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Abstract. Deep learning (DL) and machine learning (ML)
are widely used in hydrological modelling, which plays a
critical role in improving the accuracy of hydrological pre-
dictions. However, the trade-off between model performance
and computational cost has always been a challenge for
hydrologists when selecting a suitable model, particularly
for probabilistic post-processing with large ensemble mem-
bers. This study aims to systematically compare the quan-
tile regression forest (QRF) model and countable mixtures
of asymmetric Laplacians long short-term memory (CMAL-
LSTM) model as hydrological probabilistic post-processors.
Specifically, we evaluate their ability in dealing with biased
streamflow simulations driven by three satellite precipitation
products across 522 nested sub-basins of the Yalong River
basin in China. Model performance is comprehensively as-
sessed using a series of scoring metrics from both proba-
bilistic and deterministic perspectives. Our results show that
the QRF model and the CMAL-LSTM model are compa-
rable in terms of probabilistic prediction, and their perfor-
mances are closely related to the flow accumulation area
(FAA) of the sub-basin. The QRF model outperforms the
CMAL-LSTM model in most sub-basins with smaller FAA,
while the CMAL-LSTM model has an undebatable advan-
tage in sub-basins with FAA larger than 60 000 km2 in the
Yalong River basin. In terms of deterministic predictions,
the CMAL-LSTM model is preferred, especially when the

raw streamflow is poorly simulated and used as input. How-
ever, setting aside the differences in model performance, the
QRF model with 100-member quantiles demonstrates a note-
worthy advantage by exhibiting a 50 % reduction in compu-
tation time compared to the CMAL-LSTM model with the
same ensemble members in all experiments. As a result, this
study provides insights into model selection in hydrologi-
cal post-processing and the trade-offs between model perfor-
mance and computational efficiency. The findings highlight
the importance of considering the specific application sce-
nario, such as the catchment size and the required accuracy
level, when selecting a suitable model for hydrological post-
processing.

1 Introduction

By generalizing the physical processes, hydrologists or mod-
ellers abstract the hydrological mechanism into a series
of numerical equations, collectively known as hydrological
models (Sittner et al., 1969; Clark et al., 2015; Sivapalan,
2018; Chawanda et al., 2020; Zhou et al., 2021). Hydrolog-
ical models are widely used for rainfall-runoff simulation,
flood forecasting, drought assessment, decision-making, and
water resource management (Corzo Perez et al., 2011; Tan
et al., 2020; Wu et al., 2020; Gou et al., 2020, 2021; Miao
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et al., 2022). Depending on the complexity, hydrological
models can be classified as lumped, semi-distributed, and
distributed models (Beven, 1989; Jajarmizadeh et al., 2012;
Khakbaz et al., 2012; Mai et al., 2022a, b). Although cur-
rent models simulate the hydrological processes well, they
still suffer from multiple uncertainties, including input un-
certainty, model structure and parameter uncertainty, and ob-
servation uncertainty (Nearing et al., 2016; Herrera et al.,
2022). These uncertainties limit the accuracy of hydrologi-
cal models (Honti et al., 2014; Sordo-Ward et al., 2016; Mai
et al., 2022a, b). Among these various sources, input uncer-
tainty is considered one of the largest sources of uncertainty.
Hence, precipitation, which is the driver of the water cycle,
is the most important factor affecting streamflow simulation
(Kobold and Sušelj, 2005).

Precipitation information is mainly derived from gauge
observations, radar estimates, satellite retrievals, and reanal-
ysis products (Sun et al., 2018). Gauge stations and radars
are limited by the density of their network and by topog-
raphy, especially in remote areas such as mountainous re-
gions and high altitudes (Sun et al., 2018; Chen et al., 2020).
Reanalysis requires assimilation of the observations from
multiple sources and therefore cannot be obtained in real
time. Satellite precipitation estimates are available in near-
real time and have shown valuable potential for applications
in regions where ground measurements are scarce (Jiang and
Bauer-Gottwein, 2019; Dembélé et al., 2020). Over the past
decades, several research institutions have developed var-
ious satellite precipitation estimation products with differ-
ent data sources and algorithms: for example, the Integrated
Multi-satellitE Retrievals for Global Precipitation Measure-
ment Mission (GPM IMERG) products jointly developed by
the National Aeronautics and Space Administration (NASA)
and the Japan Aerospace Exploration Agency (JAXA) (Hou
et al., 2013; Huffman et al., 2020); the Global Satellite Map-
ping of Precipitation (GSMaP) products developed by JAXA
(Kubota et al., 2007, 2020); and the Precipitation Estima-
tion from Remotely Sensed Information using Artificial Neu-
ral Networks-Dynamic Infrared Rain Rate (PDIR-Now, here-
after PDIR) near-real-time product developed by the Centre
for Hydrometeorology and Remote Sensing (CHRS) at the
University of California, Irvine (UCI) (Nguyen et al., 2020a,
b). However, uncertainties persist in these products due to
various factors, including data sources and algorithms. Addi-
tionally, the coarse resolution still limits their use for small
basins, i.e. those with an area smaller than 200 km2 (Tian et
al., 2009; Zhang et al., 2021a). Moreover, these uncertain-
ties are further propagated during the hydrological simula-
tion (Cunha et al., 2012; Falck et al., 2015; Zhang et al.,
2021b), significantly restricting their effectiveness in down-
stream hydrological applications.

Satellite precipitation introduces notable uncertainties in
hydrological modelling. Various strategies, such as meteo-
rological pre-processing and hydrological post-processing,
have emerged to address this challenge (Schaake et al., 2007;

Wang et al., 2009; Ye et al., 2014, 2015; Li et al., 2017; Dong
et al., 2020; Shen et al., 2021; Zhang et al., 2022a). Meteo-
rological pre-processing predominantly focuses on achieving
bias-corrected precipitation estimates. This is often realized
by fusing satellite precipitation data with ground observa-
tions to mitigate input uncertainty (Xu et al., 2020; Zhang et
al., 2022a). Conversely, hydrological post-processing lever-
ages observed streamflow to rectify simulations or predic-
tions, providing an additional layer of refinement, especially
if the meteorological pre-processing stage falls short. Both
these strategies can be employed for deterministic and prob-
abilistic predictions (Ye et al., 2014; Tyralis et al., 2019).
Given the inherent autocorrelation in streamflow time se-
ries, two main methods stand out for hydrological post-
processing. The first method employs autoregressive mod-
els anchored on residuals, using these residuals as predic-
tors to adjust forecast errors (Li et al., 2015, 2016; Zhang
et al., 2018). The second method employs the model output
statistics (MOS) concept, leveraging simulated streamflow
as a primary predictor to establish statistical relationships
between simulations and observations (Wang et al., 2009;
Bogner and Pappenberger, 2011; Zhao et al., 2011; Bellier
et al., 2018).

In recent years, machine learning (ML) and deep learn-
ing (DL) algorithms have emerged as powerful tools in hy-
drological modelling (Sit et al., 2020; Zounemat-Kermani et
al., 2021; Shen and Lawson, 2021; Fang et al., 2022). ML
comprises a broad range of algorithms, with commonly used
models such as random forest, support vector machines, and
clustering methods. DL, a specialized subset of ML, empha-
sizes algorithms modelled on the architecture of artificial
neural networks, including models like convolutional neu-
ral networks, recurrent neural networks, and long short-term
memory networks. In this study, we use the term “ML mod-
els” to refer to non-DL models while specifically designating
“DL models” to refer to models based on deep learning tech-
niques. In the hydrological field, both random forest (RF) and
long short-term memory (LSTM) models are widely used
and considered state-of-the-art approaches for various tasks
and applications. The RF model and its probabilistic variant,
the QRF model, have demonstrated capabilities in bias cor-
rection and streamflow simulation (Shen et al, 2022; Tyralis
et al., 2019; Zhang and Ye, 2021). For example, Shen et al.
(2022) used the RF model as a hydrological post-processor to
enhance the simulation performance of the large-scale hydro-
logical model PCR-GLOBAL (PCRaster Global Water Bal-
ance) model at three hydrological stations in the Rhine basin.
Tyralis et al. (2019) compared the usability of the statisti-
cal model (e.g. quantile regression) and the machine learning
algorithm (e.g. quantile regression forests) as hydrological
post-processors on the CAMELS (Catchment Attributes and
Meteorology for Large-sample Studies) dataset. And the re-
sults showed that the quantile regression forest model out-
performed the quantile regression. In the context of bias cor-
rection applications, RF models have also exhibited superior
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performance compared to other machine models (Zhang and
Ye, 2021). The LSTM model, on the other hand, has gained
widespread recognition as leading choice in hydrological ap-
plications (Kratzert et al., 2018, 2019). For example, LSTM
models have been used to simulate streamflow in a number
of gauged and ungauged basins in North America (Kratzert
et al., 2018, 2019), the United Kingdom (Lees et al., 2021),
and Europe (Nasreen et al., 2022). Frame et al. (2021) uti-
lized the LSTM model to develop a post-processor that can
effectively improve the accuracy of the US National Hydro-
logic Model. They validated the performance of the proposed
post-processor on the CAMELS dataset, which consists of
531 watersheds across North America. By integrating with
Gaussian models (Zhu et al., 2020), stochastic deactivation of
neurons (Althoff et al., 2021), and Bayesian perspective (Li
et al., 2021, 2022), LSTM further solidified its reputation for
delivering reliable probabilistic predictions. More recently,
Klotz et al. (2022) compared the use of dropout and three
Gaussian mixture density models for uncertainty estimation
in LSTM rainfall-runoff modelling. They found that the mix-
ture density model outperformed the random dropout model
and provided more reliable probabilistic information.

While both RF and LSTM models have seen signifi-
cant advancements and widespread application, a thorough
comparative analysis specifically within the context of hy-
drological probabilistic post-processing is yet to be under-
taken. Through their hierarchical feature learning, DL mod-
els, especially LSTM models, can autonomously extract in-
sights from raw hydrological data, capturing long-term de-
pendencies and patterns without extensive feature engineer-
ing. In contrast, with ML models like RF, effort is often
required to select relevant features to adequately represent
the data. Additionally, DL models can effectively leverage
massive datasets, leading to enhanced generalization and im-
proved accuracy in hydrological prediction tasks. On the
other hand, ML models may face limitations in capturing
intricate patterns from large hydrological datasets. Notwith-
standing pieces of evidence, it is essential to conduct a di-
rect and focused comparison between RF and LSTM mod-
els in the specific context of hydrological probabilistic post-
processing to better understand their respective strengths and
limitations, such as the scope of application, model perfor-
mance and computational efficiency.

Hydrological probabilistic post-processing represents a
big-data task with the involvement of large datasets and a
substantial number of ensemble members. The complex re-
lationships between input and output variables in hydrolog-
ical systems necessitate advanced modelling techniques to
achieve accurate and reliable predictions. Therefore, in this
study, we attempt to comprehensively compare the perfor-
mance of the two most widely used ML and DL models
for streamflow probabilistic post-processing, quantile regres-
sion forests (QRF) and countable mixtures of asymmetric
Laplacians LSTM (CMAL-LSTM), at a sub-basin scale daily
streamflow, respectively. In particular, a full model com-

parison is performed in a complex basin with 522 nested
sub-basins in southwest China. Three sets of global satel-
lite precipitation products are applied to generate uncorrected
streamflow simulations. The three precipitation products rep-
resent different algorithms. Also, they have been proven to
have relatively good accuracy in our previous study (Zhang
et al., 2021b). These satellite precipitation products are com-
pared across two scenarios, single-product and multi-product
simulations, both used as input features for streamflow post-
processing. A variety of evaluation metrics are used to assess
the performance of the proposed models, including proba-
bilistic metrics for multi-point prediction and deterministic
metrics for single-point prediction. Additionally, the study
also analyses the relationship between model performance
and basin size by considering the disparity in the flow ac-
cumulation area of the sub-basins. Through a comparative
analysis of QRF and CMAL-LSTM models in hydrological
probabilistic post-processing, this study aims to provide clar-
ity on their respective merits and drawbacks. The insights
garnered will also guide the selection of other ML and DL
methodologies with similar model architectures.

The rest of paper is organized as follows: in Sect. 2, we
introduce the study area and data. In Sect. 3, we present the
post-processing models, experimental design, and evaluation
metrics. Section 4 presents the streamflow results before and
after post-processing with different experiments. In Sect. 5,
we discuss the interpretation of post-processing model dif-
ferences, as well as their limitations. Finally, the conclusions
are summarized at the end of this article.

2 Study area and data

2.1 Study area

The Yalong River (Fig. 1a) is a major tributary of the
Jinsha River, which belongs to the upper reaches of the
Yangtze River. The Yalong River basin is located between the
Qinghai–Tibet Plateau and the Sichuan Basin. The Yalong
River basin has a long and narrow shape (26◦32′–33◦58′ N,
96◦52′–102◦48′ E); it has snow-capped mountains scattered
in the upper reaches, it is surrounded by high mountain val-
leys in the middle reaches, and it flows into the Jinsha River
in the lower reaches. It spans seven dimensional zones with
complex climate types. The total length of the basin is about
1570 km, and the total area is about 130 000 km2. The mean
annual precipitation of the basin is about 800 mm.

Following the watershed division method of Du et
al. (2017), Yalong River basin is divided into 522 nested
sub-basins with catchment areas ranging from 100 to
127 164 km2 (Fig. 1b). The key to sub-basin delineation is the
minimum catchment area threshold (100 km2 in this study),
which is related to the total area of the basin, the model archi-
tecture complexity, the step size, and the spatial resolution of
the input data. The location, elevation, area, flow accumula-

https://doi.org/10.5194/hess-27-4529-2023 Hydrol. Earth Syst. Sci., 27, 4529–4550, 2023



4532 Y. Zhang et al.: Streamflow post-processing using QRF and CMAL-LSTM

Figure 1. (a) Study area and (b) 522 sub-basins (Zhang et al., 2022a).

tion area, and flow direction of each sub-basin can be found
in Table S1 in the Supplement.

2.2 Data

2.2.1 Gauge precipitation observations

The 0.5◦ daily precipitation observation data were obtained
from the National Meteorological Information Centre of the
China Meteorological Administration (CMA-NMIC). The
product was produced by interpolating gauge data from more
than 2000 stations across China. This product has been
proven to be highly accurate and has been widely applied to a
variety of studies such as streamflow simulation, drought as-
sessment, and water resource management (Gou et al., 2020,
2021; Zhang and Ye, 2021; Miao et al., 2022). In this study,
the gridded precipitation observations are used as a reference
for the satellite-based precipitation products. Using the in-
verse distance weighting (IDW) method, the gridded precip-
itation observations are resampled to each sub-basin. This
resampling process aims to obtain the sub-basin average pre-
cipitation amount, which serves as the forcing input for hy-
drological simulations. Errors caused by resampling are ig-
nored. And due to limited hydrological stations, the stream-
flow of each sub-basin obtained from the calibrated hydro-
logical model driven by this product is also used as a refer-
ence for the satellite precipitation-driven streamflow simula-
tions. The selected study period is from 1 January 2003 to
31 December 2018.

2.2.2 Global satellite precipitation estimates

Three sets of the latest quasi-global satellite precipitation
estimation products are selected. The first one is the PDIR
product, which solely relies on infrared data. It has a very
high spatiotemporal resolution (0.04◦ and 1 h) and a very
short delay time (1 h). The other two products are bias-
adjusted products, IMERG Final Run version 6 (hereafter
IMERG-F) (Huffman et al., 2019, 2020) and the Gauge-
calibrated GSMaP product (GSMaP_Gauge_NRT_v6; here-
after GSMaP) (Kubota et al., 2007, 2020), with a spatial res-
olution of 0.1◦. The selected study period is also from 1 Jan-
uary 2003 to 31 December 2018. All these products are ag-
gregated to the daily scale and resampled to each sub-basin
using IDW. It should be noted that these products are selected
as examples only, and any other precipitation product can be
used as an alternative.

2.2.3 Other data

In addition to precipitation gauge observations and satel-
lite precipitation products, hydrological modelling requires
other meteorological data such as temperature, wind speed,
and evaporation. The meteorological data were also obtained
from the CMA-NMIC and were used to drive the hydrologi-
cal model together with precipitation. In addition, watershed
attributes, including elevation, soils, and land use, are also
important parts of accurate hydrologic modelling. The Na-
tional Aeronautics and Space Administration Shuttle Radar
Topographic Mission (NASA SRTM) digital elevation model
(DEM) data with a spatial resolution of 90 m were obtained
from the Geospatial Data Cloud of China. The 1 km soil data
were clipped from the China Soil Database issued by the
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Tibetan Plateau Data Centre of China. The 1 km land use
data were obtained from the Resource and Environment Sci-
ence and Data Centre provided by the Institute of Geograph-
ical Sciences and Resources, Chinese Academy of Sciences.
Finally, streamflow observations are used to calibrate and
validate the hydrologic model. The streamflow observations
(1 January 2006 to 31 December 2015) were collected from
four gauged hydrological stations in the Yalong River basin
from the upstream to the downstream, namely Ganzi (GZ),
Daofu (DF), Yajiang (YJ), and Tongzilin (TZL) (Fig. 1a).
And they were obtained from the Hydrological Yearbook of
the Bureau of Hydrology.

3 Methodology

The framework of this study is shown in Fig. 2. We adopt a
two-stage streamflow post-processing approach. In the first
stage (Sect. 3.1), the hydrological model is calibrated and
validated by hydrological station observations. Then, we use
the observed precipitation to drive the calibrated hydrolog-
ical model to generate streamflow references for each sub-
basin. And we use satellite precipitation to drive the model
to generate uncorrected (raw) streamflow simulations. In
the second stage (Sect. 3.2), we perform probabilistic post-
processing of the streamflow using the QRF and the CMAL-
LSTM models. In the last subsection (Sect. 3.3), we describe
the evaluation metrics that are used in this study.

3.1 Streamflow reference and uncorrected streamflow
simulations

The purpose of this study is to post-process the streamflow
simulations for all sub-basin outlets, and therefore corre-
sponding references are needed. Due to the limited stream-
flow observations, we use streamflow simulations from the
hydrological model driven by observed precipitation as a ref-
erence. To ensure that the results are reliable, we first use
the collected streamflow observations from four hydrologi-
cal stations to set up, calibrate, and validate the hydrological
model.

We choose the distributed time-variant gain model
(DTVGM), a process-based hydrological model that uses the
rainfall-runoff nonlinear relationship (Xia, 1991; Xia et al.,
2005) for simulation. In each sub-basin, runoff is calculated
according to Eq. (1).

Pt +AWt = AWt+1+E+Rs,t +Rsoil,t+Rg,t

= AWt+1+Ke ·EPt + g1

(
AWu,t

C ·WMu

)g2

·Pt +Kr ·AWu,t +Kg ·AWg,t , (1)

where t is the time step; P , E, and EP are precipitation,
actual evapotranspiration, and potential evapotranspiration,
respectively; Rs, Rsoil, and Rg are surface runoff, interflow

runoff, and groundwater runoff, respectively; AW and WM
are soil moisture (mm) and field soil moisture (mm), respec-
tively; u and g are the upper and lower soil layers, respec-
tively; Ke, Kr , and Kg are evapotranspiration, interflow, and
groundwater runoff coefficients, respectively; g1 and g2 are
factors describing the non-linear rainfall-runoff relationship;
and C is the land cover parameter.

The kinematic wave equation is used for river rout-
ing (Ye et al., 2013). The snowmelt process in the high-
altitude regions of the basin is simulated by the degree-day
method (Bormann et al., 2014). A detailed description of the
DTVGM model can be found in Xia et al. (2005) and Ye et
al. (2010).

Based on the length of the streamflow observation col-
lected from hydrological stations (2006–2014), we divide the
streamflow time series into three periods: a 1-year spin-up
period (2006), a 4-year calibration period (2007–2010), and
a 4-year validation period (2011–2014). We use the Nash–
Sutcliffe efficiency (NSE) as the objective and regionalize
the parameters from upstream to downstream using manual
tuning, while ensuring that the water balance coefficient (the
ratio of simulated streamflow to observed streamflow) con-
verges to 1. Specifically, the regional parameters are eval-
uated and adjusted sequentially, moving from upstream to
downstream of the hydrological stations. Initially, the re-
gional parameters are fixed in the upstream station, ensur-
ing their consistency throughout the region. Then, the fo-
cus shifts to adjusting the regional parameters between the
upstream and downstream stations. This sequential process
continues until the parameter regionalization is completed
across all four stations. The model calibration and valida-
tion are shown in Fig. S1 in the Supplement. The NSEs for
the four gauged hydrological stations (GZ, DF, YJ, and TZL)
are 0.89, 0.91, 0.93, and 0.79 and 0.79, 0.86, 0.87, and 0.59
for calibration and validation periods, respectively. In the re-
maining part of this study, the hydrological model is fixed,
and we mainly post-process the streamflow bias introduced
by satellite precipitation, disregarding other sources of un-
certainty such as model structure, DEM, and other forcing
data.

After model calibration and validation, to ensure the num-
ber of data samples for data-driven post-processing meth-
ods, we use the observed precipitation from 2003 to 2018
to drive the hydrological model. A 16-year streamflow simu-
lation reference dataset is obtained for 522 sub-basin outlets.
Streamflow from different sub-basins can also reflect hydro-
logical processes of diverse climate types and scales.

In the final step, we utilize the three satellite precipitation
products, namely PDIR, IMERG-F, and GSMaP, to drive the
hydrological model over the period of 2003–2018. As a re-
sult, three raw simulations, PDIR-driven, IMERG-F-driven,
and GSMaP-driven, are generated. Furthermore, the equally
weighted average of these three raw simulations can be re-
garded as a multi-product-driven simulation referred to as
“All” in the following sections of this study. There are two
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Figure 2. Framework of this study.

main reasons for considering the multi-product simulation
(All) as a reference. The first reason for considering “All” as
a reference is to allow for a comprehensive comparison of the
model performance of the two post-processing models in dif-
ferent contexts, utilizing multiple input scenarios. This robust
assessment evaluates the capabilities of the models across
various satellite precipitation products. The second reason is
to examine the effects of the model averaging method and
the multi-dimensional features on the post-processing mod-
els. By comparing the models’ performance with multiple
inputs, the study assesses the impact of incorporating differ-
ent sources of information and the potential benefits of using
a combination of satellite precipitation products. The experi-
mental design is described in Sect. 3.2.

3.2 Post-processing model and experimental design

The two post-processing models selected are the QRF model
(Meinshausen and Ridgeway, 2006) and the CMAL-LSTM
model (Klotz et al., 2022). The QRF model was chosen be-
cause it enables us to analyse the distribution of the en-
tire data based on different quantiles, and it has been previ-
ously used in several studies (Taillardat et al., 2016; Evin et
al., 2021; Kasraei et al., 2021; Tyralis et al., 2019; Tyralis
and Papacharalampous, 2021). The CMAL-LSTM model
is a combination of an LSTM model and a CMAL mix-
ture density function, which allows it to provide information
about prediction uncertainties. To the best of our knowledge,
these two models are currently considered state-of-the-art ap-
proaches in ML and DL for hydrological probabilistic mod-
elling (Tyralis et al., 2019; Zhang and Ye, 2021; Klotz et al.,
2022). Readers who wish to delve into more comprehensive

details about each mentioned model are strongly encouraged
to refer to the original papers.

To manage the complexity of the models, only the un-
corrected (raw) streamflow simulations are chosen as input
features. Based on the autocorrelation characteristic of the
streamflow, as depicted in Fig. S2, the post-processing for
day t (Qt ) involves selecting the simulated streamflow for the
previous 9 d (Qsim

t−9, Qsim
t−8, . . . , Qsim

t−1) as well as the simu-
lated streamflow for the current day (Qsim

t ) as inputs. In the
QRF model, the input features are fed by temporal embed-
ding. And in the CMAL-LSTM model, the sequence length
is set to 9. For both models, we select the streamflow ref-
erence (Qref

t ) on day t as the target. In addition, since we
used three different satellite precipitation products, the ex-
periments are divided into a single-product experiment and
a multi-product experiment (All). The information for each
experiment is summarized in Table 1. The training period is
from 1 January 2003 to 31 December 2010. The validation
period is from 1 January 2011 to 31 December 2014. And
the test period is from 1 January 2015 to 31 December 2018.

We implemented the QRF model using the pyquantrf
package (Jnelson18, 2022). We tuned three sensitive hyper-
parameters in the QRF model by grid search, finally setting
the number of trees (K) to 70, the number of non-leaf node
splitting features to 10, and the number of samples used for
leaf node predictions (Nleaf) to 10. All other hyperparameters
were set to default values.

We implemented the CMAL-LSTM model using the Neu-
ralHydrology package (Kratzert et al., 2022a). We followed
the model architecture of Klotz et al. (2022), which contains
an LSTM layer and a CMAL layer. In contrast to the QRF
model, the input data of the CMAL-LSTM model need to
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Table 1. Experimental design.

Streamflow simulation Model Input Target
feature

PDIR QRF

Qsim
t−9,Qsim

t−8, . . .,Qsim
t

10

Qref
t

CMAL-LSTM 1
IMERG-F QRF 10

CMAL-LSTM 1
GSMaP QRF 10

CMAL-LSTM 1
All (PDIR, IMERG-F, GSMaP) QRF 30

CMAL-LSTM 3

be normalized. Here, through several comparisons, we used
the normal quantile transform method (Fig. S3). The hyper-
parameters of the model include the number of neurons in
the LSTM layer (NLSTM), the number of components of the
mixture density function (NMDN), the dropout rate, the learn-
ing rate, the epoch, and the batch size. NMDN, is set to 3,
which follows Klotz et al. (2022). The other hyperparame-
ters are also fine-tuned such that the final learning rate is set
to 0.0001, the dropout to 0.4, the epoch to 100, the batch size
to 256, and the NLSTM to 256.

For the QRF model, 100 percentiles (0.005 to 0.995) were
equally sampled for each basin and time step and fed di-
rectly into the model to obtain the final probabilistic (100)
members. For the CMAL-LSTM model, first, 10 000 sam-
ple points for each basin and time step by sampling from
the mixture distribution were generated, and the same 100
percentiles (0.005 to 0.995) from these sample points were
extracted and remapped to the original streamflow space us-
ing inverse quantile normal transformation, where finally the
probabilistic members were produced.

Our computing platform is a workstation configured with
an Intel(R) Xeon(R) Gold 6226R CPU @ 2.9 GHz and an
RTX3090 GPU with 24 GB video memory. It is important to
note that each sub-basin was modelled separately due to the
GPU’s video memory limitation in the random sampling pro-
cess of the CMAL-LSTM model. For consistency, the QRF
model was also modelled locally. The computational time
was approximately 12 h to complete all CMAL-LSTM and
6 h to complete all QRF experiments.

3.3 Performance evaluation

In this section the two post-processing models are evaluated
from both probabilistic and deterministic perspectives. These
evaluation metrics are presented in Sect. 3.3.1 and 3.3.2, re-
spectively.

3.3.1 Probabilistic (multi-point) metrics

We followed the criterion for probabilistic predictions pro-
posed by Gneiting et al. (2007), and the aim is to maximize

the sharpness of the prediction distributions subject to reli-
ability. We use both scoring rules and diagnostic graphs to
assess reliability and sharpness holistically.

The continuous rank probability score (CRPS) is a widely
used scoring measure that assesses reliability and sharpness
simultaneously (Gneiting et al., 2007; Bröcker et al., 2012).
For given probabilistic prediction members, the CRPS cal-
culates the difference between the cumulative distribution
function (CDF) of the probabilistic prediction members and
the observations. We also used a weighted version of CRPS
(threshold-weighted CRPS, twCRPS), which is commonly
used to give more weight to extreme cases (Gneiting and
Ranjan, 2011). These two metrics can be expressed as fol-
lows:

CRPS(Fx)=

∫
∞

−∞

{F(y)− 1(y ≥ x)}2dy (2)

twCRPS(Fx)=

∫
∞

−∞

{F(y)− 1(y ≥ x)}2ω(y)dy, (3)

where ω(y) is a threshold-weighted function and is calcu-
lated based on the threshold q (80 %, 90 % and 95 % per-
centiles of observations in this study). When y ≥ q (y <q),
ω(y) equals 1 (0). x represents the observations, i.e. the
streamflow reference. F(y) is the CDF obtained from the
probabilistic members for the corrected streamflow. 1(y ≥ x)

is the Heaviside step function. The better-performing model
has both metrics (CRPS and twCRPS) closer to 0.

The CRPS skill score (CRPSS) is also used to define the
relative differences between the two post-processing models.
For QRF and CMAL-LSTM, the CRPSS can be calculated
as

CRPSSQRF/CMAL−LSTM =

(
1−

CRPSQRF

CRPSCMAL−LSTM

)
× 100%. (4)

A CRPSS greater than 0 indicates that the QRF model is bet-
ter than the CMAL-LSTM model, and vice versa.

The reliability diagram serves as a diagnostic graph to as-
sess the agreement between predicted probabilities and ob-
served frequencies (Jolliffe and Stephenson, 2012). It plots
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the observed frequencies of events against the predicted
probabilities, specifically plotting the cumulative distribution
function (CDF) of the streamflow reference as a function of
the forecasted probability. The diagram helps to evaluate the
reliability of probabilistic forecasts by comparing the pre-
dicted probabilities of events with their corresponding ob-
served relative frequencies. Ideally, in a perfectly reliable
forecast, if the predicted probability of a specific event is, for
example, 30 %, then the observed relative frequency of that
event should also be around 30 %. Consequently, the reliabil-
ity diagram would show a distribution of points lying along
the diagonal line, indicating a consistent alignment between
predicted probabilities and observed frequencies across var-
ious probability levels. However, in practice, there may be
deviations from perfect reliability. Points on the reliability
diagram above the diagonal line suggest that the observed
relative frequency is higher than the predicted probability, in-
dicating an underprediction phenomenon. On the other hand,
points below the diagonal line indicate that the observed rela-
tive frequency is lower than the predicted probability, indicat-
ing an overprediction phenomenon. Here again, three thresh-
olds (80 %, 90 %, and 95 %) are chosen to better evaluate the
reliability of extreme cases (Yang et al., 2021).

Sharpness refers to the precision or tightness of a proba-
bilistic prediction, capturing how closely the predicted prob-
ability distributions align with the observations. Essentially,
a sharp forecast indicates that the predicted uncertainties are
relatively narrow and closely resemble the observed data
points, reflecting a more accurate representation of the true
uncertainty in the predictions. A sharp probabilistic output
corresponds to a low degree of variability in the predic-
tive distribution. To evaluate the sharpness of probabilis-
tic predictions, prediction intervals are commonly employed
(Gneiting et al., 2007). For this study, the 50 % and 90 %
percentile intervals were chosen. Furthermore, to establish
the relationships between predictive distributions and obser-
vations, we assessed the coverage of the prediction inter-
vals over the observations. The average Euclidean distance
of the 25 % and 75 % probabilistic members is adopted as
the sharpness metric (DIS25–75) for the 50 % prediction inter-
val, and the 5 % and 95 % probabilistic members were used
to compute the sharpness metric (DIS5–95) for the 90 % pre-
diction intervals. The ratio of the number of observations
in the prediction intervals to the total number of observa-
tions was used as the coverage of observations (CO25–75 and
CO5–95). In addition, three additional metrics used in a previ-
ous study (Klotz et al., 2022) are also employed to calculate
the sharpness metric for the full probabilistic members, in-
cluding mean absolute deviation (MAD), standard deviation
(SD), and variance (VAR).

3.3.2 Deterministic (single-point) metrics

The widely used Nash–Sutcliffe efficiency (NSE) (Nash and
Sutcliffe, 1970) and Kling–Gupta efficiency (KGE) (Gupta et

al., 2009; Kling et al., 2012) are applied for assessing the de-
terministic model performance. In addition, two components
of the NSE, namely Pearson correlation coefficient (PCC)
and relative bias (RB) are calculated to assess the temporal
consistency and systematic bias of the difference between
simulations and observations, respectively. Furthermore, to
account for the seasonality of the flow regime, four met-
rics are selected to characterize the different aspects of flow
regimes, including the peak flow bias (FHV; Eq. A3 in Yil-
maz et al., 2008), low-flow bias (FLV, Eq. A4 in Yilmaz et
al., 2008), flow duration curve bias (FMS; Eq. A2 in Yilmaz
et al., 2008), and mean peak time lag bias (in days) (PT; Ap-
pendix D in Kratzert et al., 2021). These metrics provide a
comprehensive assessment of model performance across dif-
ferent flow conditions and facilitate a more accurate evalua-
tion of model ability to reproduce the hydrological processes.

4 Results

4.1 Uncorrected streamflow simulations

Figure 3 shows the spatial distribution of NSEs for stream-
flow simulations in 522 sub-basins, driven by three differ-
ent satellite precipitation products and multi-product out-
puts using the equally weighted averaging (All). Among the
three satellite precipitation products, IMERG-F achieves the
best model performance, followed by PDIR and GSMaP.
PDIR performs poorly in the upstream and outlet regions
of the basin. GSMaP exhibits significant deviations from the
streamflow reference in almost all sub-basins. The quality of
that precipitation product plays a crucial role in streamflow
performance with the same hydrological model configura-
tion. For example, the presence of a high precipitation bias
in GSMaP, as observed in Fig. S4f, has significant implica-
tions for streamflow simulations. This bias leads to corre-
spondingly high biases in the streamflow simulations, as de-
picted in Fig. 8b. Consequently, the streamflow simulations
driven by GSMaP exhibit the lowest NSE values among the
three products, as shown in Figs. 3c and 8c. The performance
of PDIR-driven streamflow is mainly influenced by the poor
temporal variability (PCC) against observations (Figs. S4a
and 8a). Equally weighted averaging (All) that incorporates
biased information from PDIR and GSMaP has an insignifi-
cant impact on improving model performance.

4.2 Probabilistic (multi-point) assessment

The flow magnitudes in different sub-basins vary widely.
Therefore, in the presented results for each sub-basin, the re-
sults are normalized separately according to the probabilistic
membership of all experiments. By doing so, the probabilis-
tic members of all sub-basins are mapped to the range be-
tween 0 and 1.
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Figure 3. The NSE of uncorrected streamflow simulation for the
522 sub-basins.

4.2.1 CRPS overall performance

Overall, the QRF and CMAL-LSTM models demonstrate
similar performance in terms of CRPS and twCRPS across
all threshold conditions (as shown in Figs. 4 and S5). How-
ever, it is noteworthy that the QRF model exhibits more
outliers compared with the CMAL-LSTM model, indicat-
ing that the latter is more stable across sub-basins. When it
comes to different precipitation-driven streamflow inputs, the
IMERG-F-QRF and IMERG-F-CMAL-LSTM experiments
have median CRPS values of 0.0197 and 0.0199, respec-
tively, for 522 sub-basins; the GSMaP-QRF and GSMaP-
CMAL-LSTM experiments have median CRPS values of
0.024 and 0.0241, respectively; and the PDIR-QRF and
PDIR-CMAL-LSTM experiments have median CRPS val-
ues of 0.0287 and 0.0292, respectively. The results show
that IMERG-F performs better than GSMaP, and both bias-
corrected products outperform the near-real-time product
PDIR in post-processing performance. The results of the
multi-product approach (All) are close to those of IMERG-
F but better than those of PDIR and GSMaP. As the thresh-
old conditions increase, the performance of the multi-product
approach is slightly worse than that of IMERG-F (Fig. S5).
This suggests that introducing features that perform well in
a model, such as IMERG-F-driven raw streamflow, can im-
prove the performance of post-processing models, but intro-
ducing features that perform poorly, such as GSMaP- and
PDIR-driven raw streamflow, can worsen the performance of
post-processing model. The results indicate that the QRF and
CMAL-LSTM models can automatically perform feature fil-
tration but cannot completely avoid learning from disruptive
information. Using IMERG-F-driven raw streamflow as in-
put, the post-processing models perform better than when
driven by the other two products as input features, which
is related to the quality of IMERG-F features. In terms of
temporal correlation and bias, IMERG-F is the optimal prod-
uct. The raw streamflow simulation of GSMaP performs
worse than PDIR, but the post-processing model performs
better than PDIR. The reason is that comparing to PDIR,
raw streamflow of GSMaP has higher temporal correlation
and better autocorrelation skill as input features. This leads
to PDIR being the worst-performing post-processing experi-
ment among the selected datasets.

Figure 4. The box plot of CRPS for different post-processing ex-
periments.

In addition to their overall performance (Fig. 4), the QRF
and CMAL-LSTM models exhibit similar spatial perfor-
mance, as is reported in Fig. 5. Compared to PDIR and
GSMaP, IMERG-F and multi-product results achieve rel-
atively good performance in most of the 522 sub-basins.
PDIR performs the worst, which inherently is attributed to
its poorer input features, such as low autocorrelation skill
of streamflow. The third row in the Fig. 5 (i.e. Fig. 5i–l)
shows that the differences between QRF and CMAL-LSTM
are mostly within 10 %. However, the introduction of multi-
product features increased the gap between them, indicating
that CMAL-LSTM has an advantage over the QRF model in
processing multi-dimensional features. In the PDIR experi-
ment, the QRF model demonstrates superior performance in
68.2 % of the sub-basins (356 out of 522), while the CMAL-
LSTM model performs better in the remaining 31.8 % of sub-
basins. Regarding the experiments conducted on IMERG-F,
GSMaP, and multi-product (All) simulations, the proportions
of QRF and CMAL-LSTM models are 65.5 % and 34.5 %,
54.2 % and 45.8 %, and 64.6 % and 35.4 %, respectively.

4.2.2 The relationship between model performance and
flow accumulation area (FAA)

To further investigate the differences between the two
post-processing models, the relationship between the CRP-
S/CRPSS metrics and FAA of sub-basins is presented in
Fig. 6. Overall, the CRPS values of both post-processing
models increase with increasing FAA, which is related to
the streamflow amplitude of different sub-basins. Therefore,
the relationship between the CRPSS score and FAA as re-
ported in Fig. 6e–h is of interest to compare the differences
between the two post-processing models. It is observed that
when FAA is small, the QRF model performance is superior
to the CMAL-LSTM model. However, as FAA increases, the
post-processing skill of the CMAL-LSTM model surpasses
that of the QRF model. Additionally, the sub-basins are cat-
egorized, based on their size, into five intervals: less than
20 000, 20 000–40 000, 40 000–60 000, 60 000–100 000 km2,
and greater than 100 000 km2. The corresponding number of
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Figure 5. The spatial distribution of CRPS and CRPSS for different
post-processing experiments.

sub-basins for each of the five intervals is 476, 15, 4, 13,
and 14, respectively. The statistics of model performance in
different FAA intervals are summarized in Table 2. In sub-
basins with FAA less than 20 000 km2, the QRF model shows
a better performance. In the PDIR experiment, the QRF
model has a higher CRPS value in 69.5 % of sub-basins. In
the IMERG-F, GSMaP, and multi-product experiments, the
percentage of sub-basins where the QRF model outperforms
the CMAL-LSTM model is 69.7 %, 57.4 %, and 67.2 %, re-
spectively. In sub-basins with FAA greater than 60 000 km2,
the CMAL-LSTM model shows an absolute advantage. In
the PDIR experiment, the CMAL-LSTM model has a higher
CRPS value in 16 sub-basins. In the IMERG-F, GSMaP, and
multi-product experiments, the number of sub-basins where
the CMAL-LSTM model has a higher CRPS value is 24, 27,
and 25, respectively.

4.2.3 Reliability and sharpness

The reliability diagram is further used to diagnose the differ-
ence in post-processing model performance in terms of relia-
bility. To distinguish the differences in model performance of
the CMAL-LSTM and QRF models with the change of FAA,
the calculation of the reliability diagram is divided into two
parts. One part of the analysis focuses on sub-basins with a
FAA less than 60 000 km2, as illustrated in Fig. 7a–c. This
analysis combines all the streamflow predictions obtained
from the 495 sub-basins within this size range. The second
part of the analysis focuses on sub-basins with a FAA greater
than 60 000 km2, as depicted in Fig. 7d–f. This analysis in-
volves combining all the streamflow predictions from the 27
sub-basins within this size range. Overall, when FAA is less
than 60 000 km2, the performance of the two post-processing

models is similar. The QRF model is slightly better than
the CMAL-LSTM model. Except for the PDIR experiments,
all experiments have a high reliability. As the threshold in-
creases, all experiments show an increasing deviation from
the diagonal line and a decrease in reliability. Moreover,
when FAA of sub-basin exceeds 60 000 km2, the reliability
of the post-processing experiments declines, and the CMAL-
LSTM model performs slightly better than the QRF model,
with more points distributed along the diagonal line. As the
threshold increases, the curve becomes more oscillatory, re-
sulting in a significant decrease in reliability. Especially un-
der extreme conditions and as is shown in Fig. 7f, the differ-
ence between the two post-processing models is large, with
the CMAL-LSTM performing relatively better.

Sharpness describes the variability properties of predic-
tive distribution and can be used to assess the differences
between post-processing models from the uncertainty esti-
mation perspective. To eliminate the influence of different
flow regimes, all data are divided into high-flow (May to Oc-
tober) and low-flow seasons (November to April). Sharpness
metrics are calculated separately for each sub-basin. The av-
erage values of the metrics for all 522 sub-basins are listed in
Table 3. The results show that, on average across all 522 sub-
basins, the QRF model produces narrower prediction inter-
vals than the CMAL-LSTM model during both high and low-
flow seasons, indicating higher sharpness of the QRF model
compared to CMAL-LSTM. This partially explains why the
QRF model has higher CRPS values in most sub-basins. It is
worth noting that the QRF model shows high coverage of the
observations as well as narrower prediction intervals specifi-
cally during high-flow seasons. The average coverage of ob-
servations for the 25th to 75th quantiles (CO25–75) is 1.5 %
higher for the QRF than for the CMAL-LSTM model. How-
ever, a wider prediction interval of the CMAL-LSTM model
results in higher coverage of observations during low-flow
seasons. The average coverage of observations for the 25th to
75th quantiles (CO25–75) is 2 % higher for the CMAL-LSTM
than for the QRF model. Interestingly, the 90 % prediction
intervals obtained by both post-processing methods contain
100 % of the observations, based on the average values across
all 522 sub-basins during both high- and low-flow seasons.

4.3 Deterministic (single-point) assessment

Although the post-processing model proposed in this study
is probabilistic, decision-makers tend to prefer deterministic
(single-point) prediction. Therefore, the average of the prob-
ability members is utilized as deterministic predictions to fur-
ther compare the prediction accuracy of the models. Also, it
can be viewed as a post hoc model examination.

4.3.1 Overall model performance

Figure 8 shows the performance evaluation of the stream-
flow simulations before (RAW) and after post-processing us-
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Figure 6. The relationships between (a–d) CRPS and FAA and between (e–h) CRPSS and FAA.

Table 2. The probabilistic performance of two post-processing models for different FAA intervals. The bold numbers indicate better perfor-
mance in each group.

FAA (104 km2) Number of PDIR IMERG-F GSMaP ALL

sub-basins QRF CMAL-LSTM QRF CMAL-LSTM QRF CMAL-LSTM QRF CMAL-LSTM

< 2 476 331 145 332 144 273 203 320 156
2–4 15 11 4 6 9 9 6 11 4
4–6 4 3 1 1 3 1 3 4 0
6–10 13 4 9 3 10 0 13 2 11
> 10 14 7 7 0 14 0 14 0 14

ing the QRF and CMAL-LSTM models for 522 sub-basins.
PCC, RB, and NSE are used as performance metrics, with
each sub-basin being evaluated separately. The median and
mean of each metric across all 522 sub-basins are computed
and reported in the first three columns of Table 4. The re-
sults indicate that both post-processing models significantly
improved the simulation performance over the uncorrected
streamflow. However, the CMAL-LSTM model consistently
outperforms the QRF model across the precipitation products
and the sub-basins.

Figure 9 illustrates the spatial characteristics of the NSE
improvement in streamflow simulations obtained through
model comparison. Compared to the raw simulations
(RAW), both QRF and CMAL-LSTM models exhibit sig-
nificant improvements in almost all sub-basins. Among
all post-processing experiments, GSMaP-CMAL-LSTM and
GSMaP-QRF provide the most significant improvement in
accuracy due to the poorer performance of the raw GSMaP-
driven streamflow simulations. Conversely, the absolute NSE
improvement brought by post-processing models is relatively
small for the IMERG-F-driven streamflow simulations, and

even a slight performance decline in 14.8 % of sub-basins is
observed in the IMERG-F-QRF experiment (Fig. 9b). Com-
pared to CMAL-LSTM, the QRF model does not show its ad-
vantage of deterministic (single-point) estimation in almost
all sub-basins. The maximum difference in model perfor-
mance appears in GSMaP experiments, followed by PDIR,
IMERG-F, and multi-product (All) experiments. This indi-
cates that the deterministic (single-point) estimation ability
of the QRF model differs significantly from the CMAL-
LSTM model for streamflow with poor raw simulation.

4.3.2 The relationship between model performance and
flow accumulation area (FAA)

Based on the spatial distribution shown in Fig. 9, the relation-
ship between model performance and the flow accumulation
area (FAA) of the sub-basin is further investigated, following
a similar analysis approach as in Sect. 4.2.2 and Fig. 6. In
Fig. 10, we observe a consistent trend: as FAA of the sub-
basin increases, the performance of the model also increases.
Notably, the CMAL-LSTM model consistently surpasses the
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Figure 7. Reliability diagrams: (a) 80 %, (b) 90 %, and (c) 95 % percentiles of observations for the sub-basins with FAA less than 60 000 km2

and (d) 80 %, (e) 90 % and (f) 95 % percentiles of observations for the sub-basins with FAA greater than 60 000 km2.

Table 3. Sharpness statistics in high-flow and low-flow seasons. The bold numbers indicate better performance in each group.

Flow Metric PDIR IMERG-F GSMaP All

seasons QRF CMAL-LSTM QRF CMAL-LSTM QRF CMAL-LSTM QRF CMAL-LSTM

High-flow MAD 0.046 0.048 0.047 0.052 0.050 0.054 0.045 0.047
(May–Oct) SD 0.109 0.112 0.133 0.139 0.129 0.133 0.129 0.134

VAR 0.013 0.014 0.020 0.021 0.018 0.019 0.018 0.020
DIS25–75 0.0714 0.0703 0.0753 0.0757 0.0781 0.0785 0.0710 0.0687
DIS5–95 0.184 0.194 0.192 0.215 0.206 0.223 0.184 0.195
CO25–75 ( %) 51.5 50.1 76.9 76.0 64.2 62.8 73.3 71.4
CO5–95 (%) 100 100 100 100 100 100 100 100

Low-flow MAD 0.0085 0.0100 0.0073 0.0094 0.0088 0.0104 0.0064 0.0069
(Nov–Apr) SD 0.0264 0.0284 0.0280 0.0301 0.0305 0.0323 0.0258 0.0262

VAR (10−4) 8.32 9.48 9.10 10.47 10.40 11.52 7.71 7.86
DIS25–75 0.0121 0.0124 0.0099 0.0112 0.0121 0.0122 0.0086 0.0086
DIS5–95 0.033 0.039 0.029 0.037 0.036 0.042 0.026 0.027
CO25–75 (%) 72.2 75.1 88.8 90.2 69.1 73.9 79.6 79.2
CO5–95 (%) 100 100 100 100 100 100 100 100

QRF model across all experiments, which is further sup-
ported by the statistics in Table S2. However, as FAA of sub-
basin increases, the performance gap between the CMAL-
LSTM model and QRF model begins to diminish, especially
in the IMERG-F driven experiment. In contrast, for experi-
ments such as PDIR, GSMaP, and multi-product (All), the in-
crease in FAA has little effect on the performance difference
between the CMAL-LSTM and QRF models. This suggests
that highly biased information from raw streamflow simula-

tion has a greater impact on the QRF than on the CMAL-
LSTM model.

4.3.3 High-flow, low-flow, and peak timing

Table 4 summarizes the means and medians of integrated
metrics and flow regime indicators for the 522 sub-basins in
different experiments. The first three columns of the table are
the same as the metrics used in Fig. 8. PCC and RB are the
components of the Nash–Sutcliffe efficiency (NSE). In order
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Figure 8. Box plots of different model performance in 522 sub-
basins. (a) PCC, (b) RB, and (c) NSE.

Figure 9. The spatial distribution of NSE improvement (NSEPP−
NSEraw) between (a–d) QRF and RAW, (e–h) CMAL-LSTM and
RAW, and (i–l) QRF and CMAL-LSTM in 522 sub-basins.

to guarantee the consensus of the results, another integrated
indicator, the KGE, is also calculated. The KGE performs
identically to the NSE, confirming the superiority of the
CMAL-LSTM model. The last four columns of the table are
flow-related indicators. Overall, the CMAL-LSTM model re-
mains the best, except for the low-flow bias (FLV), where
the QRF model is more effective. However, as indicated by
the high-flow bias (FHV), both post-processing models have
limitations in handling flood peaks. Regardless of the pre-
cipitation product used to drive the streamflow simulations,
the bias of the flood peak changes from an overestimation
(RAW) to an underestimation (post-processing). In addition,
there is a certain degree of deviation in the simulations of
peak time. Flood peaks have always posed a challenging
problem in hydrological simulation due to many factors, such
as spatial and temporal variability in rainfall extreme, soil
moisture conditions, and catchment characteristics (Brunner
et al., 2019; Jiang et al., 2022). Furthermore, slight deviations
can lead to significant discrepancies in flood risk assessments
(Parodi et al., 2020). Given these challenges, the necessity of
probabilistic post-processing is highlighted.

5 Discussion

5.1 Model comparison

Previous studies have demonstrated that the quantile regres-
sion forests (QRF) approach outperforms other quantile-
based models, such as quantile regression and quantile neu-
ral networks (Taillardat et al., 2016; Tyralis et al., 2019;
Tyralis and Papacharalampous, 2021). Additionally, recent
research has indicated the effectiveness of mixture den-
sity networks based on the countable mixtures of asym-
metric Laplacians models and long short-term memory net-
works (CMAL-LSTM) for hydrological probabilistic mod-
elling (Klotz et al., 2022). In terms of reliability and sharp-
ness evaluation for probabilistic prediction, CMAL-LSTM
has been proven to achieve the best results compared to other
models such as LSTM coupled with Gaussian mixture mod-
els, uncountable mixtures of asymmetric Laplacians models,
and Monte Carlo dropout. These findings suggest that cur-
rently, QRF and CMAL-LSTM are the state of the art and
the most effective machine learning and deep learning mod-
els for hydrological probabilistic modelling. In this study, we
conducted a comprehensive evaluation of the performance
of these two advanced data-driven models in the context of
streamflow probabilistic post-processing.

Our findings suggest that the QRF model outperformed
the CMAL-LSTM model in terms of probability prediction
in most sub-basins. And the performance difference between
the two models was found to be associated with the catch-
ment area of the sub-basins. The QRF model was superior
in sub-basins with smaller catchment area, while the CMAL-
LSTM model demonstrated better performance in larger sub-
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Figure 10. The relationships between (a–d) NSE and FAA and between (e–h) NSE improvement (NSEPP−NSEraw) and FAA.

basins. However, when evaluated from a deterministic stand-
point, the CMAL-LSTM model achieved higher NSE scores
than the QRF model across nearly all sub-basins. The au-
thors believe that the primary reason for the inconsistency in
model performance is due to the differences in their respec-
tive model structure. As illustrated in Fig. 2, the QRF model
and the CMAL-LSTM model have dissimilar probabilistic
procedure.

First, the QRF model and the CMAL-LSTM model dif-
fer in their treatment of input features. Specifically, the QRF
model utilizes time embedding to flatten time-series features
as input for the model. In contrast, the CMAL-LSTM model
is capable of better learning the temporal autocorrelation of
input features due to the inherent time-series learning ca-
pabilities of LSTM. As a result, the CMAL-LSTM model
is more responsive to the autocorrelation of uncorrected
streamflow features compared to the QRF model. The results
depicted in Fig. S6 provide evidence to support the inter-
pretation that the performance difference between the QRF
model and the CMAL-LSTM model is related to the auto-
correlation of input features. The CMAL-LSTM model per-
forms better in sub-basin no. 250, where streamflow feature
autocorrelations are more skilful, than in sub-basin no. 10,
where streamflow feature autocorrelation skills are lacking.

Second, the QRF model and CMAL-LSTM differ in how
they generate probabilistic members. The QRF model calcu-
lates the final probabilistic members by grouping them based
on a predetermined number of quantiles (100 in this study).
In contrast, the CMAL-LSTM model first specifies the form
of the probabilistic distribution, then learns the parameters

of the distribution using neural networks, and finally ob-
tains the final probabilistic members by sampling. The QRF
model produces an approximate and implicit probabilistic
distribution, while the CMAL-LSTM model produces an ac-
curate and explicit probabilistic distribution. Moreover, the
predicted distribution from the CMAL-LSTM model using
the mixture density function is more flexible. As a result,
the QRF model produces narrower prediction intervals com-
pared to the CMAL-LSTM model, as is reported in Table
3. This is especially true when the sub-basin catchment area
is smaller, and the streamflow amplitude is lower. This also
explains the reason that the QRF model has higher sharp-
ness in these cases compared to the CMAL-LSTM model.
Figure S7 presents the hydrograph and prediction intervals
in two randomly selected sub-basins as an example. In sub-
basin no. 10, the CMAL-LSTM model achieves a balance be-
tween the width of the prediction interval and the observation
coverage, which is more important for high-flow predictions
and also explains why the CMAL-LSTM model has a higher
CRPS value in the sub-basin with larger catchment area. In
contrast, although the prediction interval of the QRF model
is narrower, it is affected by systematic bias. For example,
IMERG-F-QRF underestimates the peak flow in the high-
flow season, leading to its smaller CRPS value compared
to the CMAL-LSTM model. For sub-basin no. 250 with a
smaller catchment area, its rainfall-runoff response is faster,
and the fluctuation of streamflow is greater. Localized pre-
cipitation events can also cause large pulse flow, which is the
main feature of flash floods. Therefore, there are relatively
more extreme samples. In this case, the QRF model learns
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Table 4. Summary of integrated metrics and flow regime indicators of different models in 522 sub-basins. The bold numbers indicate better
performance in each group.

Input Aggregation Model Metric

PCC RB NSE KGE FHV FMS FLV PT

PDIR Mean RAW 0.656 −0.02 −0.1 0.521 33.11 −5.3 −17.3 1.68
QRF 0.785 −0.19 0.558 0.621 −43.4 −9.85 3.143 1.441
CMAL-LSTM 0.851 0.032 0.712 0.755 −28.8 1.201 15.24 1.328

Median RAW 0.689 −0.05 0.19 0.572 24.77 −7.63 −12.5 1.692
QRF 0.815 −0.2 0.584 0.645 −44.6 −10.5 9.833 1.417
CMAL-LSTM 0.877 0.032 0.752 0.778 −29.6 0.978 19.13 1.273

IMERG-F Mean RAW 0.759 −0.06 0.389 0.664 10.92 −4.04 −14.3 1.459
QRF 0.808 −0.06 0.648 0.718 −35.3 4.268 −4.29 1.394
CMAL-LSTM 0.852 −0.01 0.715 0.765 −30.4 2.409 −5.05 1.282

Median RAW 0.785 −0.09 0.475 0.672 9.555 −6.35 −4.14 1.417
QRF 0.852 −0.07 0.706 0.739 −37.6 2.068 5.878 1.333
CMAL-LSTM 0.88 −0.01 0.761 0.788 −32.1 2.159 2.467 1.231

GSMaP Mean RAW 0.687 0.286 −0.92 0.308 88.82 8.465 −45.1 1.519
QRF 0.778 −0.19 0.545 0.61 −45.4 −11.2 15.94 1.703
CMAL-LSTM 0.848 0.043 0.703 0.741 −31.2 0.708 23.71 1.44

Median RAW 0.731 0.352 −0.62 0.393 82.86 12.08 −34.1 1.5
QRF 0.809 −0.19 0.579 0.633 −48 −11.1 23.73 1.696
CMAL-LSTM 0.871 0.04 0.742 0.762 −32.3 1.037 26.36 1.417

All Mean RAW 0.733 0.059 0.154 0.603 34.38 2.332 −15.5 1.456
QRF 0.803 −0.06 0.637 0.704 −38.8 3.494 8.635 1.532
CMAL-LSTM 0.846 −0.01 0.703 0.76 −32.3 4.855 10.27 1.44

Median RAW 0.771 0.042 0.306 0.664 30.53 2.228 −4.74 1.417
QRF 0.849 −0.07 0.695 0.727 −42.3 1.317 14.96 1.542
CMAL-LSTM 0.871 −0.003 0.749 0.781 −33.8 4.436 13.83 1.417

and captures more observations with narrower prediction in-
tervals, resulting in a better CRPS value.

Third, the QRF model and CMAL-LSTM model differ in
their inference process. The QRF model utilizes a decision
tree model as its base learner, which is a classification al-
gorithm based on historical searches, whereas the CMAL-
LSTM model uses a neural network with LSTM layer as its
base learner, which is a more powerful fitting model. Due
to the differences in model structure, the two models have
different abilities to handle extreme events. When extreme
event samples are limited, the QRF model tends to under-
estimate predictions due to its historical search-based ap-
proach. On the other hand, the CMAL-LSTM uses the mix-
ture density function for extrapolation. However, both post-
processing models still underestimates streamflow extreme
events. The QRF model exhibits a higher degree of under-
estimation in sub-basins with larger catchment areas, result-
ing in unsatisfactory performance compared to the CMAL-
LSTM model in these regions. These discrepancies also lead
to lower NSE scores for the QRF model across all sub-basins,

as the squared term in the NSE metric increases the sensitiv-
ity to high-flow processes, which is reported in Fig. S8.

Furthermore, besides examining the differences in model
performance, we investigated the effects of different input
features on the post-processing model by using three differ-
ent satellite precipitation products in this study. We observed
a cascading impact on model performance in the rainfall-
runoff and post-processing processes. Given a fixed hydro-
logical model, in areas with a small catchment area, the re-
sponse of streamflow to precipitation is quicker, and the qual-
ity of satellite precipitation products directly influences the
quality of streamflow prediction through the rainfall-runoff
process. The temporal correlation of satellite precipitation
determines the temporal correlation of streamflow predic-
tion. Deviations in satellite precipitation led to the biased
streamflow prediction and have a more significant effect on
the NSE score of streamflow prediction. This explains the
reason that IMERG-F is optimal and PDIR is superior to
GSMaP. During the transfer process from raw streamflow
to post-processed streamflow, the autocorrelation skill of the
raw runoff dictates the performance of the streamflow post-
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processing model. This clarifies why IMERG-F is still opti-
mal, but GSMaP is superior to PDIR. Based on the results
of the multi-product experiment, we observed that the post-
processing model can learn better features to a larger extent;
however, it cannot completely filter out the information that
affects the model accuracy. Regarding information filtering,
the CMAL-LSTM model surpasses the QRF model. These
findings suggest that although streamflow post-processing
can enhance model performance, opting for the best-quality
product is still a prudent decision when multiple precipitation
products are available, and it can also save more computing
resources. Another strategy is to execute precipitation post-
processing before the hydrological model, which can assist
the model in better learning the features and ultimately im-
proving model performance.

5.2 Limitations and future work

This study provides a systematic evaluation of QRF and
CMAL-LSTM models in probabilistic streamflow post-
processing, yielding valuable insights and practical experi-
ence on model selection. However, there are still some de-
ficiencies that need to be addressed in future research. The
avenues for further investigations are summarized as follows.

First, we used simulated streamflow driven by observed
precipitation as a proxy for true streamflow. This study di-
verges from previous research by focusing on sub-basin
scale streamflow post-processing in a nested basin com-
prised of 522 sub-basins exhibiting varying flow accumu-
lation areas, ranging from 100 to 127 164 km2. To achieve
the streamflow post-processing for these 522 sub-basins, cor-
responding streamflow observations are required, but such
data are not readily available. As an alternative, we employed
streamflow simulations generated by a calibrated hydrolog-
ical model driven by observed precipitation. This approach
yields a post-processing model performance that closely ap-
proximates the given reference; however, it is not an exact
representation of actual streamflow post-processing. Despite
this limitation, the reference generated was used to evaluate
the performance of various post-processing models. Future
studies could conduct a more in-depth comparison of differ-
ent post-processing models in basins with more streamflow
records. Nonetheless, our dataset remains scarce in the cur-
rent community, and we have made it available along with
this study to enable other researchers to evaluate and com-
pare different methods against the benchmark presented in
this study (Zhang et al., 2022b).

Second, there exists data imbalance among the studied
sub-basins. Among the selected 522 sub-basins, it can be
observed that model performance is related to the catch-
ment size. However, the number of sub-basins correspond-
ing to each of the five intervals (100–20 000, 20 000–
40 000, 40 000–60 000, 60 000–100 000 km2, and greater
than 100 000 km2) is 476, 15, 4, 13, and 14, respectively.
Only 5.2 % of the sub-basins have a catchment area larger

than 60 000 km2. This could potentially affect the generality
of conclusions drawn. To address this limitation, more exten-
sive and balanced datasets (such as Caravan, Kratzert et al.,
2023) are needed to be utilized to achieve further validation
of the research findings and a better understanding of differ-
ent post-processing models.

Third, the selection of input features and hydrological
models could be extended. In order to maintain model com-
plexity and keep computational costs low, this study only
used one variable, uncorrected streamflow, as the predictor.
However, there are more variables that can be used as predic-
tors, including other meteorological variables such as tem-
perature and wind speed (Frame et al., 2021). In addition,
basin-related attributes can provide us with local informa-
tion, which is particularly helpful for the prediction in un-
gauged areas. In previous studies, all of these variables have
been shown to have varying degrees of contributions to the
model (Jiang et al., 2022). For post-processing, there are also
studies that use model state variables and other output vari-
ables as predictors (Frame et al., 2021), which can provide
us with information about the hydrological processes and
increase the physical interpretability of the post-processing
framework (Razavi, 2021; Tsai et al., 2021). However, state
variables and outputs generated by hydrological models tend
to be biased due to inherent bias in the satellite precipita-
tion. It is unclear whether this is helpful for streamflow post-
processing and requires further exploration. In terms of hy-
drological model selection, only the distributed time-variant
gain model (DTVGM) was used to simulate streamflow from
three different satellite precipitation products to increase the
diversity of post-processing experiments. By doing so, the
other two sources of uncertainty, namely, model structure
and parameters, were eliminated, since the focus of this study
was on comparing post-processing model with input uncer-
tainty. It is worth noting that in addition to input uncertainty,
hydrological model structure and parameter uncertainty are
also significant sources of uncertainty, as highlighted by Her-
rera et al. (2022) and Mai et al. (2022a, b). For future post-
processing model comparisons, we suggest adopting the ap-
proach of using multiple hydrological models to analyse the
uncertainty of model structure and parameters (Ghiggi et al.,
2021; Troin et al., 2021; Mai et al., 2022a, b).

Fourth, the post-processing models have limitations in
handling streamflow extreme events, as observed through
comparative analysis and visualization as reported in Table 4
and Fig. S8. The QRF model is based on a historical anal-
ogy search, wherein the model finds a group of similar sam-
ples and averages them at the leaf nodes to obtain the fi-
nal prediction (Li and Martin, 2017). As a result, the lim-
ited number of samples, particularly for extreme events, hin-
ders its ability to predict such events. However, this limitation
can be addressed by introducing additional parameter mixing
methods, such as combining QRF and extreme value distri-
bution. Previous attempts, such as combining QRF and ex-
tended generalized Pareto distribution, have shown promis-
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ing results (Taillardat et al., 2019). Nonetheless, these mixing
methods add complexity to the model and require additional
calibration of hyperparameters. The CMAL-LSTM model is
also constrained by the number of extreme event samples, but
its performance in these extreme events exceeds that of the
QRF model. Additionally, the CMAL-LSTM model chosen
in this study is a mixture density network and the correspond-
ing parameters are directly learned through neural network
optimization algorithms like gradient descent. The authors
believe that collecting more data samples and introducing
additional predictors and distribution functions for extreme
events can lead to further improvements.

Finally, it is important to constantly enhance and update
the model comparison iteratively. The CMAL-LSTM model
was selected based on its superior performance as proposed
by Klotz et al. (2022). They also evaluated two other hybrid
density networks and a probabilistic method using Monte
Carlo dropout. Additionally, there are other probabilistic
prediction methods such as the variational inference (Li et
al., 2021) and generative adversarial networks (Pan et al.,
2021). In a rapidly evolving community, new methods can
be applied and tested to further improve the performance of
streamflow post-processing in future research.

6 Conclusions

In this study, a series of well-designed experiments to com-
pare the performance of two state-of-the-art models for
streamflow probabilistic post-processing were conducted: a
machine learning model (quantile regression forests) and
a deep learning model (countable mixtures of asymmetric
Laplacians long short-term memory network). Using ob-
served precipitation and three different satellite precipitation
products to drive the calibrated hydrological model, we gen-
erated a large-sample dataset of 522 sub-basins with paired
streamflow reference and biased streamflow simulations. We
evaluated the model performance from both probabilistic
and deterministic perspectives, including reliability, sharp-
ness, accuracy, and flow regime, through intuitive case stud-
ies. These experiments established a path for understanding
the model differences in probabilistic modelling and post-
processing, provided practical experience for model selec-
tion, and extracted insights for model improvement. It also
serves as a reference for establishing benchmark tests for
model evaluation, including dataset construction and metrics
selection. Furthermore, streamflow post-processing provides
dependable data support for a range of downstream tasks,
such as flood risk analysis, reservoir scheduling, and water
resource management. The empirical findings of this study
for the two post-processing models are summarized below.

1. Based on the probabilistic assessment, the QRF
and CMAL-LSTM models exhibit comparable perfor-
mance. However, their model differences are correlated
with the flow accumulation area (FAA) of sub-basins. In

cases where the catchment area of a sub-basin is small,
the QRF model generates a narrower prediction inter-
val, resulting in better CRPS scores compared to the
CMAL-LSTM model in most sub-basins. Conversely,
in larger sub-basins (over 60 000 km2 in this study), the
CMAL-LSTM model outperforms the QRF model due
to its ability to learn autocorrelation skills of features
and capture more extreme values.

2. Based on the deterministic assessment, it can be con-
cluded that the CMAL-LSTM model performs better
than the QRF model in capturing high-flow process and
flow duration curve. On the other hand, the QRF model
tends to underestimate the high-flow process, resulting
in worse NSE score across all sub-basins. Both models,
however, have the issue of underestimating flood peaks
due to sparse samples of extreme events.

3. The impact of the inherent uncertainties from different
satellite precipitation products on streamflow simula-
tions is reduced by both models. However, the perfor-
mance of the post-processing models does not improve
further in the multi-product experiments. Instead, the in-
clusion of heavily biased inputs leads to a deterioration
in model performance. Recommending the choice of a
single precipitation product that is best suited to the task
at hand is expected to safeguard the model performance
and reduce the computational cost.

4. Given the performance of post-processing models, the
authors believe that these models have the potential to
be applied to other sources of uncertainty that affect hy-
drological modelling, such as model structure and pa-
rameter uncertainty.

Code and data availability. The GPM IMERG
Final Run is freely available at GES DISC
(https://doi.org/10.5067/GPM/IMERGDF/DAY/06, Huffman
et al., 2019) The PDIR data can be freely downloaded from
CHRS Data Portal (http://chrsdata.eng.uci.edu/, Nguyen
et al., 2019). The GSMaP data are publicly available (at
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm, Kubota et al.,
2023). The CMA precipitation observations are provided by the
National Meteorological Information Centre of China Meteoro-
logical Administration. The soil types are freely available (at http:
//www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/, Fischer et al.,
2008). The land use data are freely available from
the Chinese National Tibetan Plateau Third Pole En-
vironment Data Centre (at http://data.tpdc.ac.cn/en/data/
a75843b4-6591-4a69-a5e4-6f94099ddc2d, CAS-RESDC, 2019).
The DEM data are freely available at http://www.gscloud.cn
(CAS-CNIC, 2023). The QRF model code is available on
GitHub (https://github.com/jnelson18/pyquantrf, last access:
18 December 2023; https://doi.org/10.5281/zenodo.5815105,
Jnelson18, 2022). The CMAL-LSTM model code is available
on GitHub (https://github.com/neuralhydrology/neuralhydrology,
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last access: 20 December 2023; Kratzert et al., 2022b). The
dataset and results of this study are available on Zenodo
(https://doi.org/10.5281/zenodo.7187505) (Zhang et al., 2022b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-27-4529-2023-supplement.
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