝑥𝑥), 𝑌𝑌0 .95(𝑥𝑥)] (18)

3.3. Post-Processing Workflow

The workflow of the QRF4P-NRT is shown in Figure 3. Due to the resolution of the reference data, we build the 
core post-processing model on a coarse grid system. Therefore, the proposed workflow is to first upscale the raw 
satellite precipitation estimates and auxiliary predictors, and then perform a two-stage post-processing model 
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to generate the binary classification (wet-dry) mask and probabilistic outputs, respectively. In this process, the 
model is evaluated based on raw IMERG-E and bias-corrected IMERG-F satellite precipitation estimates. Finally, 
the fine-resolution satellite precipitation estimates are reconstructed using a simple scaling factor method.

3.3.1. Feature Selection and Feature Importance

For training an ML model, an indispensable step is feature engineering. To develop a near-real-time post-process-
ing system for satellite precipitation estimates, auxiliary predictors acquired in parallel with satellite precipitation 
estimates are key to feature engineering. We first summarize the selected predictors for this study in Table 1, and 
then describe them in details below.

First, with respect to the main predictors (primary variable), the near-real-time satellite estimates (Sim t) are 
considered to be the most appropriate and dominant predictors. Moreover, two situations in near-real-time satel-
lite precipitation retrieval (e.g., temporal and spatial correlation) are considered (Y. Zhang & Ye, 2021). There-
fore, for the main predictors, we not only selected the precipitation estimates at the central grid cell on a specific 
day (t), but also selected the rest eight grid cells in the neighboring 3 × 3 grid cells and all precipitation estimates 
in this 3 × 3 grid cells on the previous day (t − 1), with a total of 18-dimensional features.

In terms of auxiliary predictors (or covariates), as mentioned in the data section of this article, we selected a 
variety of predictors, including geographic predictors, meteorological predictors, DOY index, and surface SM. 
Therefore, we also must consider the near-real-time accessibility of the auxiliary predictors. Among these predic-
tors, the geographic factors (including station number, latitude, longitude, and elevation) and the DOY index 
are considered as permanent static predictors with five-dimensional features. The meteorological and surface 
SM data selected in this study were derived from reanalysis products. They are not available in near-real-time. 
We, therefore, focus on how to process and design experiments to incorporate these predictors into the proposed 
post-processing framework.

In order to increase the interpretability and physical significance of ML models, RF incidental feature impor-
tance analysis is attempted in this study (Breiaman, 2001). Quantification of the importance of features is mainly 
performed by out-of-bag sampling, which is a stepwise testing method. That is, the features are selectively 
controlled to observe the effect of feature variation on the results. And Gini index and the root-mean-square error 
are used to quantify the importance of each feature in classification and regression tasks, respectively.

Figure 3. The workflow of the QRF4P-NRT. The 0.1 and 0.5 in the figure represent the 0.1° and 0.5°. Time step t and t − 1 represent the target day and the previous 
day.
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3.3.2. Experimental Design

Based on the discussion above, we first determined a total of 18-dimensional features for the main predictors and 
a total of five-dimensional features for the permanent static predictors. This is also our base experiment, contain-
ing 23-dimensional features. On this basis, we set up three different groups of experiments dealing with other 
predictors. They are described below and summarized in Table 2.

 1.  Base experiment: contains only 23-dimensional features with main predictors and permanent static predictors.
 2.  Static experiment: take the multiyear average (climatology) of the meteorological predictors and SM predic-

tor as their real-time proxies that can be obtained during the operational post-processing system.
 3.  Analog experiment: during the operational post-processing, the most analogs meteorological and SM 

factors from the historical (training) period are selected as real-time proxies by the analog method (Hemri 
& Klein,  2017). This method is one of the most classic statistical post-processing methods for ensemble 
forecasting, and here we choose it as an alternative for finding near-real-time dynamic predictors (Zorita & 
Von Storch, 1999). The metric used here is implemented by calculating the Euclidean distance (Equation 19) 

Variable name Abbreviation Unit

Precipitation in the target gird cell on the target day (t) Sim t mm/day

Precipitation at adjacent grid cell (northwest) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

0
 

Precipitation at adjacent grid cell (north) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

1
 

Precipitation at adjacent grid cell (northeast) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

2
 

Precipitation at adjacent grid cell (west) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

3
 

Precipitation at adjacent grid cell (east) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

4
 

Precipitation at adjacent grid cell (southwest) on the target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

5
 

Precipitation at adjacent grid cell (south) on target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

6
 

Precipitation at adjacent grid cell (southeast) on target day (t) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡
7
 

Precipitation in the target gird cell on the previous day (t − 1) Sim t−1

Precipitation at adjacent grid cell (northwest) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

0
 

Precipitation at adjacent grid cell (north) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

1
 

Precipitation at adjacent grid cell (northeast) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

2
 

Precipitation at adjacent grid cell (west) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

3
 

Precipitation at adjacent grid cell (east) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

4
 

Precipitation at adjacent grid cell (southwest) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

5
 

Precipitation at adjacent grid cell (south) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

6
 

Precipitation at adjacent grid cell (southeast) on the previous day (t − 1) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1
7

 

Station number ID -

Longitude Lon -

Latitude Lat -

Elevation Ele m

Day of year index DOY -

Surface downward longwave radiation Lrad W/m 2

Surface downward shortwave radiation Srad

Near-surface air temperature Temp K

Near-surface air pressure Pres Pa

Near-surface air specific humidity Shum kg/kg

Near-surface wind speed Wind m/s

Soil moisture SM m 3/m 3

Table 1 
Predictors and Their Abbreviation Used in This Study
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between near-real-time precipitation estimates in 3 × 3 grid cells for two adjacent days (t and t − 1) of the 
historical (training) and future (test) period.

Euclidean Distance =
√

∑18

�=1

(

�future
� − �history

�

)2 (19)

 4.  Dynamic experiment: The dynamic experiment is a hypothetical experiment in which it is assumed that we 
can obtain real-time dynamic factors for an operational post-processing system in future periods. In this study, 
it can also be seen as the upper bound of model performance.

3.3.3. Classification and Regression

In probabilistic post-processing experiments, the precipitation is criticized with characteristics and difficulties 
such as skewed, discrete-continuous distribution, and heteroskedasticity. To improve the skill of the proposed 
framework, probabilistic post-processing is divided into two steps. In the first step, dry-wet event discrimination 
based on random forest classification (RFC) is performed. Dry events were determined in this study using a 
threshold of 1 mm/day. In the second step, the dry events are seen as “truncated” values, then the QRF is imple-
mented only using wet samples. In the QRF part, the quantile is equally sampled from 0.05 to 0.995, and a total 
of 100 set ensemble members are generated.

3.3.4. Downscale to the Original Resolution

To unify the spatial resolution of satellite precipitation estimates and observations, we upscaled the original 
satellite precipitation estimates to 0.5° in the probabilistic post-processing model. This degrades the original high 
spatial resolution. Therefore, after obtaining the calibrated post-processing ensemble members, we reconstruct 
them to the original resolution using a scaling factor as follows:

�̃0.1 = �0.1 ×
�̃0.5

�0.5
 (20)

where �̃0.5 and P0.5 represent bias-corrected and raw precipitation estimates at 0.5° grid cells, mm/day; �̃0.1 and 
P0.1 represent bias-corrected and raw precipitation estimates at 0.1° grid cells corresponding to the 0.5° grid cells, 
mm/day.

3.4. Performance Measures

3.4.1. Model Training and Validating

To train and test the model more fairly, the whole sample set (2007–2018) is first divided into a training set 
(2007–2016, 10 yr) and a test set (2017–2018, 2 yr). The training period is used to tune the model hyperparam-
eters to obtain an offline model; the test set is used for future operationalization to test the online model. The 
training set is randomly divided into five parts (2 yr per part) for 5-fold cross-validation to fully train and tune 
the model hyperparameters. And at this stage, the test set (2017–2018) is not involved in any training or hyper-
parameter tuning process. After hyperparameters were tuned by cross-validation, we retrain the model on the 
entire training set (2007–2016) using the optimal hyperparameters. The tuned model is then tested and evaluated 
on the independent test set (2017–2018). The results of the training set are also not shown in the later section 

ID Experiment Predictors Predictand Dimensionality

1 Base ID, Lon, Lat, Ele, DOY, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

3×3
 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

3×3
O t 23

2 Static ID, Lon, Lat, Ele, DOY, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

3×3
 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

3×3
 , Lrad, Pres, Shum, Srad, Temp, Wind, SM O t 30

3 Analog ID, Lon, Lat, Ele, DOY, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

3×3
 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

3×3
 , Lrad, Pres, Shum, Srad, Temp, Wind, SM O t 30

4 Dynamic ID, Lon, Lat, Ele, DOY, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡

3×3
 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡−1

3×3
 , Lrad, Pres, Shum, Srad, Temp, Wind, SM O t 30

Note. Predictors in the table can be referred to Table 1. Predictand (target variable) is the ground observation on target day (O t).

Table 2 
Experimental Design
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because they are not representative. The above process is recommended by scikit-learn ML package (Pedregosa 
et al., 2011). The data set split, cross-validation, model training, and evaluation are shown in Figure 4. Sensitive 
hyperparameters in the RF model include the number of trees (K), the number of predictors randomly sampled 
from total predictors (N) as candidates in non-leaf nodes (Ntry), and the minimum number of samples in leaf 
nodes (Nleaf). Hyperparameter tuning is achieved through a combination of random grid search and grid search. 
For the classification task, K is 20, Ntry is sqrt(N), and Nleaf is 1. For the regression task, K is 100, Ntry is sqrt(N), 
and Nleaf is 5.

3.4.2. Probabilistic Metrics

According to the precipitation 2 × 2 contingency table, compared with the ground “truth”, the satellite precipita-
tion estimates can be classified into four types of events: hit events (TP), missed events (FN), false alarm events 
(FP) and correct negative events (TN). Then two commonly used probabilistic metrics probability of detection 
(POD) and false alarm ratio (FAR) can be expressed as follows:

POD =
TP

TP + FN

 (21)

FAR =
FP

TP + FP

 (22)

The values of POD and FAR range from 0 to 1. The larger the POD the better, and the smaller the FAR the better.

3.4.3. Continuous Metrics

Three commonly used continuous metrics are selected including Pearson correlation coefficient (PCC), mean 
error (ME, also known as bias), and root mean square error (RMSE). The equations are given as follows:

Figure 4. Data set split, model training, and evaluation. This figure is modified from Python scikit-learn package (https://scikit-learn.org/stable/modules/cross_
validation.html#k-fold).
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PCC =

∑𝑛𝑛

𝑖𝑖=1

(
𝑂𝑂𝑖𝑖 − 𝑂𝑂

)(
𝑆𝑆𝑖𝑖 − 𝑆𝑆

)

√
∑𝑛𝑛

𝑖𝑖=1

(
𝑂𝑂𝑖𝑖 − 𝑂𝑂

)2
√

∑𝑛𝑛

𝑖𝑖=1

(
𝑆𝑆𝑖𝑖 − 𝑆𝑆

)2
 (23)

ME = 1
�
∑�

�=1
(�� − ��) (24)

RMSE =
√

1
�
∑�

�=1
(�� − ��)2

 (25)

where Oi and Si represent observations and satellite precipitation estimates at timestep i, respectively. The value 
range of PCC is 0–1, the closer to 1 the better. ME ∈ (−∞, +∞) and RMSE ∈ [0, +∞). The closer ME (or 
RMSE) is to 0, the smaller the total errors.

In addition to the above three commonly used metrics, we also selected a four-component error decomposition 
method (4CED), that is, the total bias of precipitation products can be decomposed into hit positive bias (HPB), 
hit negative bias (HNB), false alarm bias (FB), and missed bias (MB). The 4CED can be used to trace and meas-
ure the sources and magnitudes of individual error components (Y. Zhang et al., 2021b).

3.4.4. Ensemble Scoring Rules

The evaluation of ensemble post-processing uses metrics that describe the accuracy, reliability, and sharpness, 
including the continuous rank probability score, rank histogram, reliability diagram and PIs.

3.4.4.1. Continuous Rank Probability Score (CRPS)

The CRPS is an integrated scoring metric and one of the most used probabilistic tools for evaluating the ensemble 
skill in terms of accuracy, reliability, and sharpness (Bröcker, 2012). For given ensemble outputs, the CRPS corre-
sponds to the integrated quadratic distance between the cumulative distribution function (CDF) of the ensemble 
outputs and the observation. According to previous studies (Gneiting & Ranjan, 2011; P. Zhao et al., 2022), we 
also use twCPRS to assess the model performance on predicting heavy precipitation events. CRPS and twCRPS 
can be expressed as:

CRPS =
∫

∞

−∞

(𝐹𝐹 (𝑃𝑃𝑡𝑡) − 𝑂𝑂 (𝑃𝑃𝑡𝑡))
2
𝑑𝑑𝑃𝑃𝑡𝑡 (26)

𝑡𝑡𝑡𝑡CRPS =
∫

∞

−∞

(𝐹𝐹 (𝑃𝑃𝑡𝑡) − 𝑂𝑂 (𝑃𝑃𝑡𝑡))
2
𝜔𝜔(𝑃𝑃 )𝑑𝑑𝑃𝑃𝑡𝑡 (27)

where ω(P) is a weight function that equals 1 (or 0) if P ≥ q (or P < q); and q (95% in this study) is a given 
threshold. Pt is a specific threshold of precipitation; F(Pt) is the CDF obtained from the ensemble outputs for day 
t; O(Pt) is the Heaviside function, and it can be expressed as:

𝑂𝑂 (𝑃𝑃𝑡𝑡) =

⎧
⎪
⎨
⎪
⎩

1, 𝑂𝑂𝑖𝑖 > 𝑃𝑃𝑡𝑡

0, 𝑂𝑂𝑖𝑖 ≤ 𝑃𝑃𝑡𝑡

 (28)

The closer the CRPS (twCRPS) value is to 0, the better the ensemble forecast is, and the CPRS (twCRPS) value 
equals 0 for a perfect ensemble post-processing system.
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3.4.4.2. Rank Histogram

Rank histogram, as known as the Talagrand diagram, is a commonly used tool to assess the reliability of the 
ensemble forecast systems (Hamill, 2001). If the ensemble outputs obtained by the ensemble post-processing 
model are sufficiently reliable, the ranking of the observation in the CDFs of the ensemble outputs should be 
uniformly distributed. In addition to being able to assess the reliability of ensemble outputs, the rank histogram 
can also be used to measure the ensemble dispersion (spread skill) and the presence of systematic bias in the 
ensemble post-processing system by its distribution. If the rank histogram is more uniform and flatter, the closer 
the ensemble system is to perfection. Conversely, a “U” shaped rank histogram indicates that the ensemble 
outputs are under-dispersed, while a bell-shaped rank histogram indicates that the model is over-dispersed. The 
other two rank histogram shapes “\” and “/” indicate the existence of systematic overestimation and systematic 
underestimation of the ensemble post-processing model, respectively. In this study, 20 ensemble members in the 
rank histogram are sampled equally from the original 100 ensemble quantiles. Following the proposed method 
of Bröcker and Ben Bouallègue (2020), we combine the ensemble members and observations in the same rank 
histogram. To eliminate the effect of truncated values, only wet events are selected to calculate the displayed rank 
histograms.

3.4.4.3. Prediction Intervals (PIs)

In addition to CRPS and rank histograms, the PI is another scoring rule that is very intuitive and commonly 
used to describe the sharpness of the ensemble outputs. Here, we use the two most used PIs (e.g., 50% and 90%; 
Gneiting et al., 2007).

3.4.4.4. Reliability Diagram

The reliability diagram is also applied in this study to assess how well the predicted probabilities of an event 
correspond to their observed frequencies (Hartmann et  al.,  2002). To better assess the reliability of extreme 
events, three commonly used thresholds (i.e., 80%, 90%, 95%) are selected according to the previous study (Yang 
et al., 2021). We then pool ensemble outputs of different gird cells and days to calculate the probability. Perfect 
reliable predictions in the reliability diagram will fit the diagonal (1:1) line. Predictions plots above (or under) 
this line indicates underestimation (or overestimation).

4. Results
This section first shows the results of the dry-wet classification (Section 4.1), and then compares the skill of the 
ensemble members obtained from different experiments (Section 4.2) and the deterministic results of the ensem-
ble mean (Section 4.3). Finally, the reconstructed fine-resolution spatial distribution of precipitation is briefly 
shown (Section 4.4).

4.1. Dry-Wet Classification

First, based on the ground reference, the performance for dry-wet events classification of the raw IMERG-E, 
different RFC experiments outputs, and IMERG-F obtained are compared during the test period (2017–2018). 
Here, accuracy is a preferred indicator for the classification task. All data set displays presentable classifica-
tion accuracy, with 76% for IMERG-E, 75.2% for IMERG-F, 82.94% for RFC-base, 83.58% for RFC-static, 
80.21% for RFC-analog, and 85.22% for RFC-dynamic, respectively. The designed RFC experiments with four 
different configurations show better classification accuracy relative to the raw IMERG-E product. Among them, 
RFC-dynamic is the ranked one, followed by RFC-static, RFC-base, and finally RFC-analog. Unexpectedly, 
IMERG-F exhibits worse performance compared to IMERG-E. To help diagnose the performance of different 
data set s, we further counted the number of occurrences of different precipitation events and calculated the 
POD and FAR indicators. Their spatial distribution as well as boxplots are displayed in Figure 5. The displayed 
results of the RF model here is RFC-static, which is also the selected model configuration we use for subsequent 
analysis. Other RFC models are not shown, and their differences are fully compared in the discussion part. In 
Figures 5a−5c and 5g, one can see that the regional averaged POD of IMERG-F (0.592) is slightly better than that 
of IMERG-E (0.528), while the regional averaged POD of IMERG-E is substantially improved after post-pro-
cessing with RFC-static model (0.76). In terms of regional averaged FAR (Figures 5d–5g), IMERG-F (0.272) 
is degraded compared to raw IMERG-E (0.253); in contrast, the use of RFC-static postprocessor improves the 
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overall FAR value (0.2). The decomposition of the four events (Figure 5h) can further explain these results. The 
significant improvement in the discrimination of hit events has led to a remarkable increase in the POD of the 
RFC-static experiment. And, compared to minor increase in false alarm events, the significant improvement in 
the discrimination of hit events also results in a smaller FAR. It can also be seen that the improvement in hit 

Figure 5. Wet-dry events classification performance of China Meteorological Administration (CMA) observation and the IMERG-E, IMERG-F, and RFC-static 
experiment during the test period (2017–2018). (a–c) Probability of detection (POD, higher is better), (g) their boxplot of all grid cells of the basin, (d–f) false alarm ratio 
(FAR, smaller is better), (h) binary events (TP: hit events, FN: missed events, FP: false alarm events, TN: correct negative events). RFC-static experiment in the figure 
represents the random forest classification with static predictors. The results in (g, h) are calculated by flattening data of all grid cells into one-dimensional vectors.
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events is mainly due to the transformation of missed events, which means that the RFC model greatly reduces 
the probability of a missed precipitation event. A downside is that missed events may also be converted to false 
alarms events. The information on the occurrence of precipitation is increased by introducing auxiliary variables, 
thus reducing the missed events and increasing the hit events. The spatial plots also confirm that the RF-based 
ML algorithm can better serve as a simple regional model, which has been recognized in previous studies (X. He 
et al., 2016; Y. Zhang & Ye, 2021).

4.2. Probabilistic Post-Processing Assessment

Figures 6a and 6c compare the CPRS and twCRPS for the four QRF experiments with different configurations 
across the basin, respectively. Similar to the classification task, QRF-dynamic remains the unbeatable one (1.147 
and 6.128), followed by QRF-static (1.248 and 6.638), QRF-base (1.269 and 6.689), and finally QRF-analog 
(1.357 and 8.271). Figures 6b and 6d show the spatial distribution of CPRS and twCPRS of QRF-static, respec-
tively. The accuracy of ensemble outputs is positively correlated with the precipitation scale, where the ensemble 
forecasts are relatively poor for sites with large daily precipitation rates and relatively better for sites with slight 
daily precipitation rates.

We further compared the reliability of ensemble outputs obtained from QRF experiments with different config-
urations using rank histograms. The ensemble members in Figure 7 are the 20 ensemble members extracted by 
the equal sampling of the original ensemble quantiles. Except for QRF-analog, all the other three experiments 
(Figures 7a, 7b and 7d) yield almost flat rank histograms. Among them, QRF-base and QRF-static are equally 
best (RMSD = 0.0055), followed by QRF-dynamic (RMSD = 0.0068). But they are not significantly different, 
and all of them obtained relatively reliable ensemble members. The less-than-flat histogram distribution may be 
due to sampling errors. A relatively pronounced “/” pattern appears in QRF-analog experiment, indicating under-
estimation of the ensemble post-processing outputs. One possible reason is that Euclidean distances in high-di-
mensional feature space may lead to sparse solutions, eventually leading to biased (underestimated) analogs 
samples.

We randomly selected three grid cells from the upper to lower reaches of the Yalong River basin (No. 16, No. 33, 
No. 58), respectively. Figure 8 depicts their time series during the rainy season of the test period (June–October 
2017 and 2018). The other seasons were not selected because almost no precipitation events occurred. The obser-
vations are indicated by black dots and the two PIs are the 50% and 90% intervals, respectively. The 50% PI inher-
ently encloses precipitation events of 5–10 mm, and the 90% PI mostly encloses a broader range of precipitation 
events of 1–30 mm, for any grid in the upper, middle, or lower reaches of the basin. Some of the extreme precip-
itations are not captured because relatively few extreme precipitation samples in the training period are sought at 
the leaf nodes of the quantile forests. In addition, the “zero” precipitation events are treated as “truncated” values 
in the ensemble post-processing scheme and in the first step they are removed by the RFC algorithm. We train the 
QRF model on wet days. Therefore, for the treatment of “zero” precipitation events, we assign a value of “zero” 
to all ensemble members and no ensemble intervals are obtained. This approach also resulted in some minor rain 
events being misclassified as dry days in the first step, and no PIs were obtained about these misjudged events, 
resulting in underestimation and under-dispersion.

Reliability diagrams of ensemble outputs from different experiments during the test period (2017–2018) using 
80th, 90th, and 95th percentiles of observations as the thresholds are shown in Figure 9. Based on the three selected 
thresholds, the QRF-analog experiment is still the worst performer, while the remaining three experiments do not 
differ significantly. The QRF-analog experiment exhibits relative low probabilities at all three threshold condi-
tions. At lower threshold (80%), the QRF-base, QRF-static, and QRF-dynamic almost all fitted the 1:1 line. As 
the threshold increases, they all produce underestimates, indicating limitations for extreme precipitation events.

4.3. Deterministic Post-Processing Assessment

Using the ground “truth” as a reference, Figure 10 shows the spatial plots of the three commonly used deter-
ministic metrics for IMERG-E, IMERG-F and QRF-static ensemble mean. For PCC, both IMERG-E and 
IMERG-F exhibit relatively low correlations (0.31 and 0.34), and IMERG-F barely improves the correla-
tion coefficients of the raw IMERG-E estimates, while the QRF-static ensemble mean significantly improves 
the correlation between near-real-time satellite estimates and ground observations (0.7). For ME, the raw 
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Figure 6. Continuous rank probability score (CRPS, smaller is better) of Quantile regression forests (QRF)-based ensemble outputs during the test period (2017–2018). 
(a, c) CRPS and twCRPS for all grid cells with different QRF experiments. (b, d) The spatial distribution of CRPS and twCRPS using the QRF-static experiment. 
Circles “o” in (a, c) represent outliers. The threshold for calculating twCRPS is the 95% quantile of observed precipitation values in each case. The results in (a, c) are 
calculated by flattening data of all grid cells into one-dimensional vectors.
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IMERG-E presents underestimation in most parts of the basin, except at the downstream area of the basin, 
with significant underestimation in the midstream region. Both IMERG-F and QRF-static ensemble mean 
significantly reduce the bias (overestimation or underestimation), keeping the total bias in a small interval. 
QRF-static ensemble mean reaches a smaller total bias compared to IMERG-F, with ME value to be concen-
trated around “zero”. This is mainly due to the further improvement of the overestimation in the downstream 
region of the basin. For RMSE, the error range of IMERG-E is roughly 2–12 mm/day, and IMERG-F even 
shows degradation compared to IMERG-E, which is related to the bias correction procedure of IMERG-F and 
the calculation of RMSE, where sporadic extreme values may lead to a large total RMSE. The performance of 
the QRF-static ensemble mean continues to be impressive, greatly reducing the RMSE across the whole basin. 
The possible reasons for the gap between IMERG-F and QRF-static ensemble mean are inferred as follows. 
The post-processing method of IMERG-F is mainly quantile mapping based on observations, which mainly 
adjusts the quantiles and does not improve the correlation, thus obtaining a lower correlation coefficient; while 
improving the quantiles results in the total smaller bias (ME); but the quantile adjustment process unreason-
ably introduces few extreme values, making it possible to obtain a relatively larger RMSE. The significant 
improvement in QRF-static is attributed to the additional predictors introduced that boost the correlation coef-
ficient and result in smaller ME and RMSE.

ME and RMSE metrics are two commonly used, but relatively “unfair”, scoring metrics. The calculation of ME 
is the result of accumulating the positive and negative bias of the time series, which may add up to a smaller total 
bias for each larger daily bias with different signs (positive and negative bias); and may add up to a larger total 
bias for smaller daily bias with same signs (positive or negative bias). The RMSE is calculated by accumulating 
the sum of squares of the differences of the two time series, which may lead to some sporadic extremes affecting 
the overall score, since the sum of squares gives more weight to these extremes, resulting in a relatively larger 
RMSE. To obtain relatively “fair” assessments, we introduce a four-components error decomposition (4CED) 
method to separate the total bias in the precipitation estimates into four independent parts: HPB, HNB, false 
alarm bias (FB) and MB. The four error components are uncorrelated and symbolically distinct, allowing not 

Figure 7. Rank histograms of the ensemble outputs from (a) QRF-base, (b) QRF-static, (c) QRF-analog, and (d) QRF-dynamic experiments during the test period 
(2017–2018). The results in this figure are calculated by flattening data of all grid cells into one-dimensional vectors.
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only to compare the magnitude of individual error components between different data sets, but also to analyze 
the dominant error factors. The use of 4CED can further answer a key question “Which error components are 
effectively post-processed by IMERG-F and QRF experiment?”

Using 4CED, the four individual error components of IMERG-E, IMERG-F, QRF-static ensemble mean during 
2017–2018 are displayed in Figure 11. Based on the four error components, it is clearly observed that dominant 
factors and synergetic factors jointly shape the characteristics of the spatial plots of MEs. For IMERG-E, the 

Figure 8. Time series of the CMA observations and predict intervals (shaded parts, 50% and 90%) for three different grid cells ((a, d): Station No.16; (b, e): Station 
No.33; (c, f): Station No.58) during the rainy season (June–October) in 2017 (a–c) and 2018 (d–f).

Figure 9. Reliability diagrams of ensemble outputs from different experiments during the test period (2017–2018) using 80th, 90th, and 95th percentiles of 
observations as the thresholds. The results in this figure are calculated by flattening data of all grid cells into one-dimensional vectors.
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negative ME in the upstream region of the basin is mainly due to HNB, while the negative ME in the middle and 
lower reaches comes from the synergetic effect of HNB and MB. The positive ME near the outlet of the basin 
comes from the synergetic effect of HPB and FB. IMERG-F degrades the raw IMERG-E performance in terms of 
HPB and FB. There is an only slight improvement for HNB and MB, which finally presents a relatively balanced 
positive and negative bias. It further explains the main reason for the better performance of IMERG-F in ME and 
the worse performance of RMSE. Conversely, the precipitation obtained by the QRF model improves all aspects 
of the raw IMERG-E estimates, with the most remarkable improvement being the HNB, followed by the MB. For 
HPB and FB, QRF shows relatively small improvements, mainly in regions with higher precipitation climatology 

Figure 10. Pearson correlation coefficient (PCC, higher is better), mean error (ME, closer to 0 is better) and root mean square error (RMSE, smaller is better) of China 
Meteorological Administration (CMA) observations and the results of the IMERG-E, IMERG-F, and QRF-static-ensmean (ensemble mean) during the test period 
(2017–2018).
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Figure 11. Hit positive bias (HPB), hit negative bias (HNB), false bias (FB), and missed bias (MB) of China Meteorological Administration (CMA) observations and 
the results of the IMERG-E, IMERG-F, and QRF-static-ensmean (ensemble mean) during the test period (2017–2018). The smaller HPB, HNB, FB, and MB are better.
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(e.g., downstream of the basin). The overall improvement of four individual error components is also responsible 
for the smaller ME and RMSE of QRF estimates.

4.4. Downscaling to Original Resolution

Due to the spatial resolution (0.5°) of the reference data, we implement the probabilistic post-processing at a 
coarse resolution. To reconstruct the original fine resolution (0.1°) of the IMERG product, we use a simple linear 
scaling factor method. Depending on the ratio between the coarse IMERG-E and the QRF outputs, we map these 
scaling factors to the original IMERG-E product to obtain the post-processed fine resolution IMERG-E product. 
Once a finer reference is available, we can build the fine-resolution post-processing model directly and skip this 
step.

Figure 12 shows the precipitation spatial distribution of CMA observation, IMERG-E, IMERG-F, and QRF-stat-
ic-mean (ensemble mean) at 0.5° and 0.1°. As the previous results (ME in Figure 10) demonstrate, we can see that 
IMERG-E (Figure 12b) and IMERG-F (Figure 12c) are underestimated in the upstream region and overestimated 
near the basin outlet. After QRF post-processing, these biases are mitigated to some extent. Both the original 
fine IMERG-E and IMERG-F are relatively smooth. However, the reconstructed fine-resolution precipitation 
distribution is not smooth enough. One possible reason for this is that the scaling factor varies between grids.

5. Discussions
5.1. Feature Importance

Among the ML models, one advantage of the RF model is that it can be used to measure the relative importance 
of input variables, thus increasing the knowledge of the interpretability of the “black-box” model. Here, we show 

Figure 12. The precipitation spatial distribution of (a) China Meteorological Administration (CMA) with 0.5°, IMERG-E with (b) 0.5° and (e) 0.1°, IMERG-F with (c) 
0.5° and (f) 0.1°, and QRF-mean (static ensemble mean) with (d) 0.5° and (g) 0.1° during the test period (2017–2018).
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the relative importance of the 30 predictors (23 predictors for the base model) 
chosen for the different model configurations (Figure  13). In general, the 
importance of the predictors differs between the classification and regres-
sion task and, in addition, across model configurations. For the classifica-
tion task, the dependence on the 3 × 3 grid precipitation estimates on the 
previous is high in all models. It is worth noting that DOY plays a relatively 
important role in the RFC-base experiment. The additional introduced mete-
orological predictors also play compelling role in RFC-static, RFC-analog, 
and RFC-dynamic experiments. Except for near-surface air pressure (Pres) 
and near-surface wind speed (Wind), other predictors also reflect different 
gaps in static and dynamic experiments. Of all the meteorological auxiliary 
variables, near-surface air specific humidity (Shum) plays the most important 
role in the classification task. This indicates that humidity is a discerning 
signal to discriminate dry-wet events classification. For the regression task, 
the relative importance of the different predictors is roughly similar, but there 
are differences. The model performance is more dependent on the 3 × 3 grid 
precipitation estimates on the previous day. The DOY becomes less impor-
tant, while among the meteorological auxiliary predictors, near-surface air 
specific humidity (Shum), which previously was indicated as important in 
the classification task, becomes almost insensitive to the model configuration 
and less important. The importance of surface downward shortwave radia-
tion (Srad) and SM increased subsequently. Among the predictors describing 
geographic attributes, grid number (ID) and elevation (Ele) are more discrim-
inative compared to latitude and longitude. The comparison of the precipita-
tion estimates on the previous day seems to show the ability of the infrared 
images to reflect the precipitation signal earlier.

In the proposed experimental design, four different model configurations 
were used to explore and address the problem of the unavailability of 
dynamic meteorological auxiliary predictors in near-real-time. The prac-
ticality of these predictors was also indicated by the improvement in the 
QRF-static and QRF-dynamic models. But the auxiliary variables we used in 
the present study are still limited. And they are mostly extracted from reanal-
ysis products, which are not accessible in real-time. Therefore, we propose 
two solutions: (a) static experiments use station-based, multiyear averaged 
climatology to show the specificity of each grid cell; (b) analog experiments 

create surrogate “fake” near-real-time accessible predictors by searching for historical samples. Theoretically, 
the analogs experiment is the more “dynamic” one. However, the Static experiments perform better than the 
Analog experiment in all situations. Because although static experiments use fixed climatology as predictors, the 
samples are relatively evenly distributed (i.e., homogeneous). However, the homogeneity of Analog experiments 
was degrading heavily (Evin et al., 2021). Dynamic experiments exhibited the best performance and played an 
unbeatable role, which confirms the importance of near-real-time predictors. Therefore, obtaining more targeted 
and near-real-time accessible predictors that match the release time of near-real-time satellite retrieval are both 
prerequisites to ensure the optimal performance of probabilistic post-processing models. In addition, there are 
other predictors (e.g., time lag NDVI, etc.) that require more discussion and selection to maintain a trade-off 
balance between model efficiency and accuracy (Mei et al., 2020).

5.2. Limitations and Future Work

Although the above results demonstrate the great potential of the proposed method, there are still some issues. 
First, although the proposed method can significantly improve the accuracy of IMERG-E precipitation estimates, 
the error decomposition reveals that these improvements are mainly focused on the reduction of HNB and MB. 
But for HPB and FB, the present method expresses limited ability. On the one hand, this is because the raw 
IMERG-E performs relatively well in these two aspects (HNB and MB); while for HPB and FB, especially for 
the latter, the final observations in leaf node obtained based on RF node split are not accurate enough. Meaning 

Figure 13. Feature importance of random forest (a) classification and (b) 
regression with different model configurations.
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that, it is difficult to correct a false wet event as a dry event. Another possible reason is that the increase of the 
hit events is the result of the conversion of the original miss events, which leads to partial HPB. Nevertheless, in 
regions with relatively large precipitation climatology (near to outlet), the proposed model still expresses effec-
tive adjustments.

Another issue is the handling of zero precipitation events by the probabilistic post-processing model. Within the 
proposed framework, the post-processing process is divided into two steps: classification and regression. In the 
first step, we use RF classification to separate samples into wet and dry events. And in the second step, we gener-
ate ensemble outputs by training the QRFs model only for the samples of wet days. The dry events with “zero” 
precipitation were handled as truncated values. Then, in the generated ensemble estimates, the adjusted samples 
of dry events do not have PIs. This approach is acceptable for those correctly classified samples. However, 
for misclassified samples, the truncated events lead to inevitable errors. Therefore, reliable ensemble members 
cannot be obtained either. The solution that has been tried is to use QRF directly, without classification. However, 
a tricky challenge prevented us from trying further. The main reason was that the large number of zero (or near 
zero) precipitation events made it difficult for the algorithm to converge. We even spent dozens of hours with 
smaller hyperparameters (e.g., fewer trees) and did not get ensemble outputs. In traditional statistical post-pro-
cessing models, the truncated values are replaced by proxy samples, which are generated by randomly sampling 
the samples under the truncated threshold (Scheuerer & Hamill, 2015). The proxy samples are then brought into 
the explicit conditional probability distribution function to generate the ensemble outputs. The reason for not 
using this method in the present study is that although the proxy samples can be obtained by random sampling, 
the other predictors of the sample cannot be obtained using the same method. The feature space of the new 
prediction sample is incomplete, so no inference can be made either. Another reason is that QRF is built based on 
a finite number of quantiles instead of an explicit conditional probability distribution function. Conditional prob-
ability inference under the truncated threshold is inaccurate. One possible solution is to use parametric methods 
(e.g., logistic regression) to model the probability of precipitation separately, replacing the original RFC, then 
generating ensemble forecasts for truncated events.

A common issue with models based on historical analogy search, including RF, is the strong dependence on 
historical observations (A. H. Li & Martin, 2017). For example, the analog method, although effective, requires a 
very large number of historical samples to guarantee perfect prediction (A. H. Li et al., 2017). The same is true for 
the RF model. By dissecting the inference process of these models, one can be found is that the model architecture 
is built on a set of analogs historical observations. Then the inference is calculated by averaging these analogs 
observations. The different predictors are mainly used as the basis for the growth and split of the RF model and 
are not involved in the final prediction inference. Thus, for a specific quantile, when not enough analogs histor-
ical observations are searched, the prediction will be further biased after weight averaging only a few biased 
analogs samples. For example, biased analogs samples also result in underestimated targets (e.g., Figure  6c) 
in our QRF-analog experiments. In addition, as we mentioned above, QRF is built based on a finite number of 
quantiles instead of an explicit conditional probability distribution function. And the prediction of heavy precip-
itation events is also based on the inference or extrapolation of historical samples. As a result, this may lead to 
two different degrees of underestimated bias. The first scenario is heavy precipitation events where the analogs 
samples are historically available but the sample size is not enough. In this case, the averaging of analogs samples 
leads to a slightly negative bias (Figure 8). The second scenario is extreme precipitation events where there are 
no analogs samples in the training set and only completely underestimated samples can be found. In this case, 
the averaging of these samples leads to a severe negative bias (Figure 8). Such models cannot anticipate the case 
of future extreme events that have not occurred in the past. It further hinders its application in future prediction 
in the context of climate change. One possible solution is to combine parametric methods (e.g., extreme-value 
distribution) with non-parametric methods (e.g., QRF). The parametric distribution allows a better fit for the case 
of extreme events. The challenge here, however, is to choose the appropriate distribution function. A recent study 
has attempted to combine quantile RFs and extended generalized Pareto distributions (Taillardat et al., 2019). 
Their research was inspired by Naveau et al. (2016). However, this hybrid approach requires that different distri-
bution functions are first selected and then serval parameters need to be calibrated to fit extreme precipitation 
events, which greatly increases the complexity of the modeling. The choice between model complexity and model 
efficiency is a trade-off. How to more succinctly combine the estimation of explicit CDFs with ML algorithms 
is also a future research direction (Gnecco et al., 2022). Another possible solution is to use neural networks to 
learn the parameters of the distribution function directly (W. Li et  al., 2022; Rasp & Lerch, 2018; Schulz & 
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Lerch, 2021). In addition, other parametric methods (e.g., Bayesian approach based on copula functions; Khaje-
hei et al., 2018; Khajehei & Moradkhani, 2017) can be used as alternative techniques. Our model in this study will 
be able to act as a benchmark to compare and enhance possible effective models in future studies.

Finally, it is important to note that the ensemble outputs we obtain are only probabilistic estimates, not spatial 
ensembles, and cannot be used directly for downstream applications such as hydrological ensemble simulations. 
A necessary step is to perform spatiotemporal reconstructions, that is, a reordering of the ensemble members for 
different stations. Methods that can be used include Schaake shuffle (Clark et al., 2004), variants of the Schaake 
shuffle (Schefzik, 2016; Scheuerer et al., 2017) and ensemble copula coupling (Schefzik et al., 2013).

In this study, we selected the Yalong River basin in China as our region of interest, and we built a regional model 
for all target grid cells. It is an advantage of ML modeling, being able to extract local features and use knowledge 
from neighboring regions to improve overall model performance. This is very promising for areas with poor 
gauge networks. In future studies, we can test training the model at specific grid cells and validate it at other grid 
cells to see how the model performs (Ma et al., 2021). Although the Yalong River basin covers a wide range of 
topographic conditions and climate types, its basin area is still relatively small compared to the continental scale 
or global scale. How to extend the regional model to the continental model or even to the global model and main-
tain relatively high computational efficiency is also a great challenge. It will be of great significance and value to 
conduct the global near-real-time satellite precipitation estimates post-processing, and further improve the global 
near-real-time flood monitoring and other operational applications.

6. Conclusions
In this study, a QRF-based probabilistic post-processor, QRF4P-NRT, is proposed to calibrate the near-real-
time satellite precipitation estimates. Unlike commonly used deterministic correction models, QRF4P-NRT can 
perform both deterministic mean correction and probabilistic calibration. We designed several experiments to 
apply the proposed method to the operational post-processing routine of IMERG-E and compared their outputs 
with the raw IMERG-E and the officially released bias-corrected IMERG-F product. The ensemble mean based 
on QRF4P-NRT is significantly improved relative to the raw IMERG-E and exceeds the high quality of IMERG-F. 
The ensemble outputs of QRF models with different dynamic predictor solutions also provide reliable probabil-
istic information. These promising results are evidence of the potential of the QRF4P-NRT for operational appli-
cations. However, the selection of more predictors and the near-real-time accessibility of these predictors are still 
challenging to further enhance the skill of probabilistic post-processing for near-real-time satellite precipitation 
estimates.

Data Availability Statement
The GPM IMERG (https://gpm.nasa.gov/data/directory) Early Run (IMERG-E) L3 1 day 0.1° × 0.1° V06 data 
set and Final Run (IMERG-F) L3 1 day 0.1° × 0.1° V06 data set are publicly available at (https://disc.gsfc.nasa.
gov/datasets/GPM_3IMERGDE_06/summary?keywords="IMERG_Early" and https://disc.gsfc.nasa.gov/data-
sets/GPM_3IMERGDF_06/summary?keywords="IMERG_final%22), respectively. The CMA reference data is 
available at (http://data.cma.cn/en) provided by the National Meteorological Information Center of China Mete-
orological Administration. The China meteorological forcing data set is publicly available at the National Tibetan 
Plateau Data Center of China via (http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/). 
The ERA5-land soil moisture data is publicly available at (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=overview; Muñoz-Sabater, 2019) provided by the ECMWF. The Shuttle Radar Topo-
graphic Mission data is publicly available at (https://www2.jpl.nasa.gov/srtm/). The QRF4P-NRT codes are 
accessible from Zenodo repository (Jnelson18, 2022; Y. Zhang et al., 2022).
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